JPS63190113A - Production of dead low carbon steel - Google Patents

Production of dead low carbon steel

Info

Publication number
JPS63190113A
JPS63190113A JP5421687A JP5421687A JPS63190113A JP S63190113 A JPS63190113 A JP S63190113A JP 5421687 A JP5421687 A JP 5421687A JP 5421687 A JP5421687 A JP 5421687A JP S63190113 A JPS63190113 A JP S63190113A
Authority
JP
Japan
Prior art keywords
ppm
steel
dissolved oxygen
controlling
deoxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5421687A
Other languages
Japanese (ja)
Other versions
JPH0465883B2 (en
Inventor
Masazumi Hirai
平居 正純
Ryoji Tsujino
良二 辻野
Junji Nakajima
潤二 中島
Jun Ogura
小倉 順
Toshiyuki Kaneko
敏行 金子
Kimitoshi Yonezawa
米澤 公敏
Shigenori Yakura
矢倉 重範
Yoshihiko Kawai
川合 良彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPS63190113A publication Critical patent/JPS63190113A/en
Publication of JPH0465883B2 publication Critical patent/JPH0465883B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To reach carbon content in steel to dead low carbon range in a short time and to economically and effectively execute decarbonizing treatment by controlling dissolved oxygen in the steel in the prescribed range at the time of decarbonized-treating the molten steel in a ladle after tapping off from a converter under reducing pressure. CONSTITUTION:The non-deoxidized molten steel, tapped off from the converter is decarbonized-treated under reducing pressure favorably in thermodynamics by RH, DH, etc. Then, the dissolved oxygen in the steel is controlled to >=400ppm during refining from start of the treatment until reaching 30ppm carbon concn. in the steel. Or, in addition, further in the range of <30ppm carbon content, deoxidizing agent is charged in a lump. And, the dissolved oxygen in the steel is made 50-200ppm. Next, by further treating, the deoxidation is completely executed.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は転炉出鋼後の取鍋溶鋼を減圧下で脱炭処理する
方法に関するものである。 (従来の技術) 自動車用の熱冷延鋼板は深絞り性、張り出し性等の加工
性向上のため、鋼材中の(C)濃度を極力低減する必要
がある。このニーズに対し、製鋼工程では転炉での吹止
(C)の低減及び二次精錬工程での減圧下脱炭処理(第
3版鉄鋼便覧■製銑製111671〜685頁に各種の
処理装置が示されている)によって対処してきた。特に
RH,011等の熱力学的に有利な減圧下での脱炭過程
を利用したプロセスでは、これまで環流量の増大、真空
度の向上環の対策により処理後の達成(C)も徐々に減
少しているが(C)20ppm以下は通常処理の15〜
20分程度では容易には達成できていない。 (発明が解決しようとする問題点) 本発明は従来の二次精錬における減圧上脱炭プロセスの
前記の限界が解消でき、短時間で極低炭域が到達可能な
減圧下脱炭処理法を提供することを目的とする。 (問題点を解決するための手段) 本発明の要旨とするところは下記のとおりである。 (1)  転炉から出鋼された未脱酸溶鋼をRH,DH
等の減圧下脱炭処理するに際し、処理開始から(C)3
0ppm到達までの間、鋼中の溶解酸素
(Field of Industrial Application) The present invention relates to a method for decarburizing molten steel in a ladle after being tapped in a converter under reduced pressure. (Prior Art) In order to improve workability such as deep drawability and stretchability of hot-cold rolled steel sheets for automobiles, it is necessary to reduce the (C) concentration in the steel material as much as possible. In order to meet this need, in the steelmaking process, various treatment devices are used to reduce blow-out (C) in the converter and decarburize under reduced pressure in the secondary refining process (see 3rd Edition Iron and Steel Handbook ■ Pigmaking 111671-685). ) has been dealt with. In particular, in processes that utilize the thermodynamically advantageous decarburization process under reduced pressure such as RH, 011, it has been possible to gradually achieve (C) after treatment by increasing the recirculation flow rate and improving the degree of vacuum. Although it has decreased (C) 20 ppm or less, the normal treatment is 15~
This cannot be achieved easily in about 20 minutes. (Problems to be Solved by the Invention) The present invention provides a method for decarburizing under reduced pressure that can eliminate the above-mentioned limitations of the conventional decarburization process under reduced pressure in secondary refining and can reach an extremely low carbon range in a short time. The purpose is to provide. (Means for solving the problems) The gist of the present invention is as follows. (1) Undeoxidized molten steel tapped from the converter is subjected to RH and DH
When decarburizing under reduced pressure such as
Dissolved oxygen in steel until reaching 0 ppm

〔0〕fを40
0 ppm以上に制御することを特徴とする極低炭素鋼
の製造方法。 (2)  転炉から出鋼された未脱酸溶鋼をRH,DH
等の減圧下脱炭処理するに際し、処理開始から(C)3
0ppm到達までの間、鋼中の溶解酸素(O)fを40
0 ppn+以上に制御し、その後(C) 30ppm
未満の領域において脱酸剤を一括投入することによって
鋼中溶解酸素(O)fを50〜200ppn+に弱脱酸
した後、さらに処理し、その後完全脱酸することを特徴
とする極低炭素鋼の製造方法。 (3)  転炉から出鋼された未脱酸溶鋼をRH,DH
等の減圧下脱炭処理するに際し、処理開始から(C)3
0ppm+到達までの間、網中の溶解酸素
[0] f to 40
A method for producing ultra-low carbon steel, characterized by controlling the carbon content to 0 ppm or more. (2) Undeoxidized molten steel tapped from the converter is subjected to RH and DH
When decarburizing under reduced pressure such as
Until reaching 0 ppm, the dissolved oxygen (O)f in the steel was reduced to 40
Control to 0 ppn+ or higher, then (C) 30ppm
An ultra-low carbon steel characterized by weakly deoxidizing the dissolved oxygen (O)f in the steel to 50 to 200 ppn+ by adding a deoxidizing agent all at once in a region of less than manufacturing method. (3) Undeoxidized molten steel tapped from the converter is subjected to RH and DH
When decarburizing under reduced pressure such as
Dissolved oxygen in the network until reaching 0ppm+

〔0〕fを4
00 ppm以上に制御し、その後(C) 30ppm
未満の領域において脱酸剤をRH環流量にしたがって所
定原単位になるように連続的又は断続的に添加して鋼中
溶解酸素(O)fを50〜200ppn+に弱脱酸した
後、さらに処理し、その後完全脱酸することを特徴とす
る極低炭素鋼の製造方法。 (4)  弱脱酸する脱酸剤として、TiあるいはAl
を用いることを特徴とする前記第2項又は第3項記載の
極低炭素鋼の製造方法。 (5)弱脱酸はAlで一部脱酸した後、Tiで脱酸する
ことを特徴とする前記第3項又は第4項記載の極低炭素
鋼の製造方法。 以下本発明を具体的に説明する。 本発明者らは、減圧下での脱炭プロセスの能力向上のた
め主としてRHを用い脱炭挙動に及ぼす各種要因につい
て調査検討した。その結果、第1図に示すように減圧下
での脱炭推移は脱炭速度の大きい■領域゛と脱炭速度の
小さい■領域、■領域のほぼ3領域に分けられ、主とし
て真空排気の遅れが原因でおこる低脱炭速度の!領域を
除き、■領域、■領域の脱炭速度に及ぼす要因として次
のことがわかった。 はぼ(C) 30ppm程度までの193域については
従来から環流量の増大等により脱炭速度が増大すること
は周知であるが、本発明者らはII 6i域の脱炭につ
いて第2図に示すように最適
[0] f to 4
00 ppm or more, and then (C) 30 ppm
After weakly deoxidizing the dissolved oxygen (O)f in the steel to 50 to 200 ppn+ by adding a deoxidizing agent continuously or intermittently to a predetermined basic unit according to the RH reflux amount in the region below, further processing. A method for producing ultra-low carbon steel, which is characterized by completely deoxidizing the steel. (4) Ti or Al can be used as a weak deoxidizing agent.
3. The method for producing ultra-low carbon steel according to item 2 or 3, characterized in that the method uses the following. (5) The method for producing ultra-low carbon steel according to item 3 or 4, wherein the weak deoxidation is performed by partially deoxidizing with Al and then deoxidizing with Ti. The present invention will be specifically explained below. The present inventors mainly used RH to investigate and study various factors that affect decarburization behavior in order to improve the ability of the decarburization process under reduced pressure. As a result, as shown in Fig. 1, the decarburization transition under reduced pressure can be divided into three regions: the large decarburization rate region, the small decarburization speed region, and the small region. Low decarburization rate caused by! The following factors were found to affect the decarburization rate in the ■ area and ■ area, excluding the area. Although it is well known that the decarburization rate in the 193 region up to about 30 ppm increases due to an increase in the recirculation amount, etc., the present inventors have shown in Figure 2 regarding the decarburization in the II 6i region. Perfect as shown

〔0〕1が存在することを
見出した。なお、第2図において、にCは脱炭速度定数
(1/a+in)であり(1)式より求められる。 −d  (C) −−Kc  (c)  ・・・・・・  (1)t すなわち基本的には脱炭反応の(C)当量に見合う以上
We found that [0]1 exists. In FIG. 2, C is the decarburization rate constant (1/a+in), which is obtained from equation (1). -d (C) --Kc (c) ...... (1) t In other words, basically more than the (C) equivalent of the decarburization reaction

〔0〕、量が必要であり本発明者らの実験結果では処
理前(C)150〜350ppm程度の範囲であれば最
適(0)、は400ppm以上であることがわかった。 しかも
The amount [0] is necessary, and the experimental results of the present inventors show that if the pre-treatment (C) is in the range of about 150 to 350 ppm, the optimum (0) is 400 ppm or more. Moreover,

〔0〕、の制御方法として、転炉吹止(0)の制
御又は処理開始前又は直後の酸素吹付(OB)または酸
化鉄の添加等による酸素付加は効果的であるが、処理開
始後約5分以降からのOB等による酸素付加は最適〔0
〕、であっても効果がないかあるいはむしろ逆効果であ
ることも明らかとなった。 又(C) 30ppm+未満の低(C)域である■領域
の脱炭速度には特願昭61−82239号に示されてい
る(0)、への影響が本発明者らの実機実験でも認めら
れ、第3図に示すようにM等によって弱脱酸し、はぼ5
0〜200ppmの(o)1にした場合、脱炭速度が最
も大きくなることがわかった。さらに本発明者らの実験
の結果、実機脱炭プロセスで■領域の(O)fを50〜
200ppmに弱脱酸し、制御する際、第4図に示すよ
うに弱脱酸前の
As a control method for [0], controlling the converter blow-off (0), oxygen blowing (OB) before or immediately after the start of treatment, or adding oxygen by adding iron oxide, etc. is effective, but approximately Oxygen addition by OB etc. after 5 minutes is optimal [0
], it has become clear that it is either ineffective or even has the opposite effect. In addition, the decarburization rate in the low (C) region of less than 30 ppm + (0) shown in Japanese Patent Application No. 82239/1980 was also found in the inventors' actual experiments. As shown in Figure 3, weak deoxidation with M etc.
It was found that the decarburization rate was the highest when (o)1 was 0 to 200 ppm. Furthermore, as a result of experiments by the present inventors, the (O)f in the
When weakly deoxidized to 200 ppm and controlled, as shown in Figure 4, the

〔0〕、が400 ppm以上の高い値
の場合に効果が大きく 、400ppm未満から弱脱酸
を行なっても効果が小さいことが明らかとなった。した
がってn、mjJl域全体で考えると弱脱酸前の
It has become clear that the effect is large when [0] is a high value of 400 ppm or more, and that even if weak deoxidation is performed from less than 400 ppm, the effect is small. Therefore, considering the entire n, mjJl range, the

〔0〕
、は400ppm以上が良いことになる。又、弱脱酸を
行なう弱脱酸剤として脱酸力の弱いTiを用いた場合、
M等の弱脱酸剤より効果的であることも明らかとなった
。なお弱脱酸の方法として、Alで一部脱酸後Tiで脱
酸する方法も有効で施る。 なお、I 95域での
[0]
, is preferably 400 ppm or more. In addition, when Ti, which has weak deoxidizing power, is used as a weak deoxidizing agent that performs weak deoxidizing,
It has also become clear that it is more effective than weak deoxidizing agents such as M. As a method of weak deoxidation, a method of partially deoxidizing with Al and then deoxidizing with Ti is also effective. In addition, in the I95 area

〔0〕、制御として、処理中のO
Bが効果がないか、むしろ逆効果であるのは溶鋼自由表
面にC−O反応を阻害するFjO膜が生成し、またFe
O膜の消失にある程度の時間が必要であるからと考えら
れる。■領域において、脱炭に最適な
[0], as a control, O during processing
The reason why B has no effect, or rather has the opposite effect, is that an FjO film is formed on the free surface of molten steel that inhibits the C-O reaction, and
This is thought to be because it takes a certain amount of time for the O film to disappear. ■Ideal for decarburization in the area

〔0〕、範囲とし
[0], as range

〔0〕、の上限がある理由については過剰The reason why there is an upper limit of [0] is excessive.

〔0〕が表
面活性元素として働き脱炭反応を阻害するからであると
考えられる。また■領域での
This is thought to be because [0] acts as a surface active element and inhibits the decarburization reaction. In addition, in the area

〔0〕、の弱脱酸制御にお
いて、弱脱酸前の(0)fが400ppm以上の高い場
合、効果的である理由は、弱脱酸生成物がCO気気泡生
成色して働くためその脱酸生成物が多いほど効果的であ
ることによると考えられる。さらに弱脱酸制御に用いる
脱酸剤としてM等に比べTiが効果的な理由は、M等の
脱酸力の強い脱酸付使用の場合、
The reason why it is effective in controlling the weak deoxidation of [0] when (0)f before weak deoxidation is as high as 400 ppm or more is because the weak deoxidation product acts as a CO bubble generating color. This is thought to be due to the fact that the more deoxidized products there are, the more effective it is. Furthermore, the reason why Ti is more effective than M etc. as a deoxidizing agent used for weak deoxidation control is that when using M etc. with strong deoxidizing power,

〔0〕、が50〜20
0ppa+では、鋼中にMは残存しないが、Tiの場合
、(2)、 (3)式の掌握推奨平衡値(昭和59年1
1月日本学術振興会製鋼第19委員会発行)によれば約
30〜290ppm存在するため最適
[0], is 50-20
At 0ppa+, no M remains in the steel, but in the case of Ti, the equilibrium value recommended by equations (2) and (3) (1982
According to the 19th Steelmaking Committee of the Japan Society for the Promotion of Science (published in January), it is optimal because it exists at about 30 to 290 ppm.

〔0〕、の範囲内
でも表面活性元素の
[0], even within the range of surface active elements.

〔0〕、がある程度溶鋼自由表面に
富化しようとするのを妨げる効果を有し、脱炭反応が促
進されるためと考えられる。 art+50−TisOs(S)・・・(2)log 
K=log a’yiao’−−89300/T+30
.30・・(3)ま゛た、弱脱酸用の脱酸剤の添加方法
として真空槽内に一括して添加した場合、添加直後は真
空槽内溶鋼が局部的に強脱酸され、取鍋内溶鋼は未脱酸
の状態から徐々に均一混合されるに従って全体が弱脱酸
鋼となるが、その間は脱炭反応が十分進まない状態とな
るので、溶鋼環流量に見合って所定原単位となるよう脱
酸剤を連続的に又は所定原単位の脱酸剤を断続的に、例
えば2〜10分割して添加すれば、脱炭反応が主として
進むと考えられる真空槽内の脱炭反応が脱酸剤添加直後
から進むことになり効果的である。 溶鋼環流量を表す式としては下式が実温での実験結果と
して、鉄と鋼、54 (1968)1342頁に提案さ
れており、本実験式に基づいて溶鋼環流量を処理中に変
更することができる。 W冨0.02D’−’α0・33   ・・・・・・(
4)ここに、W:溶鋼環流量(t/win)D:上昇管
内径(c+*) G@:環流Arガス流量(NZ /m1n)(作用) II 9M域の
It is thought that this is because [0] has the effect of preventing enrichment on the free surface of molten steel to some extent, promoting the decarburization reaction. art+50-TisOs(S)...(2)log
K=log a'yiao'--89300/T+30
.. 30...(3) Also, when adding a deoxidizing agent for weak deoxidation all at once into the vacuum chamber, immediately after addition, the molten steel in the vacuum chamber is strongly deoxidized locally and the deoxidizing agent is removed. As the molten steel in the ladle is gradually and uniformly mixed from an undeoxidized state, the whole becomes weakly deoxidized steel, but during this time the decarburization reaction does not progress sufficiently, so the specified unit consumption is adjusted according to the molten steel circulation flow rate. If the deoxidizing agent is added continuously or intermittently, for example in 2 to 10 portions, so that This is effective because it starts immediately after adding the deoxidizing agent. As a formula for expressing the molten steel recirculation flow rate, the following formula is proposed as a result of an experiment at actual temperature in Tetsu to Hagane, 54 (1968) p. 1342.Based on this experimental formula, the molten steel recirculation flow rate can be changed during processing. be able to. W 0.02D'-'α0.33 ・・・・・・(
4) Here, W: Molten steel recirculation flow rate (t/win) D: Riser pipe inner diameter (c+*) G@: Circulation Ar gas flow rate (NZ/m1n) (action) II In the 9M region

〔0〕、制御により、短時間で低(C)
領域に達し、さらに■領域の溶鋼自由表面での
[0], low (C) in a short time by control
area is reached, and furthermore, the molten steel free surface of the area

〔0〕、
制御及び7igQ3. AlB12等の酸化物生成によ
り低(C)域での脱炭速度の低下が小さくなり、減圧上
脱酸プロセスとして短時間で20ppm以下の低(C)
溶鋼が製造可能となる。 (実施例) 以下、実施例に基づき本発明を更に説明する。 第5図に本発明例(■、■)及び比較例■のRHでの試
験結果を示す。 本発明例(■、■)、比較例■ともRHでのOB等によ
る(0 )、 it+制御をしていない例であり、比較
例■の場合、
[0],
Control and 7igQ3. Due to the generation of oxides such as AlB12, the decarburization rate decreases in the low (C) range, and as a deoxidation process under reduced pressure, low (C) of 20 ppm or less can be achieved in a short time.
It becomes possible to manufacture molten steel. (Examples) Hereinafter, the present invention will be further explained based on Examples. FIG. 5 shows the test results at RH for the invention examples (■, ■) and the comparative example (■). Both the invention examples (■, ■) and the comparative example ■ are examples in which IT+ control is not performed due to OB etc. at RH (0), and in the case of the comparative example ■,

〔0〕、が■領域で400 ppm未満で
、■領域で
[0] is less than 400 ppm in the ■ area, and in the ■ area

〔0〕fが300ppm以上の場合の結果で
あるが、処理時間が15〜20分で到達(C)レベルは
20〜25ppmと高い。 一方本発明例■の場合、■領域の(O)fを510〜5
50ppmとし、処理開始10分後の(C) 22pp
m到達時点でAlを一括投入して脱酸し、(O)fを1
65ppn+とした後、6分間
[0] The result is when f is 300 ppm or more, and the (C) level reached is as high as 20 to 25 ppm after a processing time of 15 to 20 minutes. On the other hand, in the case of the present invention example (■), (O)f in the area (■) is 510 to 5
50 ppm, 10 minutes after starting treatment (C) 22 ppm
When reaching m, Al is added all at once to deoxidize and reduce (O)f to 1
After setting it to 65ppn+, for 6 minutes

〔0〕1を150〜16
5ppmの状態で処理したもので■領域の脱炭速度は大
きく且つIIIfil域の脱炭速度の停滞も小さく比較
例■に比べ脱炭速度は太き(処理16分の結果として(
C)  1’6ppmが得られた。 さらに本発明例■の場合、■領域の(O)fを630〜
680pp信としに処理開始10分の(C)19ppm
到達時点でTiをRH槽内に環流量に見合って連続的に
投入して脱酸し〔O〕、をgoppmとした後、6分間
(O)fを80〜100 ppmの状態で処理したもの
で、本発明例■と同様If 81域の脱炭速度は大きく
、■領域の脱炭速度は本発明例■より大きくなっている
。本発明例■の場合は、処理16分で(C)  12p
p+wが得られた。 さらに第6図に転炉吹止
[0] 1 to 150 to 16
When treated at 5 ppm, the decarburization rate in the ■ region is large, and the decarburization rate in the IIIfil region is small, and the decarburization rate is large compared to the comparative example ■ (as a result of 16 minutes of treatment).
C) 1'6 ppm was obtained. Furthermore, in the case of the present invention example (■), (O)f in the area (■) is 630~
(C) 19ppm for 10 minutes after starting processing for 680ppp
At that point, Ti was continuously introduced into the RH tank in proportion to the recirculation amount to deoxidize [O] to goppm, and then treated at (O)f of 80 to 100 ppm for 6 minutes. The decarburization rate in the If 81 region is high, similar to Example 2 of the present invention, and the decarburization rate in the region 2 is higher than that of Example 2 of the present invention. In the case of the present invention example ■, processing time is 16 minutes (C) 12p
p+w was obtained. Furthermore, Fig. 6 shows the converter blow-off.

〔0〕fが低くRHにて酸素吹
付(OB)による酸素付加を行なった場合の本発明例■
と比較例■の場合を示す。 本発明例■の場合、転炉吹止
[0] Example of the present invention when f is low and oxygen is added by oxygen blowing (OB) at RH ■
and comparative example ■ are shown. In the case of the present invention example (■), the converter blow-off

〔0〕、が450ppmで
あり、RH処理開始前に
[0] is 450 ppm, and before the start of RH treatment

〔0〕、が380ppmとなっ
たが、OBにより
[0] became 380 ppm, but due to OB

〔0〕fを680pp麟とし、その後
RH処理を開始した例であり、(0)zを600〜68
0 ppmで処理し、次いで(C)28ppm時点でM
により弱脱酸を行ない(O)fを120 ppmとした
後、約8分間処理した例でありIf fil域の脱炭速
度は大きく、処理16分で(C) 16ppmが得られ
た。 比較例■の場合、
[0] This is an example in which f is set to 680 ppp and then RH treatment is started, and (0) z is set to 600 to 68
0 ppm and then (C) M at 28 ppm.
This is an example in which weak deoxidation was carried out to bring (O)f to 120 ppm, followed by treatment for about 8 minutes, and the decarburization rate in the If fil region was high, and (C) 16 ppm was obtained in 16 minutes of treatment. In the case of comparative example ■,

〔0〕、が転炉吹止で420 ppm
、開始時点で350 ppmであり、R1+処理後5分
時点でOBを行ない、(O)fを330 ppmから7
20 ppmに富化し処理を続け、ついで(C) 25
ppm時点でMにより弱脱酸を行ない、(0〕t80p
pmとした後、約7分間処理した例であるが、If 8
N域でOBを行ない酸素付加しても脱炭速度の向上は認
められず、結果的に(C)20ppm以下を得るのに処
理時間20分を要した。 (発明の効果) 以上説明したとおり、本発明により、短時間で極低炭素
域まで容易に到達できる経済的且つ効率的な減圧下脱炭
処理が可能となった。
[0] is 420 ppm at the converter stop.
, 350 ppm at the start, OB was performed 5 minutes after R1+ treatment, and (O)f was increased from 330 ppm to 7
Enrich to 20 ppm and continue treatment, then (C) 25
Weakly deoxidized with M at the ppm point, (0]t80p
This is an example of processing for about 7 minutes after setting the temperature to pm, but if 8
Even when OB was performed in the N range and oxygen was added, no improvement in the decarburization rate was observed, and as a result, it took 20 minutes to obtain (C) of 20 ppm or less. (Effects of the Invention) As explained above, the present invention enables economical and efficient decarburization treatment under reduced pressure that can easily reach an extremely low carbon range in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、減圧した脱炭プロセスの処理中の(C)推移
を示す図、第2図は減圧上脱炭プロセスにおける■領域
での脱炭速度定数(Kc)と溶解酸素CO〕、との関係
を示す図、第3図は減圧上脱炭プロセスにおける■領域
での脱炭速度定数(KC)と溶解酸素
Figure 1 shows the (C) transition during the decarburization process under reduced pressure, and Figure 2 shows the decarburization rate constant (Kc) and dissolved oxygen CO] in the region ■ in the decarburization process under reduced pressure. Figure 3 shows the relationship between the decarburization rate constant (KC) and dissolved oxygen in the region ■ in the decarburization process under reduced pressure.

〔0〕1との関係
を示す図、第4図は減圧上脱炭プロセスにおける■領域
での脱炭速度定数(KC)と弱脱酸前溶解酸素
[0] A diagram showing the relationship between

〔0〕!
との関係を示す図、第5図、第6図は本発明例と比較例
での(C)、(0)推移を示す図である。 第1図 第2図 CO]f CPP呻 第3図 CO)f(ppm) 第4図 I[領班弱脱匁荊ゆ〕t(ppyn〕 CCV、CO)  (PPM)
[0]!
5 and 6 are diagrams showing the (C) and (0) transitions in the present invention example and the comparative example. Fig. 1 Fig. 2 CO] f CPP groan Fig. 3 CO) f (ppm) Fig. 4 I

Claims (5)

【特許請求の範囲】[Claims] (1)転炉から出鋼された未脱酸溶鋼をRH、DH等の
減圧下脱炭処理するに際し、処理開始から(C)30p
pm到達までの間、鋼中の溶解酸素(O)_fを400
ppm以上に制御することを特徴とする極低炭素鋼の製
造方法。
(1) When decarburizing undeoxidized molten steel tapped from a converter under reduced pressure such as RH or DH, (C) 30p from the start of treatment
Until the pm is reached, the dissolved oxygen (O)_f in the steel is reduced to 400
A method for producing ultra-low carbon steel, characterized by controlling the carbon content to ppm or higher.
(2)転炉から出鋼された未脱酸溶鋼をRH、DH等の
減圧下脱炭処理するに際し、処理開始から(C)30p
pm到達までの間、鋼中の溶解酸素(O)_fを400
ppm以上に制御し、その後(C)30ppm未満の領
域において脱酸剤を一括投入することによって鋼中溶解
酸素(O)_fを50〜200ppmに弱脱酸した後、
さらに処理し、その後完全脱酸することを特徴とする極
低炭素鋼の製造方法。
(2) When decarburizing undeoxidized molten steel tapped from a converter under reduced pressure such as RH or DH, (C) 30p from the start of treatment
Until the pm is reached, the dissolved oxygen (O)_f in the steel is reduced to 400
After weakly deoxidizing the dissolved oxygen (O)_f in the steel to 50 to 200 ppm by controlling the dissolved oxygen (O)_f to 50 to 200 ppm by controlling the dissolved oxygen (O)_f to 50 to 200 ppm by controlling the dissolved oxygen (O)_f to 50 to 200 ppm by controlling the dissolved oxygen (O)_f to 50 to 200 ppm by controlling the dissolved oxygen (O)_f to 50 to 200 ppm by controlling the dissolved oxygen (O)_f to 50 to 200 ppm by controlling the dissolved oxygen (O)_f to 50 to 200 ppm by controlling the dissolved oxygen (O)_f to 50 to 200 ppm.
A method for producing ultra-low carbon steel, characterized by further treatment and subsequent complete deoxidation.
(3)転炉から出鋼された未脱酸溶鋼をRH、DH等の
減圧下脱炭処理するに際し、処理開始から(C)30p
pm到達までの間、鋼中の溶解酸素(O)_fを400
ppm以上に制御し、その後(C)30ppm未満の領
域において脱酸剤をRH環流量にしたがって所定原単位
になるように連続的又は断続的に添加して鋼中溶解酸素
(O)_fを50〜200ppmに弱脱酸した後、さら
に処理し、その後完全脱酸することを特徴とする極低炭
素鋼の製造方法。
(3) When decarburizing undeoxidized molten steel tapped from a converter under reduced pressure such as RH or DH, (C) 30p from the start of treatment
Until the pm is reached, the dissolved oxygen (O)_f in the steel is reduced to 400
ppm or more, and then (C) in the region of less than 30 ppm, a deoxidizing agent is added continuously or intermittently to a predetermined basic unit according to the RH recirculation flow rate to reduce the dissolved oxygen (O)_f in the steel to 50 ppm or more. A method for producing ultra-low carbon steel, which comprises weakly deoxidizing to ~200 ppm, further treatment, and then complete deoxidation.
(4)弱脱酸する脱酸剤として、TiあるいはAlを用
いることを特徴とする特許請求の範囲第2項又は第3項
記載の極低炭素鋼の製造方法。
(4) The method for producing ultra-low carbon steel according to claim 2 or 3, characterized in that Ti or Al is used as a deoxidizing agent that performs weak deoxidation.
(5)弱脱酸はAlで一部脱酸した後、Tiで脱酸する
ことを特徴とする特許請求の範囲第3項又は第4項記載
の極低炭素鋼の製造方法。
(5) The method for producing ultra-low carbon steel according to claim 3 or 4, wherein the weak deoxidation is performed by partially deoxidizing with Al and then deoxidizing with Ti.
JP5421687A 1986-09-25 1987-03-11 Production of dead low carbon steel Granted JPS63190113A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22487486 1986-09-25
JP61-224874 1986-09-25

Publications (2)

Publication Number Publication Date
JPS63190113A true JPS63190113A (en) 1988-08-05
JPH0465883B2 JPH0465883B2 (en) 1992-10-21

Family

ID=16820521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5421687A Granted JPS63190113A (en) 1986-09-25 1987-03-11 Production of dead low carbon steel

Country Status (1)

Country Link
JP (1) JPS63190113A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277711A (en) * 1989-04-20 1990-11-14 Kawasaki Steel Corp Production of high-cleanliness dead-soft carbon steel
JPH0356614A (en) * 1989-07-26 1991-03-12 Kawasaki Steel Corp Production of low-oxygen dead-soft carbon steel
JPH049423A (en) * 1990-04-27 1992-01-14 Kawasaki Steel Corp Method for smelting dead soft steel
JPH08291319A (en) * 1995-04-20 1996-11-05 Nippon Steel Corp Method for smelting dead-soft steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418415A (en) * 1977-07-12 1979-02-10 Kawasaki Steel Co Method of treating molten steel for preventing nitrogen increase in steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418415A (en) * 1977-07-12 1979-02-10 Kawasaki Steel Co Method of treating molten steel for preventing nitrogen increase in steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277711A (en) * 1989-04-20 1990-11-14 Kawasaki Steel Corp Production of high-cleanliness dead-soft carbon steel
JPH0356614A (en) * 1989-07-26 1991-03-12 Kawasaki Steel Corp Production of low-oxygen dead-soft carbon steel
JPH049423A (en) * 1990-04-27 1992-01-14 Kawasaki Steel Corp Method for smelting dead soft steel
JPH08291319A (en) * 1995-04-20 1996-11-05 Nippon Steel Corp Method for smelting dead-soft steel

Also Published As

Publication number Publication date
JPH0465883B2 (en) 1992-10-21

Similar Documents

Publication Publication Date Title
JP3176374B2 (en) Method for producing low carbon molten steel by vacuum degassing decarburization
JPS63190113A (en) Production of dead low carbon steel
JPH09165615A (en) Denitrifying method for molten metal
JP2002012912A (en) Method for producing high-carbon/low-nitrogen steel
JP6020414B2 (en) Method for refining aluminum-containing stainless steel
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
JP3044642B2 (en) Decarburization refining method of chromium-containing molten steel
JPS6021207B2 (en) Manufacturing method of ultra-low carbon molten steel
JP3273205B2 (en) Decarburization refining method of chromium-containing molten steel
EP4353845A1 (en) Molten steel denitrification method, simultaneous denitrification and desulfurization treatment method, and steel production method
JPS5834527B2 (en) Teirinyousennoseizohouhou
JP3273382B2 (en) Decarburization refining method of chromium-containing molten steel
JPH0192314A (en) Ladle refining method
JPH02225615A (en) Method for refining high-nitrogen and low-oxygen steel
JPS62287009A (en) Method for preventing rephosphorization in production of extra-low phosphorus steel
JPH0931529A (en) Method for melting extra-low carbon cr-containing steel
JPH111714A (en) Steelmaking method
JPH05209214A (en) Production of extremely low carbon and extremely low nitrogen steel
JPS594485B2 (en) Vacuum degassing method for molten steel
JPH03153814A (en) Smelting method for dead soft, extra-low nitrogen high chromium steel
JPH05195041A (en) Method for melting low nitrogen steel using molten steel by electric furnace
JPH0841529A (en) Vacuum decarburization of molten steel
JPS6067613A (en) Addition of nitrogen into molten steel
JPH03271315A (en) Rh vacuum decarbonizing method for stainless steel
JPH0978119A (en) Method for denitrification of molten metal and flux for denitrification

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees