JPS61124540A - Method for dehydrogenating molten al or al alloy - Google Patents

Method for dehydrogenating molten al or al alloy

Info

Publication number
JPS61124540A
JPS61124540A JP24653084A JP24653084A JPS61124540A JP S61124540 A JPS61124540 A JP S61124540A JP 24653084 A JP24653084 A JP 24653084A JP 24653084 A JP24653084 A JP 24653084A JP S61124540 A JPS61124540 A JP S61124540A
Authority
JP
Japan
Prior art keywords
molten metal
molten
halogen
dehydrogenation
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24653084A
Other languages
Japanese (ja)
Inventor
Kenji Osumi
大隅 研治
Masahiro Tsukuda
筑田 昌宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24653084A priority Critical patent/JPS61124540A/en
Publication of JPS61124540A publication Critical patent/JPS61124540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To remove efficiently hydrogen from a molten Al or a molten Al alloy by treating the molten metal with gaseous halogen or a compound contg. halogen to reduce the concn. of hydrogen in the molten metal to a specified value and by treating the molten metal with an inert gas in the form of fine bubbles. CONSTITUTION:The molten Al or the molten Al alloy is treated with gaseous halogen and/or a compound contg. halogen to reduce the concn. of hydrogen in the molten metal to <=0.15cc/g by 100g molten metal. The inert gas such as nitrogen is then blown into the molten metal from a porous plug in the form of fine bubbles to reduce the concn. of hydrogen in the molten metal to <=0.1cc/g by 100g molten metal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Al又はAl合金溶湯中に混入している水素
を比較的短時間の処理で効率良く除去する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for efficiently removing hydrogen mixed in Al or Al alloy molten metal in a relatively short time.

〔従来の技術〕[Conventional technology]

Al又はAl合金(以下Al合金で代表する)溶湯中に
溶存している水素ガスは、鋳造時の降温に伴う溶解度の
低下により気泡となりピンホールや表面荒れ等の鋳造欠
陥を生ずる原因になるので、溶湯段階で可及的に除去し
ておかなければならない。その為の脱水素方法として現
在汎用されているのは、■ハロゲンガス及び/又はハロ
ゲン含有化合物を処理溶湯内へ吹込んで脱水素を行なう
方法と、■処理溶湯内へ不活性ガスを微細な気泡状にし
て吹込み、不活性ガスの分圧を利用して水素の放散を促
進させる方法である。
Hydrogen gas dissolved in the molten Al or Al alloy (hereinafter referred to as Al alloy) becomes bubbles due to a decrease in solubility as the temperature falls during casting, causing casting defects such as pinholes and surface roughness. , must be removed as much as possible at the molten metal stage. The currently widely used dehydrogenation methods for this purpose are: 1. Injecting halogen gas and/or halogen-containing compounds into the molten metal to dehydrogenate, and 2. Injecting an inert gas into the molten metal through fine bubbles. This method uses the partial pressure of an inert gas to promote hydrogen dissipation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記■の脱水素法は、溶存水素量の多いAl合金溶湯の
脱水素法としては極めて優れたものであるが、Al合金
溶湯の水素濃度を0.12〜0.14cc/100yま
で低減するのが限度であり、この値以下まで水素濃度を
低くすることはできず、従って水素に起因する鋳造欠陥
を解消することはできない。一方■の不活性ガス微細気
泡吹込法を採用すれば水素濃度をO,lcc/100y
以下まで低減することができ、水素に起因する鋳造欠陥
を実質的に無くすことが可能であるが、処理に長時間を
要し生産性が著しく低下する。
The above dehydrogenation method ① is extremely excellent as a dehydrogenation method for molten Al alloy with a large amount of dissolved hydrogen, but it is difficult to reduce the hydrogen concentration of molten Al alloy to 0.12 to 0.14 cc/100y. is the limit, and the hydrogen concentration cannot be lowered below this value, and therefore casting defects caused by hydrogen cannot be eliminated. On the other hand, if the inert gas fine bubble injection method (■) is adopted, the hydrogen concentration can be reduced to O, lcc/100y.
Although it is possible to substantially eliminate casting defects caused by hydrogen, the treatment requires a long time and productivity is significantly reduced.

本発明はこうした状況に鑑み、Al合金溶湯中の水素濃
度を比較的短時間の処理で0.1 CC/ 1002程
度以下まで低減させることのできる脱水素技術を確立し
ようとするものである。
In view of these circumstances, the present invention aims to establish a dehydrogenation technology that can reduce the hydrogen concentration in molten Al alloy to about 0.1 CC/1002 or less in a relatively short period of time.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明に係る脱水素方法は、Al又はAl合金溶湯をま
ず第1番目にハロゲンガス及び/又はハロゲン含有化合
物で処理して該溶湯中の水素濃度を0.15cc /1
00y(溶I!1)以下まで低減し、次いで微細気泡状
の不活性ガスで処理するところに要旨が存在する。
In the dehydrogenation method according to the present invention, first, Al or Al alloy molten metal is treated with a halogen gas and/or a halogen-containing compound to reduce the hydrogen concentration in the molten metal to 0.15cc/1.
The key point is to reduce the temperature to 00y (molten I!1) or less, and then to treat it with fine bubbles of inert gas.

〔作用〕[Effect]

Al合金溶湯の脱水素法としては前述の様に■ハロゲン
ガス及び/又はハロゲン含有化合物により処理する方法
(以下ハロゲン処理法)と、■微細気泡状の不活性ガス
で処理する方法(以下微細泡IC処理法)があり、夫々
の長所及び欠点は先に説明した通りである。ちなみに第
2図はこれら■、■の方法を採用した場合の処理時間と
溶湯中の水素濃度の関係を示したものである。但し実験
条件は下記の通りとした。
As mentioned above, the dehydrogenation methods for molten Al alloy are: (1) treatment with halogen gas and/or halogen-containing compound (hereinafter referred to as halogen treatment method), and (2) treatment with fine bubbles of inert gas (hereinafter referred to as fine bubbles). The advantages and disadvantages of each method are as described above. Incidentally, FIG. 2 shows the relationship between the treatment time and the hydrogen concentration in the molten metal when these methods (1) and (2) are adopted. However, the experimental conditions were as follows.

く実験条件〉 処理溶湯:JIS  A  5056合金処理温度ニア
50℃ ■の場合の吹込みガス:塩素ガス、200 N//mi
n ■の場合の吹込条件: ポーラスプラグ・・・特公昭56−85625号に開示
されたポーラスプラグ(40 μmφ の貫通孔を存する40mφの 円筒状プラグ)を1o本使用、 不活性ガス・・・窒素、50 Nl / min第2図
からも明らかな様に、ハロゲン処理法■の場合、水素濃
度の高いAl合金溶湯に適用したときでも短時間(80
分程度)で水素濃度を0.15cc/100y程度まで
低下させることができる。
Experimental conditions〉 Processing molten metal: JIS A 5056 alloy Processing temperature near 50°C Injection gas in case of ■: Chlorine gas, 200 N//mi
Blow conditions for n ■: Porous plug: Use 1 o porous plug (40 mφ cylindrical plug with 40 μmφ through hole) disclosed in Japanese Patent Publication No. 56-85625, Inert gas... Nitrogen, 50 Nl/min As is clear from Figure 2, in the case of halogen treatment method ■, even when applied to molten Al alloy with a high hydrogen concentration, it takes a short time (80 Nl/min).
The hydrogen concentration can be reduced to about 0.15 cc/100 y in about 1 minute).

しかしそのままで処理時間を延長したとしてもその後の
水素濃度の低下勾配は極めて小さく、且つ水素濃度の到
達値は0.12〜0.14 cc / 1002が限界
である。一方微細泡IG処理法■を採用した場合、最終
的には水素濃度を0.1 cc/ 100y以下まで下
げることができるが、経時的な水素濃度の降下勾配は極
めて緩やかであって目標水素濃度まで下げるのに長時間
を要し、生産性の向上が望めなくなるばかりでなく大量
の不活性ガスを必要とする為経済性も損なわれる。
However, even if the treatment time is extended as it is, the subsequent decreasing gradient of the hydrogen concentration is extremely small, and the maximum value of the hydrogen concentration is 0.12 to 0.14 cc/1002. On the other hand, if the micro-bubble IG treatment method (■) is adopted, the hydrogen concentration can ultimately be lowered to 0.1 cc/100y or less, but the downward slope of the hydrogen concentration over time is extremely gradual, making it difficult to reach the target hydrogen concentration. It takes a long time to lower the temperature to a certain level, which not only makes it impossible to expect an improvement in productivity, but also reduces economic efficiency because a large amount of inert gas is required.

本発明はこうした従来技術の長所働欠点をうまく組合せ
、短時間で効果的な脱水素を可能にしようとするもので
ある。但し上記の及び■の方法を組合せるにしても、無
作為に組合せただけで目的が達成される訳ではなく、色
々な工夫をこらす必要がある。しかして本発明者等が予
備実験で確認したところによると、組合せの手順や脱水
素法の切換え時期等によっては単独処理の場合よりもか
えって脱水素効率が低下することもあり、より効果的な
手順等を厳密に規定すべきであるという結論に達した。
The present invention attempts to effectively combine the advantages and disadvantages of these prior art techniques to enable effective dehydrogenation in a short period of time. However, even if methods (2) and (2) above are combined, the purpose cannot be achieved just by combining them at random, and various ingenuity is required. However, the inventors have confirmed through preliminary experiments that depending on the combination procedure and the timing of switching dehydrogenation methods, the dehydrogenation efficiency may be lower than in the case of single treatment, and more effective The conclusion was reached that procedures, etc. should be strictly stipulated.

そして、水素濃度の高いものを脱水素する方法としては
■のハロゲン処理法の方が好適であり、こうして得られ
た低水素のものを更に低水素化することのできる方法と
しては■の微細泡IG処理法の方が適しているという確
信のもとで、はじめに■法を行ない引続いて■の方法を
行なうという結合工程を組立てるに当たり、■法から■
法への最も効果的な切換え時期を明確にする必要がある
と考え、次の実験を行なった。
The halogen treatment method described in (2) is more suitable as a method for dehydrogenating materials with a high hydrogen concentration, and the method described in (2) that can further reduce the hydrogen content of materials with low hydrogen concentration is described in (2). With the conviction that the IG treatment method is more suitable, when assembling the combination process of first performing method ■ and then performing method ■, we decided to proceed from method ■ to ■.
We believed that it was necessary to clarify the most effective time to switch to the method, so we conducted the following experiment.

即ち水素濃度の異なる数種類のAI合金溶IIh(何れ
もJIS  A  5056)を夫々500Kg準備し
、微細泡処理法(プラグ:40μmφ の貫通孔を無数
に有する40mφの円筒状プラグを10本使用、不活性
ガス:窒素、50 N//min )で脱水素を行ない
、この方法にあける水素低下限界値と考えられる0、0
9%まで低下させるのに要する時間を調べた。結果を第
1表に示す。
That is, 500 kg each of several kinds of AI alloy melts IIh (all JIS A 5056) with different hydrogen concentrations were prepared, and a micro-bubble treatment method (plugs: using 10 40 mφ cylindrical plugs with countless 40 μmφ through holes, Active gas: Nitrogen, 50 N//min) is used for dehydrogenation, and 0,0, which is considered to be the limit value for hydrogen reduction in this method.
The time required to reduce the temperature to 9% was investigated. The results are shown in Table 1.

第1表 第1表からも明らかな様に、初期水素濃度が低いもの程
脱水素処理の所要時間は短くなる。そして初期水素濃度
が0.154以下のものでは脱水素所要時間は80分と
なるが、初期水素濃度を0.15%より低い値、例えば
0.11%や0.12%に下げておいても脱水素所要時
間は全く短縮されない。
As is clear from Table 1, the lower the initial hydrogen concentration, the shorter the time required for dehydrogenation treatment. If the initial hydrogen concentration is 0.154 or less, the dehydrogenation time will be 80 minutes, but if the initial hydrogen concentration is lower than 0.15%, for example, 0.11% or 0.12%. However, the time required for dehydrogenation is not shortened at all.

即ち微細泡IG法で脱水素を行なうかぎり水素低下限界
値に到達するまで少なくとも80分の処理時間を必要と
し、この場合の初期水素濃度の上限は0.15%となる
。従って前述の様に(1)微細泡IG法を採用したとき
の水素濃度低下勾配が緩やかであり、(2)一方前記ハ
ロゲン処理法はむしろ高水素濃度側の方がよい脱水素効
率を示す、という両者の特徴を考え合わせると、「水素
濃度の高い初期脱水素段階ではハロゲン処理法を採用し
て水素濃度を急速に低下させ、水素濃度が0.15%以
下まで降下した後は微細泡IG法に切換えることにより
水素濃度を0.1%以下まで低下させる」という本発明
独自の脱水素法が導かれる。
That is, as long as dehydrogenation is performed using the microbubble IG method, a treatment time of at least 80 minutes is required until the hydrogen reduction limit value is reached, and in this case, the upper limit of the initial hydrogen concentration is 0.15%. Therefore, as mentioned above, (1) the gradient of decrease in hydrogen concentration is gentle when employing the microbubble IG method, and (2) on the other hand, the halogen treatment method shows better dehydrogenation efficiency at higher hydrogen concentrations. Considering the characteristics of both, ``In the initial dehydrogenation stage where the hydrogen concentration is high, a halogen treatment method is used to rapidly reduce the hydrogen concentration, and after the hydrogen concentration has fallen to 0.15% or less, microfoam IG is used. The present invention introduces a dehydrogenation method unique to the present invention in which the hydrogen concentration is reduced to 0.1% or less by switching to the method.

尚前記■と■の方法の組合せ方については、この他囚ま
ず■の微細泡IG法で処理した後■のハロゲン処理を行
なう方法、或は(6)■と■を並行して実施する方法、
が考えられるが、これらの組合せでは処理時間を短縮し
得ないばかりでなく、水素濃度を0.196以下まで低
下させることもできない。また本発明の手順を採用し、
微細泡IG法への切換え時期を水素濃度0.2%或は0
.3%到達時点等に設定することも可能であるが、この
場合は微細泡IG法への切換時期が早過ぎる為処理時間
短縮の目的が果たせなくなる。
As for how to combine the methods (6) and (6) above, there are two methods: (1) treatment with the microfoam IG method followed by (6) halogen treatment, or (6) (6) carrying out (6) and (6) in parallel. ,
However, with these combinations, not only is it not possible to shorten the processing time, but also it is not possible to reduce the hydrogen concentration to 0.196 or less. Also adopting the procedure of the present invention,
The timing of switching to the microbubble IG method is determined by changing the hydrogen concentration to 0.2% or 0.
.. It is also possible to set the temperature at the point when 3% is reached, but in this case, the switching to the micro-bubble IG method is too early and the purpose of shortening the processing time cannot be achieved.

しかし前述の如くハロゲン処理法と微細泡IG法の適用
類を規定すると共に、微細泡IG法への切換え時期を厳
密に設定すれば、両者の欠点が互いに補われ脱水素を極
めて効率良く進めることができる。尚本発明ではハロゲ
ン処理の後に微細泡IG処理が行なわれるが、ハロゲン
処理工程で溶湯中へ溶解したハロゲンは微細泡IG処理
時における脱水素を促進する機能も発揮し、脱水素効率
の向上に寄与している。ちなみに第1図は、微細泡IG
処理(プラグ及び不活性ガスは前述の例と同じ)時にお
けるAl合金(A  5056)溶湯中のハロゲンガス
(塩素)の有無と脱水素効率の関係を示したグラフであ
り、ハロゲンガスの共存自体が微細泡IG処理時の脱水
素を促進していることが分かる。
However, as mentioned above, if the application types of the halogen treatment method and the micro-bubble IG method are defined, and the timing of switching to the micro-bubble IG method is strictly set, the shortcomings of both can be mutually compensated for and dehydrogenation can proceed extremely efficiently. I can do it. In the present invention, the microbubble IG treatment is performed after the halogen treatment, and the halogen dissolved in the molten metal in the halogen treatment process also functions to promote dehydrogenation during the microbubble IG treatment, improving dehydrogenation efficiency. Contributing. By the way, Figure 1 shows microfoam IG.
This is a graph showing the relationship between the presence or absence of halogen gas (chlorine) in molten Al alloy (A 5056) and dehydrogenation efficiency during treatment (plug and inert gas are the same as in the previous example), and the coexistence of halogen gas itself It can be seen that this promotes dehydrogenation during microfoam IG treatment.

〔実施例1〕 第2表に示す様に種々の品種のAl合金溶溶湯夫々15
トン)を準備し、下記の条件で脱水素を行なうことによ
り、第2表に併記する結果を得た。
[Example 1] As shown in Table 2, 15 molten Al alloys of various types were used.
The results shown in Table 2 were obtained by preparing a sample of 1000 ml (100 ml) and dehydrogenating it under the following conditions.

〈脱水素条件〉 第1次脱水素(ハロゲン処理) 処理温度  ニア20℃ ハロゲンガス:塩素40ON7/分 処理時間  −30分 第2次脱水素(微細泡IG処理) プラグ:40μmφの独孔を無数に有する40txtx
φの円筒状プラグ、10本不活性ガス:窒素、流jit
5ONl/分、圧力0.8 Ky /備 処理温度ニア10〜720℃ 処理時間=80分 第2表からも明らかな様に本発明はあらゆる品種に対し
て優れた脱水素効果を発揮する。
<Dehydrogenation conditions> 1st dehydrogenation (halogen treatment) Treatment temperature Near 20℃ Halogen gas: Chlorine 40ON 7/min Treatment time -30 minutes 2nd dehydrogenation (microbubble IG treatment) Plug: Numerous 40μmφ holes has 40txtx
φ cylindrical plug, 10 inert gas: nitrogen, flow jet
5ONl/min, pressure 0.8 Ky/preparation temperature 10-720°C, treatment time = 80 minutes As is clear from Table 2, the present invention exhibits an excellent dehydrogenation effect on all kinds of products.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されるが、要はハロゲン処理と
微細泡IG処理の実施順及び切換え時期を厳密に設定す
ることにより、Al合金溶湯の脱水素を極めて効率良く
行なうことができる様になった。
The present invention is constructed as described above, but the point is that by strictly setting the order of implementation and switching timing of halogen treatment and microbubble IG treatment, dehydrogenation of molten Al alloy can be carried out extremely efficiently. Became.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はAl合金溶湯中の塩素ガスの有無が微細泡IG
処理による脱水素効果に与える影響を示す実験結果のグ
ラフ、第2図は従来の脱水素法を適用した場合の処理時
間と水素濃度の関係を示すグラフである。
Figure 1 shows the presence or absence of chlorine gas in the Al alloy molten metal.
A graph of experimental results showing the influence of treatment on the dehydrogenation effect, and FIG. 2 is a graph showing the relationship between treatment time and hydrogen concentration when a conventional dehydrogenation method is applied.

Claims (1)

【特許請求の範囲】[Claims] Al又はAl合金溶湯をハロゲンガス及び/又はハロゲ
ン含有化合物で処理し該溶湯中の水素濃度を溶湯100
g当たり0.15cc以下に低減した後、微細気泡状の
不活性ガスで処理することを特徴とするAl又はAl合
金溶湯の脱水素方法。
Al or Al alloy molten metal is treated with halogen gas and/or halogen-containing compound to reduce the hydrogen concentration in the molten metal to 100% of the molten metal.
A method for dehydrogenating Al or Al alloy molten metal, which comprises treating the molten metal with fine bubbles of inert gas after reducing the hydrogen content to 0.15 cc or less per gram.
JP24653084A 1984-11-21 1984-11-21 Method for dehydrogenating molten al or al alloy Pending JPS61124540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24653084A JPS61124540A (en) 1984-11-21 1984-11-21 Method for dehydrogenating molten al or al alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24653084A JPS61124540A (en) 1984-11-21 1984-11-21 Method for dehydrogenating molten al or al alloy

Publications (1)

Publication Number Publication Date
JPS61124540A true JPS61124540A (en) 1986-06-12

Family

ID=17149775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24653084A Pending JPS61124540A (en) 1984-11-21 1984-11-21 Method for dehydrogenating molten al or al alloy

Country Status (1)

Country Link
JP (1) JPS61124540A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393833A (en) * 1986-07-02 1988-04-25 ユニオン・カ−バイド・コ−ポレ−シヨン Improved method for controlling density of solidified aluminum
WO2000003046A1 (en) * 1998-07-13 2000-01-20 Praxair Technology, Inc. Process for refining aluminum
US6572676B1 (en) * 1998-07-13 2003-06-03 Praxair Technology, Inc. Process for refining aluminum

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581025A (en) * 1981-05-27 1983-01-06 Sumitomo Light Metal Ind Ltd Treating device of molten metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581025A (en) * 1981-05-27 1983-01-06 Sumitomo Light Metal Ind Ltd Treating device of molten metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393833A (en) * 1986-07-02 1988-04-25 ユニオン・カ−バイド・コ−ポレ−シヨン Improved method for controlling density of solidified aluminum
WO2000003046A1 (en) * 1998-07-13 2000-01-20 Praxair Technology, Inc. Process for refining aluminum
US6572676B1 (en) * 1998-07-13 2003-06-03 Praxair Technology, Inc. Process for refining aluminum

Similar Documents

Publication Publication Date Title
CN113337727B (en) Slag for preparing high-nitrogen steel through pressurized electroslag remelting for inhibiting burning loss of magnesium and rare earth and using method thereof
JPS61124540A (en) Method for dehydrogenating molten al or al alloy
AU8181587A (en) Process of casting steel including rendering the steel bath inert by means of carbon dioxide in the form of dry ice
US4615730A (en) Method for refining molten metal bath to control nitrogen
RU2237732C2 (en) Method of removing chromium and/or nickel from liquid slags
US5308379A (en) Extra-low-oxygen copper and a method of processing same
DD252844A5 (en) METHOD FOR TREATING AN IRON CASTING MELT
JPH0397612A (en) Method for treating new or old graphite powder for improving effectiveness as carrier of metallic catalyst
US4568386A (en) Process for purifying metals by insufflation and product produced thereby
JPS63190113A (en) Production of dead low carbon steel
JP5010086B2 (en) Vacuum processing of molten metal with simultaneous stripping by helium injection.
SU1361193A1 (en) Method of processing iron-containing ores and slimes
SU1585361A1 (en) Method of refining copper
KR100305693B1 (en) Electrolytic pickling method of cold-annealed austenitic stainless steel sheet
JPH01279707A (en) Removal of nitrogen from iron
JPS6373524A (en) Plasma processing
SU1191485A1 (en) Method of producing silicon-calcium-vanadium alloying composition
SU1717644A1 (en) Steelmaking process
JP2003528981A5 (en)
JPH02285036A (en) Vacuum refining method for molten metal
RU2024100248A (en) METHOD FOR DENITRIFICATION OF MOLTEN STEEL AND METHOD FOR STEEL PRODUCTION
US2222592A (en) Purification of copper
JPH01150792A (en) Slag removing method in pig iron receiving vessel
KR100311688B1 (en) Preparation method of ferric oxide with low quality deviation
JPH05195046A (en) Method for melting high manganese and extremely low carbon steel