JPS61124502A - Stable magnetic metallic powder and its production - Google Patents

Stable magnetic metallic powder and its production

Info

Publication number
JPS61124502A
JPS61124502A JP59244357A JP24435784A JPS61124502A JP S61124502 A JPS61124502 A JP S61124502A JP 59244357 A JP59244357 A JP 59244357A JP 24435784 A JP24435784 A JP 24435784A JP S61124502 A JPS61124502 A JP S61124502A
Authority
JP
Japan
Prior art keywords
gas
magnetic powder
fluoride
metal
hydrogen fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59244357A
Other languages
Japanese (ja)
Other versions
JPH0421722B2 (en
Inventor
Akira Koyama
昭 小山
Isamu Yamamoto
勇 山本
Akifumi Ito
昭文 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP59244357A priority Critical patent/JPS61124502A/en
Publication of JPS61124502A publication Critical patent/JPS61124502A/en
Publication of JPH0421722B2 publication Critical patent/JPH0421722B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form a film on the particles of magnetic metallic powder with easy control and to provide high ignition preventive powder thereto without decreasing satd. magnetization with a safe and simple stage by coating the surfaces of said particles with a fluoride. CONSTITUTION:The magnetic metallic powder consisting essentially of iron and contg. Co, Ni, Cr, etc. is treated with hydrogen fluoride and/or hydrogen fluoride-cong. compd., fluorine and/or fluorine compd. at a prescribed temp. (for example, by passing a gas for the above-mentioned fluorination for a prescribed period, etc.). The film of the fluoride of the above-mentioned metal is thus formed nearly stoichiometrically and extremely easily on the surface of the metallic powder particles. The magnetic metallic powder is preferably treated with hydrogen fluoride or fluorine-contg. gas and further an inert gas or reducing gas for diluting said gases in a 200-820 deg.C range.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、安定化された金属磁性粉末及びその製造方法
に関する。更に詳しくは金属磁性粉末の粒子表面を弗化
物で被覆する事によシ、発火性を抑え、取扱い、貯蔵の
安全化を実現するものであるO 「従来の技術」 金属磁性粉末は、圧粉磁心用素材、磁気テープ用記録材
、複写機用材料等、種々の分野で、磁性材料として用い
られてきた。しかし金属を主体とした成分では、数μm
の粒度より、微細化するにつれて、発火性を生じる事か
ら、取扱い、貯蔵面で細心の注意を要求されてきた。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a stabilized metal magnetic powder and a method for producing the same. More specifically, by coating the particle surface of metal magnetic powder with fluoride, it suppresses ignitability and makes handling and storage safer. It has been used as a magnetic material in a variety of fields, including materials for magnetic cores, recording materials for magnetic tapes, and materials for copying machines. However, in the case of a component mainly composed of metal,
As the grain size becomes finer, it becomes flammable, so extreme care has been required in handling and storage.

金属磁性粉末の安定化に関しては、オーディオ又はビデ
オ用の磁気テープ用記録材として、針状の金属鉄及び鉄
合金が注目される事から、種々の表面被膜の生成方法に
ついて、既に公開されている。例えば特開昭53−11
4769では金属粉末を水酸化ナトリウム水溶液中に懸
濁させた後に、酸素含有ガスを通気する方法、又、特開
昭59−59801に依れば、有機溶剤を含浸させた金
属粉末を攪拌、昇温させながら、微量の酸化性ガスを含
む不活性ガスと接触を行う方法等の、表面を酸化被膜で
覆う方法が殆んどである。
Regarding the stabilization of metal magnetic powders, acicular metal iron and iron alloys are attracting attention as recording materials for magnetic tapes for audio or video, and various methods for producing surface coatings have already been published. . For example, JP-A-53-11
No. 4769 discloses a method in which metal powder is suspended in an aqueous sodium hydroxide solution and then oxygen-containing gas is aerated therein, and according to JP-A-59-59801, metal powder impregnated with an organic solvent is stirred and elevated. Most of the methods involve covering the surface with an oxide film, such as a method of contacting the material with an inert gas containing a trace amount of oxidizing gas while heating it.

しかし、従来の酸化被膜で覆う方法では、発火点が15
0〜160℃程度であり、大気中で発火しないにすぎず
、外部からの衝撃、輸送途中での振動等に万全でない事
、又、酸化被膜で覆う際の、酸化物の緻密さ、及び、被
膜の厚みの制御に困難である。
However, with the conventional method of covering with an oxide film, the ignition point is 15
The temperature is about 0 to 160℃, so it will not ignite in the atmosphere, and it is not completely safe from external shocks and vibrations during transportation.Also, when covering with an oxide film, the oxide is dense, It is difficult to control the thickness of the coating.

更に、有機溶剤等を用いる場合には、発火性の金属粉末
と可燃性有機溶媒の混合物を取扱う必要があ)、製造工
程自体が、安全面で問題となる。
Furthermore, if an organic solvent or the like is used, it is necessary to handle a mixture of flammable metal powder and flammable organic solvent), which poses a safety problem in the manufacturing process itself.

又、製造品質面でも、金属の特徴である高い飽和磁化を
、表面の酸化で低下させる事も意味し、更に、改良され
た表面処理法の開発が必要であった。
In addition, in terms of manufacturing quality, this meant that the high saturation magnetization, which is a characteristic of metals, was reduced by surface oxidation, and it was necessary to develop an improved surface treatment method.

「発明が解決しようとする問題点」 本発明は発火防止能の高い安定化された金属磁性粉末及
び、それを得る為の工程が安全、簡易で、金属磁性粉末
粒子上の被膜形成のコントロールが容易であり、且つ飽
和磁化を低下させずに高い発火防止能を付与することの
できる製造方法を揚供しようとするものである。
"Problems to be Solved by the Invention" The present invention provides a stabilized metal magnetic powder with high ignition prevention ability, a process for obtaining the same that is safe and simple, and a controllable film formation on the metal magnetic powder particles. The purpose is to provide a manufacturing method that is easy and can provide high ignition prevention ability without reducing saturation magnetization.

本発明者らは、酸化物被膜にかわる、よう安定な被膜生
成法について、研究してきたが、弗化物、殊に弗化鉄が
比較的熱的に安定であるという知見(Inorgani
c Th@or@tical Chsmlstry v
ol14P2)を得、鉄粉又は鉄合金の表面を弗化物化
する条件に関する各種試験の結果、本発明に到達したも
のである。
The present inventors have been researching methods for producing stable films in place of oxide films, and found that fluorides, especially iron fluoride, are relatively thermally stable (Inorgani
c Th@or@tical Chsmlstry v
The present invention was achieved as a result of various tests regarding the conditions for fluoridizing the surface of iron powder or iron alloy.

「問題点を解決するための手段」 すなわち、本発明は金属粒子表面が該金属の弗化物で被
覆され、平均粒径が8μm以下であることを特徴とする
安定性金属磁性粉末である。
"Means for Solving the Problems" That is, the present invention provides a stable metal magnetic powder characterized in that the surface of metal particles is coated with a fluoride of the metal and the average particle size is 8 μm or less.

更に、本発明は表面活性な金属磁性粉末を弗化水素及び
/又は弗化水素含有化合物で処理することを特徴とする
安定性金属磁性粉末の製造方法である。
Furthermore, the present invention is a method for producing a stable metal magnetic powder, which is characterized in that a surface-active metal magnetic powder is treated with hydrogen fluoride and/or a hydrogen fluoride-containing compound.

以下に、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明の安定性金属磁性粉末は、平均粒径8μm以下の
金属磁性粉末の粒子の表面が該磁性粉末粒子を構成する
金属の弗化物からなる被膜により被覆されている。この
被膜の厚さは、当該金属磁性粉末の発火防止能付与等の
安定性の要請と当該金属が有する飽和磁性を低下させな
いことの要請のバランスから求められるものである。
In the stable magnetic metal powder of the present invention, the surfaces of the particles of metal magnetic powder having an average particle size of 8 μm or less are coated with a film made of a metal fluoride constituting the magnetic powder particles. The thickness of this coating is determined by balancing the requirements for stability, such as imparting ignition prevention ability to the metal magnetic powder, and the requirement not to reduce the saturation magnetism of the metal.

しかし、好ましくは得られ九安定化金属磁性粉末中の弗
素含量が0.1チ以上となる厚さである。
However, the thickness is preferably such that the fluorine content in the nine-stabilized metal magnetic powder obtained is 0.1 inch or more.

0.1チ以下では、十分効果が得られる弗化物の被膜を
完全に形成する事が困難である。
If it is less than 0.1 inch, it is difficult to completely form a fluoride film that is sufficiently effective.

本発明では、かように薄い被覆層によって安定化が実現
されるとともに、被膜層の厚みのコントロールが極めて
容易であるので従来困難であった0、1μm以下の極め
て微細な安定化金属磁性粉末を実現することも可能であ
る。
In the present invention, stabilization is achieved with such a thin coating layer, and the thickness of the coating layer is extremely easy to control, making it possible to produce extremely fine stabilized metal magnetic powder of 0.1 μm or less, which was previously difficult. It is also possible to realize this.

本発明の金属磁性粉末は周知の如く、鉄を主成分とし、
Co+Ni +TI 、V、Cr、Mn、Zn、Mo 
、Cu等の金属を含むものである。
As is well known, the metal magnetic powder of the present invention has iron as its main component,
Co+Ni+TI, V, Cr, Mn, Zn, Mo
, Cu, and other metals.

上記のような安定化金属磁性粉末は以下の安定化金属磁
性粉末の製造方法によって得られるが、この製造方法に
よって得られる安定化金属磁性粉末の範囲は上記安定化
金属磁性粉末に限定されるものではない。
The above-mentioned stabilized metal magnetic powder can be obtained by the following method for producing stabilized metal magnetic powder, but the range of stabilized metal magnetic powder obtained by this production method is limited to the above-mentioned stabilized metal magnetic powder. isn't it.

本発明の安定化金属磁性粉末の製造方法は磁性金属粉末
を所定温度で弗化水素及び/又は弗化水素含有化合物で
処理することにより、極めて容易に該金属の弗化物の被
膜を、金属粉末粒子表面に殆んど化学量論的に形成する
ものである。
The method for producing a stabilized magnetic metal powder of the present invention involves treating magnetic metal powder with hydrogen fluoride and/or a hydrogen fluoride-containing compound at a predetermined temperature, thereby very easily removing the fluoride coating of the metal from the metal powder. It forms almost stoichiometrically on the particle surface.

本発明に用いられる磁性金属粒末は、例えば磁性金属の
酸化物等を水素ガス等の還元物質により既知の方法で還
元することによって得ることができる。また真空蒸発法
や気相還元法によって得ることもできる。この場合は超
微粉末が得られる。
The magnetic metal particles used in the present invention can be obtained, for example, by reducing an oxide of a magnetic metal with a reducing substance such as hydrogen gas by a known method. It can also be obtained by vacuum evaporation or gas phase reduction. In this case, ultrafine powder is obtained.

本発明で用いられる弗化水素、弗化水素含有化合物、弗
素化合物としては、弗化水素そのもの及び弗化水素を発
生する弗化水素酸であシ、またNH4F 、 NH4H
F2. KHF2. NaHF2等の弗化水素含有化合
物等であり、また弗化臭素、弗化沃素、弗化朋素等の弗
素化合物等である。
Hydrogen fluoride, hydrogen fluoride-containing compounds, and fluorine compounds used in the present invention include hydrogen fluoride itself and hydrofluoric acid that generates hydrogen fluoride, as well as NH4F and NH4H.
F2. KHF2. These include hydrogen fluoride-containing compounds such as NaHF2, and fluorine compounds such as bromine fluoride, iodine fluoride, and horonine fluoride.

金属磁性粉末の弗化水素、弗化水素含有化合物弗素、弗
素化合物による処理は例えば、水素ガス等の還元物質に
より既知の方法によシ還元されて得られた金属磁性粉を
所定温度で、弗化用気体(弗化水素、弗化水素含有化合
物、弗素、弗素化合物等)を、所定量、所定時間通じる
如き方法また、弗化水素を発生し得る化合物(例えばN
H4F 、 NH4HF2等の弗化水素含有化合物及び
/又は弗化臭素、弗化沃素等の弗化物)を、被還元物質
に予め混合し、還元を行なう如き方法、あるいは、還元
が終了した時点において、弗化水素を発生し得る化合物
を供給した後、不活性あるいは還元性雰囲気中で、所定
温度、所定時間を保持する如き方法によって行なわれる
The treatment of metal magnetic powder with hydrogen fluoride, hydrogen fluoride-containing compound fluorine, or a fluorine compound is, for example, a metal magnetic powder obtained by reduction with a reducing substance such as hydrogen gas by a known method, and then treated with fluorine at a predetermined temperature. A method in which a chemical gas (hydrogen fluoride, hydrogen fluoride-containing compound, fluorine, fluorine compound, etc.) is passed in a predetermined amount for a predetermined period of time.
A method in which hydrogen fluoride-containing compounds such as H4F and NH4HF2 and/or fluorides such as bromine fluoride and iodine fluoride) is mixed in advance with the substance to be reduced and reduction is performed, or when the reduction is completed, This is carried out by a method such as supplying a compound capable of generating hydrogen fluoride and then maintaining it at a predetermined temperature and for a predetermined time in an inert or reducing atmosphere.

尚、弗化物の生成反応は、次の反応式に基〈と考えられ
る。
The fluoride production reaction is considered to be based on the following reaction formula.

Fe + 2H可g)=FeF2 + N2(g)この
反応の標準自由エネルギーΔGは、ΔG = 33.7
 T −36,800(cal)とされてお夛、高温側
の限界は820℃、低温側では200℃以下では殆んど
反応速度がゼロに近い事から、弗化物生成の温度条件は
200〜820℃の範囲にあり、望ましくは、350℃
〜600℃である。
Fe + 2H possible g) = FeF2 + N2 (g) The standard free energy ΔG of this reaction is ΔG = 33.7
T-36,800 (cal), and the limit on the high temperature side is 820℃, and on the low temperature side, the reaction rate is almost zero below 200℃, so the temperature conditions for fluoride production are 200℃~200℃. In the range of 820°C, preferably 350°C
~600°C.

又、弗化用気体は一般に有害性物質であj5、N2゜A
r等の不活性ガスで稀釈して用いる方が望ましいと考え
られる。又、弗化の速度を制御するために還元性ガスの
添加も可能である。
In addition, fluorinating gas is generally a hazardous substance and is
It is considered more desirable to dilute it with an inert gas such as r. It is also possible to add reducing gases to control the rate of fluorination.

更に、弗化物気体を直接用いるのではなく、弗化水素を
発生しうる化合物(例えばN14F、NH41’2)を
、被還元物質に予め混合し、又は、還元に際して供給す
る事によっても達成できる。この際には、還元に際して
の温度条件が、200〜960℃の範囲にある事によっ
て、弗化物被膜の生成が可能である。
Furthermore, instead of using fluoride gas directly, this can also be achieved by mixing a compound capable of generating hydrogen fluoride (for example, N14F, NH41'2) with the substance to be reduced in advance or supplying it during reduction. At this time, a fluoride film can be formed by setting the temperature conditions during the reduction to be in the range of 200 to 960°C.

金属磁性粉末のサブミクロン粒子では比表面積値は10
m”/II以下であるが、真空蒸発法や気相還元法によ
る更に細かい0.01μm(100X)相当の粒子とな
ると、100m”/Ji’近くに達し、その安定化のた
めに、現在は表面酸化被膜を用いており、このために、
鉄粉の高い飽和磁化が阻害されると同時に、被膜の厚さ
の制御のために、極めて微妙な雰囲気の制御を要求され
且つ、生産性も高くはない。この点、本方法極めて簡単
に又、安定性を増した超微粉の工業的量産化が期待され
る。
For submicron particles of metal magnetic powder, the specific surface area value is 10.
m"/Ji' or less, but when finer particles equivalent to 0.01 μm (100X) are obtained by vacuum evaporation or gas phase reduction, the particle size reaches nearly 100 m"/Ji', and in order to stabilize it, currently A surface oxide film is used, and for this reason,
The high saturation magnetization of the iron powder is inhibited, and at the same time, very delicate control of the atmosphere is required to control the thickness of the coating, and the productivity is not high. In this respect, the present method is expected to enable industrial mass production of ultrafine powder with improved stability.

「実施例」 以下、実施例によシ更に詳しく説明する。"Example" Hereinafter, a more detailed explanation will be given based on examples.

実施例1 250mφ/250wLtの有効長を持つ回転式レトル
ト炉に、平均粒径0.7μmの酸化鉄(Fe304)、
650Iを装入し、N2ガスを毎分3ノの割合で流しな
がら、室温より450℃まで昇温し、炉内温度を同温度
に保ちながら、N2ガスを毎分33!の割合で通気し、
2時間30分経過後、再びN2ガスに切り替えを行ない
、N2ガスを毎分2.21、弗化水素ガスを毎分0.8
1の割合で混合して15分間通気した後、弗化水素ガス
の供給を止め、N2ガス毎分3!の割合に戻して、室温
まで冷却後、金属磁性粉A−1約470Iを得た。
Example 1 Iron oxide (Fe304) with an average particle size of 0.7 μm was placed in a rotary retort furnace with an effective length of 250 mφ/250 wLt.
650I was charged, and while flowing N2 gas at a rate of 3°C per minute, the temperature was raised from room temperature to 450°C, and while keeping the temperature inside the furnace at the same temperature, N2 gas was flowing at 33°C per minute. Aerate at a rate of
After 2 hours and 30 minutes, switch to N2 gas again, with N2 gas at 2.21/min and hydrogen fluoride gas at 0.8/min.
After mixing at a ratio of 1:1 and aerating for 15 minutes, the supply of hydrogen fluoride gas was stopped and the N2 gas was increased to 3:3 per minute. After cooling to room temperature, about 470I of metal magnetic powder A-1 was obtained.

得られた金属磁性粉末を、示差熱天秤を用いて、大気雰
囲気の下に熱特性を測定した結果は第1図の如くである
。なお、チャート速度2.5■/分、プログラムレイト
5℃/分DTA50μVである。発火点は350℃と推
定され、充分に安定である事を示す。尚第2図に、熱解
析に用い次金属磁性粉末の6400倍の走査型電顕写真
を示す。この粉末を更に、表面回折のために、X線光電
子分析装置にかけた結果を第3図に示す。尚、上記測定
に供した試料は、エチルアルコールを用いて繰)返し洗
浄後、真空乾燥して得られたものである。
The thermal properties of the obtained metal magnetic powder were measured in the atmosphere using a differential thermal balance, and the results are as shown in FIG. Note that the chart speed was 2.5 μ/min, the program rate was 5° C./min, and the DTA was 50 μV. The ignition point is estimated to be 350°C, indicating that it is sufficiently stable. FIG. 2 shows a scanning electron micrograph of the metallic magnetic powder used for thermal analysis at a magnification of 6400 times. This powder was further subjected to an X-ray photoelectron analyzer for surface diffraction, and the results are shown in FIG. The samples used in the above measurements were obtained by repeatedly washing with ethyl alcohol and drying in vacuum.

従って、表面の弗化物被膜により、発火性が事実上消失
した微粒金属磁性粉末を、安全な方法で量意することが
可能となった。
Therefore, it has become possible to safely measure fine metal magnetic powder whose flammability has virtually disappeared due to the fluoride coating on its surface.

実施例2 実施例1に用いた装置に、平均粒径0.8μmの酸化鉄
(Fe203) 650 、!i’に、130Fの弗化
アンモニウム(NI(4F )を混合したものを装入し
、N2ガスを毎分31の割合で流しながら、室温よ#)
500℃まで昇温し、炉内温度を同温度に保ちながら、
N2がスを毎分301の割合で通気し、2時間経過後に
、再びN2ガスに切シ替えて、毎分31の割合で通気し
ながら室温まで冷却後、金属磁性粉A−2を得た。
Example 2 In the apparatus used in Example 1, 650 pieces of iron oxide (Fe203) with an average particle size of 0.8 μm were added! i' was charged with a mixture of 130F ammonium fluoride (NI (4F)) and heated to room temperature while flowing N2 gas at a rate of 31/min.
While raising the temperature to 500℃ and keeping the temperature inside the furnace at the same temperature,
N2 gas was aerated at a rate of 301/min, and after 2 hours, the N2 gas was switched again, and after cooling to room temperature while aerating at a rate of 31/min, metal magnetic powder A-2 was obtained. .

実施例3 硫酸コバルトと硫酸第一鉄溶液を、Fe / Coのモ
ル比を5となる様に混合し、苛性ソーダで中和後、通気
酸化して得られた、コバルト含有酸化鉄(平均粒径0.
5μm)650.9を実施例1の装置に装入し、N2.
ffスを毎分31の割合で流しながら、室温より5oo
t:まで昇温し、炉内温度を同温度に保ちながら、N2
ガスを毎分301の割合で通気し、2時間経過後、再び
Nガスに切シ替えて、N2ガスを毎分2,41弗化水素
がスを0.61の割合で混合して、15分間通気後、弗
化水素ガスの供給を止め、N2ガスを毎分31の割合に
戻して室温まで冷却後金属磁性粉末A−3を得た。
Example 3 Cobalt-containing iron oxide (average particle size 0.
5 μm) 650.9 was charged into the apparatus of Example 1, and N2.
While flowing ff gas at a rate of 31/min,
t:, and while keeping the furnace temperature at the same temperature, N2
Gas was passed through at a rate of 301/min, and after 2 hours, it was switched to N gas again, and the N2 gas was mixed with hydrogen fluoride at a rate of 0.61/min. After ventilation for one minute, the supply of hydrogen fluoride gas was stopped, and the N2 gas was returned to a rate of 31/min, and after cooling to room temperature, metal magnetic powder A-3 was obtained.

実施例4 硫酸マンガンと硫酸第一鉄溶液を、F+s / Mnの
モル比を2となる様に混合し、苛性ソーダで中和後、通
気酸化して得られたマンガンフェライト(平均粒径0.
4μm)650.9に、酸性弗化アンモニウム(NH4
HF′2)130gを加えて良く混合したものを実施例
1の装置に装入し、N2ガスを毎分3ノの割合で流しな
がら、室温よ、9400″Cまで昇温し、N2ガスを毎
分301の割合で通気し、2時間30分経過後に、再び
N2.ガスに切り替えて、N2ガスを毎分31の割合で
通気しながら金属磁性粉末A−4を得た。
Example 4 Manganese sulfate and ferrous sulfate solution were mixed so that the molar ratio of F+s/Mn was 2, neutralized with caustic soda, and then subjected to aerobic oxidation to produce manganese ferrite (average particle size 0.
4μm) 650.9, acidic ammonium fluoride (NH4
After adding 130 g of HF'2) and mixing well, the mixture was charged into the apparatus of Example 1, and while flowing N2 gas at a rate of 3 mm per minute, the temperature was raised from room temperature to 9400''C. Aeration was carried out at a rate of 301/min, and after 2 hours and 30 minutes, the switch was again made to N2 gas, and metal magnetic powder A-4 was obtained while aerating N2 gas at a rate of 31/min.

実施例5 硫酸ニッケルと硫酸第一鉄溶液をPa / Niのモル
比が5となる様に混合し、苛性ソーダで中和後、生じた
沈澱を良く洗浄し、然る後に乾燥した粉末55ONを実
施例1の装置に装入し、N21fスを毎分31の割合で
流しながら、室温から500℃まで昇温した。
Example 5 Nickel sulfate and ferrous sulfate solution were mixed so that the Pa/Ni molar ratio was 5, neutralized with caustic soda, the resulting precipitate was thoroughly washed, and then dried powder 55ON was prepared. It was placed in the apparatus of Example 1, and heated from room temperature to 500° C. while flowing N21f gas at a rate of 31/min.

炉内温度を同温度に保ちながら、N2ガスを毎分301
の割合で通気し、2時間経過後に、再びN2fスに切シ
替えて、N2ガスを毎分2.41.弗化水素ガスを毎分
0.31 、 NH,ガスを毎分0.31の割合でそれ
ぞれを混合し、15分間通気した。その後、弗化水素及
びNH,ガスを止め、N2ガスを3jの割合で流しなが
ら、室温まで冷却し、金属磁性粉A−5を得た。
While keeping the temperature inside the furnace at the same temperature, N2 gas is supplied at 301 m/min.
After 2 hours, the gas was switched to N2f gas at a rate of 2.41% per minute. Hydrogen fluoride gas was mixed at a rate of 0.31 per minute, and NH gas was mixed at a rate of 0.31 per minute, and the mixture was aerated for 15 minutes. Thereafter, the hydrogen fluoride, NH, and gases were stopped, and the mixture was cooled to room temperature while flowing N2 gas at a rate of 3j to obtain metal magnetic powder A-5.

実施例6 硫酸第一鉄溶液を苛性ソーダで中和後、通気酸化して得
られた長軸0.5μm1軸比10のα−F・OOHの針
状結晶に、硅酸ソーダを加水分解する事によって0.5
%の硅酸を被覆させ九粒子を、公知の方法により加熱・
脱水して得られた酸化鉄300.9を、実施例1の装置
に装入し、N2ガスを毎分31の割合で流しながら、室
温から400℃まで昇温した。然る後に、炉内温度を同
温度に保ちながら、N2ガスを毎分221の割合で通気
し、2時間20分経過後に、再びN2ガスに切シ替えて
、N2ガスを毎°分2.51 、弗化水素を毎分0.5
7の割合で混合し、300分間通気た。その後、弗化水
素を止めN2ガスを31の割合で流しながら室温まで冷
却し、金属磁性粉A−6を得た。
Example 6 After neutralizing a ferrous sulfate solution with caustic soda, sodium silicate was hydrolyzed into needle-shaped α-F OOH crystals with a major axis of 0.5 μm and a uniaxial ratio of 10 obtained by aerobic oxidation. by 0.5
% of silicic acid and heated and heated by a known method.
Iron oxide 300.9% obtained by dehydration was charged into the apparatus of Example 1, and the temperature was raised from room temperature to 400° C. while flowing N2 gas at a rate of 31% per minute. After that, while keeping the temperature inside the furnace at the same temperature, N2 gas was vented at a rate of 221°/min. After 2 hours and 20 minutes, the switch was again switched to N2 gas, and the N2 gas was introduced at a rate of 2.2°/min. 51, hydrogen fluoride at 0.5 per minute
7 parts and aerated for 300 minutes. Thereafter, the hydrogen fluoride was stopped and the mixture was cooled to room temperature while flowing N2 gas at a rate of 31% to obtain metal magnetic powder A-6.

実施例7 酸化鉄(Fe304) 1.9に対し、22rn9の硫
酸亜鉛 水塩の水溶液をつくシ、該溶液を苛性ソーダを
用いて中和後、生じた沈澱を洗浄し、その後に乾燥して
得た、ZnO被覆酸化鉄(Fe、04)の0.3 μm
粒子650Iを実施例1の装置に装入し、N2ガスを毎
分31の割合で流しながら、室温から400℃まで昇温
した。
Example 7 An aqueous solution of zinc sulfate aqueous salt of 22rn9 was prepared for iron oxide (Fe304) 1.9, the solution was neutralized using caustic soda, the resulting precipitate was washed, and then dried. In addition, 0.3 μm of ZnO-coated iron oxide (Fe, 04)
Particles 650I were charged into the apparatus of Example 1, and the temperature was raised from room temperature to 400° C. while flowing N2 gas at a rate of 31 per minute.

炉内温度を同温度に保ちながら、N2ガスを毎分331
の割合で通気し、2時間20分経過後に、再びN2ガス
に切シ替えて、N2ガスを毎分2.71、弗化水素ガス
を毎分0.31の割合で混合し、15分間通気した。そ
の後、弗化水素ガスを止め、N2ガスを毎分31の割合
で流しながら室@オで冷却し、金属磁性粉A−7を得た
While keeping the furnace temperature at the same temperature, N2 gas is supplied at 331 m/min.
Aeration was performed at a rate of did. Thereafter, the hydrogen fluoride gas was stopped, and the mixture was cooled in a room @o while flowing N2 gas at a rate of 31 per minute to obtain metal magnetic powder A-7.

比較例1 弗化水素の流量を変更した以外には、実施例1と全く同
じ方法で還元を行ない、同温度に保ちながら、N2ガス
を毎分2.91、弗化水素ガスを毎分0.1A!の割合
で混合し、6分間通気した後、弗化水素ガスを止め、N
2.ffスを毎分31の割合で流しながら、室温まで冷
却した。完全に室温まで冷却した事を確認した後に、空
気中に取り出した所、部分的に着火、赤褐色〜黒色に一
部変化をした。
Comparative Example 1 Reduction was carried out in exactly the same manner as in Example 1 except that the flow rate of hydrogen fluoride was changed, and while maintaining the same temperature, N2 gas was supplied at 2.91/min and hydrogen fluoride gas was supplied at 0/min. .1A! After stirring for 6 minutes, the hydrogen fluoride gas was stopped and the N
2. It was cooled to room temperature while flowing ff gas at a rate of 31/min. After confirming that it had completely cooled to room temperature, it was taken out into the air, where it partially ignited and partially changed its color from reddish brown to black.

黒灰色の未着火部分よシ、分析用試料を採取し、F含有
量を調べた所、0.1%が検出された。
A sample for analysis was taken from the black-gray unignited part, and the F content was found to be 0.1%.

比較例2 比較例1と同様、弗化被膜の生成条件以外には、実施例
1と全く同じ方法で還元を行なった後、N2がスに切シ
替えて、N2ガスを毎分31の割合で通気しながら、炉
内温度を19°O℃に下げた。同温度に保ちながら、N
2ガスを毎分2.51弗化水素ガスを毎分0.51の割
合で混合し、24時間通気し虎。その後弗化水素ガスを
止め、N2ガスを毎分31の割合で流しながら、室温ま
で冷却した。完全に室温まで冷却した事を確認した後に
、空気中に取り出した所、炎を生じ、試料全体が赤褐色
に変化をした。
Comparative Example 2 Similar to Comparative Example 1, except for the conditions for forming a fluoride film, reduction was carried out in the same manner as in Example 1, and then the N2 gas was switched to gas at a rate of 31/min. The temperature inside the furnace was lowered to 19°O 0 C while venting. While keeping the same temperature, N
The two gases were mixed at a rate of 2.51 per minute and hydrogen fluoride gas was mixed at a rate of 0.51 per minute, and the mixture was aerated for 24 hours. Thereafter, the hydrogen fluoride gas was stopped, and the mixture was cooled to room temperature while flowing N2 gas at a rate of 31/min. After confirming that it had completely cooled down to room temperature, the sample was taken out into the air, whereupon a flame was generated and the entire sample turned reddish-brown.

比較例3 実施例1と同様、酸化鉄(F@、04) 65011を
、N2ガスにて還元後、本発明における安定化処理を実
施する事なく−N2ガスに切シ替え、室温まで冷却後、
発火防止のため、有機溶剤中に取り出し、自然風乾後、
金属磁性粉B−3約4701!を得た。
Comparative Example 3 Similar to Example 1, iron oxide (F@, 04) 65011 was reduced with N2 gas, then switched to -N2 gas without performing the stabilization treatment of the present invention, and after cooling to room temperature. ,
To prevent ignition, take it out in an organic solvent and dry it naturally.
Metal magnetic powder B-3 approx. 4701! I got it.

比較例4 実施例6と同様、α−FeOOHの針状結晶3001を
、N2ガスにて還元後、本発明における安定化処理を実
施する事なく、N2ガスに切)替え、室温まで冷却後、
発火防止のため、有機溶剤中に取シ出し、自然風乾後、
金属磁性粉B−4を得た。
Comparative Example 4 As in Example 6, α-FeOOH needle crystals 3001 were reduced with N2 gas, then switched to N2 gas without performing the stabilization treatment of the present invention, and after cooling to room temperature,
To prevent ignition, take it out in an organic solvent and dry it naturally.
Metal magnetic powder B-4 was obtained.

以上の実施例で得られ念金属磁性粉は、空気中で何れも
安定な黒色〜灰色の粉末であった。表1に、それぞれの
磁性粉の諸物件を比較例の結果と共に示す。
All of the magnetic metal powders obtained in the above examples were black to gray powders that were stable in the air. Table 1 shows various properties of each magnetic powder together with the results of comparative examples.

「発明の効果」 以上から明らかな如く本発明によれば各種取扱い、貯菫
において発火防止能等の充分な安定性を有する平均粒径
8μm以下という微細な、弗化物で被覆された金属磁性
粉末を得ることができる。またかような優れた特性を有
する金属磁性粉末を安全、簡易な工程で、弗化物の被膜
形成のコントロール容易に、且つ飽和磁化を低下させず
に製造することができる。
"Effects of the Invention" As is clear from the above, according to the present invention, fine fluoride-coated metal magnetic powder with an average particle size of 8 μm or less has sufficient stability such as ignition prevention ability in various handling and storage conditions. can be obtained. In addition, metal magnetic powder having such excellent properties can be produced in a safe and simple process, with easy control over the formation of a fluoride film, and without reducing saturation magnetization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1において得られた金属磁性粉A−1
の示差熱分析結果であシ、 第2図は、実施例1において得られた金属磁性粉A−1
の6400倍の走査型電顕写真であり、第3図は、実施
例1において得られた金属磁性粉A−1のX線光電子分
析結果である。
FIG. 1 shows the metal magnetic powder A-1 obtained in Example 1.
Figure 2 shows the results of differential thermal analysis of the metal magnetic powder A-1 obtained in Example 1.
FIG. 3 is a scanning electron micrograph at 6400 times magnification, and FIG. 3 is an X-ray photoelectron analysis result of metal magnetic powder A-1 obtained in Example 1.

Claims (5)

【特許請求の範囲】[Claims] (1)金属粒子表面が該金属の弗化物で被覆され、平均
粒径が8μm以下であることを特徴とする安定性金属磁
性粉末。
(1) A stable metal magnetic powder characterized in that the surface of the metal particles is coated with a fluoride of the metal and the average particle size is 8 μm or less.
(2)弗化物の量が弗素として安定性金属磁性粉末中0
.1%以上である特許請求の範囲第1項記載の安定性金
属磁性粉末。
(2) The amount of fluoride is 0 in stable metal magnetic powder as fluorine.
.. The stable magnetic metal powder according to claim 1, which has a content of 1% or more.
(3)金属磁性粉末を弗化水素及び/又は弗化水素含有
化合物、弗素及び/又は弗素化合物で処理することを特
徴とする安定性金属磁性粉末の製造方法。
(3) A method for producing stable metal magnetic powder, which comprises treating metal magnetic powder with hydrogen fluoride and/or a hydrogen fluoride-containing compound, fluorine and/or a fluorine compound.
(4)金属磁性粉末を200〜820℃の温度範囲で弗
化水素又は弗素含有気体、更には、これら気体を稀釈す
るための不活性気体又は還元性気体で処理する特許請求
の範囲第3項記載の安定性金属磁性粉末の製造方法。
(4) Claim 3, in which the metal magnetic powder is treated with hydrogen fluoride or a fluorine-containing gas at a temperature range of 200 to 820°C, and further with an inert gas or reducing gas for diluting these gases. A method for producing the described stable metal magnetic powder.
(5)金属磁性粉末が、予め弗化水素含有化合物に混合
された該金属の酸化物を還元性気体で還元したものであ
る特許請求の範囲第3項記載の安定性金属磁性粉末の製
造方法。
(5) The method for producing stable magnetic metal powder according to claim 3, wherein the metal magnetic powder is obtained by reducing an oxide of the metal mixed in advance with a hydrogen fluoride-containing compound with a reducing gas. .
JP59244357A 1984-11-21 1984-11-21 Stable magnetic metallic powder and its production Granted JPS61124502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59244357A JPS61124502A (en) 1984-11-21 1984-11-21 Stable magnetic metallic powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59244357A JPS61124502A (en) 1984-11-21 1984-11-21 Stable magnetic metallic powder and its production

Publications (2)

Publication Number Publication Date
JPS61124502A true JPS61124502A (en) 1986-06-12
JPH0421722B2 JPH0421722B2 (en) 1992-04-13

Family

ID=17117491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59244357A Granted JPS61124502A (en) 1984-11-21 1984-11-21 Stable magnetic metallic powder and its production

Country Status (1)

Country Link
JP (1) JPS61124502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411603A (en) * 1993-01-22 1995-05-02 Ugimag Sa Method of protecting magnetic powders and densified permanent magnets of the Fe Nd B type from oxidation and atmospheric corrosion
JP2012039017A (en) * 2010-08-11 2012-02-23 Hitachi Ltd Magnet material, magnet molding and rotary machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411603A (en) * 1993-01-22 1995-05-02 Ugimag Sa Method of protecting magnetic powders and densified permanent magnets of the Fe Nd B type from oxidation and atmospheric corrosion
JP2012039017A (en) * 2010-08-11 2012-02-23 Hitachi Ltd Magnet material, magnet molding and rotary machine

Also Published As

Publication number Publication date
JPH0421722B2 (en) 1992-04-13

Similar Documents

Publication Publication Date Title
US3406228A (en) Method of producing extremely finely-divided oxides
GB2051026A (en) Magnetic iron oxide of high coercive force
JPH02167810A (en) Superfine magnetic particles of epsilon' iron carbide and its production
KR20230104343A (en) Method for manufacturing tungsten carbide particles and tungsten carbide particles prepared therefrom
JPS61124502A (en) Stable magnetic metallic powder and its production
JP4685651B2 (en) Method for producing iron oxide powder for red pigment
JPS6323137B2 (en)
JPS63134523A (en) Production of needle-like iron alpha-oxyhydroxide particulate powder
GB2050330A (en) Process for producing hydrated iron oxide having silicon and phosphorus components
JPH0270003A (en) Method for treating ferromagnetic iron powder
JP3149886B2 (en) Method for producing spherical magnetite particle powder
JPS60141624A (en) Manufacture of acicular magnetic iron oxide containing cobalt
JPS62108738A (en) Production of ferromagnetic iron oxide powder
JPS59151337A (en) Magnetic recording medium
JPH0625704A (en) Production of magnetic metal powder excellent in corrosion resistance
JPS6120601B2 (en)
JPH0317207A (en) Manufacture of ferromagnetic powder
JPH04219321A (en) Zinc raw material for soft ferrite and production of oxide raw material for soft ferrite using the same
JPS61179505A (en) Ferrous metal magnetic powder
JPS5939730A (en) Manufacture of ferromagnetic iron oxide
JPS59164641A (en) Preparation of barium ferrite powder having hexagonal plate shape
JPS59197501A (en) Preparation of ferrous metal magnetic material
JPS58126905A (en) Production of magnetic metal powder consisting of iron or essentially of iron
JPS63143202A (en) Production of magnetic iron powder
JPS5935404A (en) Manufacture of cobalt-coated magnetic iron oxide powder