JPS61124371A - Stationary acetic acid fermentation device - Google Patents
Stationary acetic acid fermentation deviceInfo
- Publication number
- JPS61124371A JPS61124371A JP59246183A JP24618384A JPS61124371A JP S61124371 A JPS61124371 A JP S61124371A JP 59246183 A JP59246183 A JP 59246183A JP 24618384 A JP24618384 A JP 24618384A JP S61124371 A JPS61124371 A JP S61124371A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- acetic acid
- circulating
- tank
- stationary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は静置酢酸発酵装置に関し、詳しくは静置酢酸発
酵槽内で高濃度になったガスを系外に排出し、該槽内で
低濃度になったガスを系内に取入れると共に、ガスの冷
却と除湿を行なえるようにした静置酢酸発酵装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stationary acetic acid fermentation apparatus, and more specifically, the present invention relates to a stationary acetic acid fermentation apparatus, and more specifically, a method for discharging gas that has become highly concentrated in a stationary acetic acid fermentation tank to the outside of the system, and removing gas that has become low in concentration within the tank. This invention relates to a stationary acetic acid fermentation device that is capable of cooling and dehumidifying gas while being introduced into the system.
、 酢酸発酵に用いる発酵槽には、攪拌しなから醪内
に空気を供給する型式の深部酢酸発酵槽、攪拌を行なわ
ず空気を醪の表層にのみ供給する型式の静置酢酸発酵槽
、槽内に充填した固体表面に酢酸菌体を付着させ、該固
体表面上に醪を滴下または流下させる型式の発酵槽等が
ある。The fermenters used for acetic acid fermentation include deep acetic acid fermenters that supply air into the moromi without stirring, static acetic acid fermenters that supply air only to the surface layer of the moromi without stirring, and tanks. There are fermenters of the type in which acetic acid bacteria cells are attached to the solid surface filled in the tank, and moromi is dripped or poured onto the solid surface.
静置酢酸発酵槽の場合、空気の供給は槽と蓋との間に生
じた隙間等から自然換気のみによって行なわれるものが
一般的である。なお、発酵槽内の気相部へ人為的に通気
して換気を多くすることにより酢酸発酵を促進すること
ができる。しかし、換気を多くすると、醪中のアルコー
ル、酢酸等が蒸気として飛散し、歩留りの低下を招くと
共に、酢酸の臭気が工場外にまで及ぶため、環境汚染の
懸念がある。In the case of a static acetic acid fermenter, air is generally supplied only by natural ventilation through a gap between the tank and the lid. Note that acetic acid fermentation can be promoted by artificially ventilating the gas phase in the fermenter to increase ventilation. However, if ventilation is increased, the alcohol, acetic acid, etc. in the moromi will scatter as vapor, leading to a decrease in yield, and the odor of acetic acid will reach outside the factory, raising concerns about environmental pollution.
静置酢酸発酵における歩留りを高く保ちながら酢酸発酵
を促進させる手段として空気を循環使用して消費した酸
素を100%の酸素ガスで補い、発生した炭酸ガスを薬
剤を使用して吸着分離することが提案されている。この
手段はアルコールと酢酸の蒸気の飛散防止には有効であ
るが、酢酸蒸気は炭酸ガス吸着剤に吸着され、その再生
が困難であることおよび供給する酸素のコストが高いこ
と等の問題があり、実用的でない。As a means of promoting acetic acid fermentation while maintaining a high yield in static acetic acid fermentation, it is possible to replenish the consumed oxygen with 100% oxygen gas by circulating air, and adsorb and separate the generated carbon dioxide gas using a chemical. Proposed. Although this method is effective in preventing the vapors of alcohol and acetic acid from scattering, there are problems such as the acetic acid vapor is adsorbed by the carbon dioxide adsorbent, making it difficult to regenerate it, and the cost of supplying oxygen is high. , impractical.
本発明の目的は、このような問題点を解消した静置酢酸
発酵装置を提供することである。An object of the present invention is to provide a stationary acetic acid fermentation apparatus that eliminates such problems.
静置酢酸発酵槽から排出したガスをガス交換装置に通し
たのち再度発酵槽に戻すようにすることによってアルコ
ールと酢酸の散逸を殆んどなくすることが出来、しかも
過剰となった炭酸ガスの一部が除かれ、酸素が補強され
ることが判明した。By passing the gas discharged from the static acetic acid fermenter through a gas exchange device and then returning it to the fermenter, it is possible to almost eliminate the dissipation of alcohol and acetic acid, and moreover, it is possible to eliminate excess carbon dioxide gas. It turned out that some of it was removed and the oxygen was reinforced.
このようにすれば発酵槽内の酸素濃度を18〜21%程
度に保つことが可能である。しかし、この場合は通常の
静置酢酸発酵槽で酢酸発酵を行なった場合と比較して仕
込から発酵完了に至るまでの時間、すなわち発酵時間が
15〜30%延長する。しかも、発酵槽からガス交換装
置に至る配管中で凝縮した水がガス交換装置内に流入し
、ガス交換装置の性能を低下させる。In this way, it is possible to maintain the oxygen concentration in the fermenter at about 18 to 21%. However, in this case, the time from preparation to completion of fermentation, that is, the fermentation time, is extended by 15 to 30% compared to when acetic acid fermentation is carried out in a normal static acetic acid fermenter. Moreover, water condensed in the piping leading from the fermenter to the gas exchange device flows into the gas exchange device, reducing the performance of the gas exchange device.
発酵時間が延びる原因について調べたところ、発酵槽内
の気相部の温度制御が不十分であることならびに発酵槽
内気相部の水蒸気が飽和に近い状態にあり、凝縮により
生じた水滴が醪の表面に浮かんでい范る酢酸菌膜上に落
ちて酢酸菌体への酸素供給を妨げていることが明らかと
なった。When we investigated the causes of the prolongation of fermentation time, we found that the temperature control of the gas phase in the fermenter was insufficient, and that the water vapor in the gas phase in the fermenter was close to saturation, causing water droplets produced by condensation to become saturated. It has become clear that the acetic acid bacteria that are floating on the surface of the acetic acid bacteria fall onto the film and block the oxygen supply to the acetic acid bacteria.
そこで、発酵槽からガス交換装置に至る配管途中にシリ
カゲルを大量に入れたタンクを取付け、かつガス循環用
ブロワ−から発酵槽に至る配管をヒートポンプを経由さ
せ、発酵槽内気相部の温度が32〜35°Cになるよう
に制御したところ、上記のトラブルは解消し、発酵時間
は通常の場合と同じ程度にすることが出来た。Therefore, a tank filled with a large amount of silica gel was installed in the pipe leading from the fermenter to the gas exchange device, and the pipe leading from the gas circulation blower to the fermenter was routed through a heat pump, so that the temperature of the gas phase inside the fermenter could be maintained. When the temperature was controlled to 32-35°C, the above troubles were resolved and the fermentation time could be kept to the same level as in normal cases.
しかし、この改良技術は多量のシリカゲルを必要とし、
ざらにヒートポンプ運転のための動力を要し、実用化は
困難である。本発明者らはガス交換装置を経由するガス
、すなわち循環ガスを低いコストで冷却および除湿する
手段について検討し、第2図に示すガス冷却除湿器を考
案し、本発明を完成するに至った。However, this improved technology requires large amounts of silica gel;
It requires a lot of power to operate the heat pump, making it difficult to put it into practical use. The inventors of the present invention have studied methods for cooling and dehumidifying gas passing through a gas exchange device, that is, circulating gas, at low cost, and have devised a gas cooling dehumidifier shown in FIG. 2, and have completed the present invention. .
すなわち本発明は、給気と排気を連続的に行なうことが
出来る静置酢酸発酵槽、(ロ)気体透過膜を備えたガス
交換装置、(ハ)加圧して冷却、除湿を行なうことが出
来るガス冷却除湿器および(ニ)ブロワ−を装備し、配
管系で接続してなる静置酢酸発酵装置である。That is, the present invention provides a stationary acetic acid fermenter that can continuously supply and exhaust air, (b) a gas exchange device equipped with a gas permeable membrane, and (c) a system that can perform cooling and dehumidification by pressurization. This is a stationary acetic acid fermentation device equipped with a gas cooling dehumidifier and (d) blower, and connected through a piping system.
本発明の装置を第1図を参照して説明する。The apparatus of the present invention will be explained with reference to FIG.
本発明における静置酢酸発酵槽1としては既存のものを
改造して使用することができ、液温計4゜気相温度計5
.酸素濃度計6.排気ロア、引回ロ保温材3.マンホー
ル2等の常用の機器などは通常、装備している。さらに
付帯設備として引回タンク17.該タンクと発酵槽を接
続する配管15.ポンプ14や該タンクとシャワーノズ
ルを結ぶ配管、その他固液分離機16なども装置系に加
えられるものである。同様に、原料タンク8.熱交換器
9゜ポンプ10.配管11なども付帯設備として用いら
れる。As the stationary acetic acid fermentation tank 1 in the present invention, an existing one can be modified and used.
.. Oxygen concentration meter6. Exhaust lower, lead-out insulation material 3. Commonly used equipment such as manhole 2 is usually equipped. Furthermore, as ancillary equipment, a lead tank 17. Piping connecting the tank and the fermenter 15. A pump 14, piping connecting the tank and the shower nozzle, and a solid-liquid separator 16 are also added to the equipment system. Similarly, raw material tank 8. Heat exchanger 9° pump 10. Piping 11 and the like are also used as incidental equipment.
静置酢酸発酵槽の形状については特に制限はないが、気
相部を形成する槽上部が鏡面構造であると、ガスの混合
をスムーズに行なえるために、好適である。Although there are no particular restrictions on the shape of the stationary acetic acid fermentation tank, it is preferable that the upper part of the tank forming the gas phase part has a mirror-like structure, since gases can be mixed smoothly.
発酵槽内気相部の体積が大きすきるど、温度別と、ガス
の乱れが激しくなり、醪表層部に浮かぶ酢酸菌膜を破壊
してしまう。本発明者らの実験によると、静置酢酸発酵
槽内における酢酸発酵で最も酸素消費速度の多いときの
酸素消費量をQNg/hrよす、よ、気相部。体積、よ
1.5ケ。〜2.〆もが好適である。When the volume of the gas phase inside the fermenter becomes large, the turbulence of the gas increases depending on the temperature, which destroys the acetic acid bacteria film floating on the surface layer of the mash. According to experiments conducted by the present inventors, the oxygen consumption rate when the oxygen consumption rate is highest during acetic acid fermentation in a static acetic acid fermenter is QNg/hr in the gas phase. Volume: 1.5. ~2. A finishing touch is suitable.
次に、ガス交換装置22は前記発酵槽の気相部から排出
されるガスを受入れ、発酵槽!内で高濃度になったガス
、すなわち炭酸ガスの一部もしくは全部を系外に排出し
、発酵槽内で低濃度になったガス、すなわち酸素(また
は空気)を系外から取込んで補給するものである。しか
も、この装置はガス状のアルコールや酢酸を系外に飛散
させないことが要求される。Next, the gas exchange device 22 receives the gas discharged from the gas phase of the fermenter, and the fermenter! Part or all of the gas that has become highly concentrated inside the fermenter, i.e., carbon dioxide gas, is discharged outside the system, and the gas that has become low in concentration inside the fermenter, that is, oxygen (or air), is taken in from outside the system and replenished. It is something. Moreover, this device is required not to scatter gaseous alcohol or acetic acid outside the system.
このような機能を有するガス交換装置として、本発明で
はシリコーン膜、シリコーン複合膜等を気体透過膜とす
る装置を用いる。この装置には空気吸引口23とガス交
換ブロワ−24が設けられており、新鮮な空気が導入さ
れる。一方、ガス交換された炭酸ガスを含む空気は吐出
口25より糸外に徘出される。As a gas exchange device having such a function, the present invention uses a device in which a gas permeable membrane is a silicone membrane, a silicone composite membrane, or the like. The device is equipped with an air suction port 23 and a gas exchange blower 24 through which fresh air is introduced. On the other hand, the gas-exchanged air containing carbon dioxide is discharged from the discharge port 25 to the outside of the yarn.
ガス交換装置を経て発酵槽に戻される循環ガスは酸素濃
度が18〜21%程度であり、随伴されたガス状のアル
コールや酢酸もそのまま戻されるが、発酵槽に導く前に
ガス冷却除湿器30を通過せしめる。The circulating gas returned to the fermentation tank via the gas exchange device has an oxygen concentration of about 18 to 21%, and the accompanying gaseous alcohol and acetic acid are also returned as they are, but before being introduced into the fermentation tank, a gas cooling dehumidifier 30 is used. Let it pass.
ガス冷却除湿器30は、第2図にその−B様が示されて
おり、理想気体以外のガスは圧力の増減に伴ないガスの
温度も増減することおよび飽和に近い水蒸気を含むガス
を加圧冷却すると、水蒸気が凝縮されて水となることを
利用したものである。The gas cooling dehumidifier 30 is shown in its -B form in Fig. 2, and the temperature of the gas increases or decreases as the pressure increases or decreases with gases other than ideal gases, and the gas containing nearly saturated water vapor increases or decreases. This method takes advantage of the fact that when pressure-cooled, water vapor condenses into water.
このガス冷却除湿器のガスは加圧され、高濃度になって
おり、熱伝導度も高く、さらにブロワ−の動力消費と加
圧によって温度も高くなっているため、冷却管34内を
流れる冷却水との間の温度差が大きく、冷却し易い。し
たがって、冷却水として過度に低温のものを用いな(で
もよく、しがちその使用量も少量でよく、冷却管の伝熱
面積も比較的小さくてよい。この段階では単位体積当り
の水蒸気量は大差ないが、ガスの全圧に占める水蒸気の
分圧は減少し、除湿が出来るのである。The gas in this gas cooling dehumidifier is pressurized, has a high concentration, has high thermal conductivity, and also has a high temperature due to the power consumption and pressurization of the blower. There is a large temperature difference between water and water, making it easy to cool. Therefore, it is not necessary to use excessively low-temperature cooling water, but the amount used can be small, and the heat transfer area of the cooling pipes can be relatively small.At this stage, the amount of water vapor per unit volume is Although there is not much difference, the partial pressure of water vapor in the total pressure of the gas decreases, making it possible to dehumidify.
冷却、除湿されたガスは流量調整弁33を経て発酵槽に
戻されるが、発酵槽内の圧力はほぼ大気圧であるため、
戻されたガスは急激に減圧され、その温度はさらに低下
する。こように温度が低下し、水蒸気の減少したガスを
発酵槽に戻して槽内のガスと混合することにより発酵槽
内の温度および湿度の上昇分を相殺することができる。The cooled and dehumidified gas is returned to the fermenter via the flow rate adjustment valve 33, but since the pressure inside the fermenter is approximately atmospheric pressure,
The returned gas is rapidly depressurized and its temperature further reduced. The temperature has decreased in this way, and the gas with reduced water vapor is returned to the fermenter and mixed with the gas in the tank, thereby making it possible to offset the increase in temperature and humidity in the fermenter.
また、発酵槽内に送り込まれるガスの圧力は発酵槽内の
圧力に比較して大きいため、ジェット流をなして導入さ
れ、発酵槽内のガスを混合し、気相部の温度は均一にな
りやすい。しかも、このガスのジェット流は醪表層に浮
かぶ酢酸菌膜との間のガス境膜を破壊するため、酢酸菌
体への酸素供給も促進され、発酵時間の短縮に寄与する
。In addition, since the pressure of the gas sent into the fermenter is higher than the pressure inside the fermenter, it is introduced in a jet stream, mixing the gas in the fermenter and making the temperature of the gas phase uniform. Cheap. Moreover, this jet stream of gas destroys the gas barrier between the acetic acid bacteria and the acetic acid bacteria membrane floating on the surface layer of the mortar, thus promoting the supply of oxygen to the acetic acid bacteria and contributing to shortening the fermentation time.
このように冷却、除湿されたガスが発酵槽内に圧入され
るため、醪中の水分等の蒸発を促進させ、気化熱を大量
に奪うことになり、発酵槽内のガスの冷却効果は増大す
る。Since the cooled and dehumidified gas is forced into the fermenter, it promotes the evaporation of water in the fermentation tank and takes away a large amount of the heat of vaporization, increasing the cooling effect of the gas in the fermentation tank. do.
ガス冷却除湿器の圧力を高くして運転する場合は、ガス
循環量を多くする必要が生じたとき、換言するならば発
酵槽内における酸素消費量が大で、熱量の発生量が多い
ときである。したがって、本発明に用いるガス冷却除湿
器は発酵槽内の発熱量が大きいときに多大の冷却能力を
発揮し、合理的な冷却器である。When operating the gas cooling dehumidifier at high pressure, it is necessary to increase the amount of gas circulation, in other words, when the oxygen consumption in the fermenter is large and the amount of heat generated is large. be. Therefore, the gas-cooled dehumidifier used in the present invention exhibits a large cooling capacity when the amount of heat generated in the fermenter is large, and is a rational cooler.
次に、本発明の装置の実施例を図面に従って説明する。Next, embodiments of the device of the present invention will be described with reference to the drawings.
第1図において1は静置酢酸発酵槽、2はマンホールで
、蓋および本体フランジはシリコーンラバーコーティン
グとし、ポリジメチルシロキサンの厚さ3龍のシートを
ガスケットとして、蓋はボルトによる締め付は固定とし
ている。3は保温材で、発泡スチロールを巻き厚さ0.
5mmのステンレス鋼板でカバーしている。4は液温計
、5は気相温度計、6は酸素ガス濃度計、7は排気口で
ある。In Figure 1, 1 is a stationary acetic acid fermentation tank, 2 is a manhole, the lid and main body flange are coated with silicone rubber, a 3 mm thick sheet of polydimethylsiloxane is used as a gasket, and the lid is fixed with bolts. There is. 3 is a heat insulating material wrapped in styrofoam with a thickness of 0.
Covered with a 5mm stainless steel plate. 4 is a liquid thermometer, 5 is a gas phase thermometer, 6 is an oxygen gas concentration meter, and 7 is an exhaust port.
8は原料タンク、9は熱交換器、 10は仕込ポンプ。8 is a raw material tank, 9 is a heat exchanger, and 10 is a charging pump.
11は仕込配管であり、原料タンク8内に貯蔵されてい
る仕込液を、熱交換器9で35℃に加温し、仕込ポンプ
lOにて仕込配管11を経て静置酢酸発酵槽■内に送る
。12は引回口、13は引卸バルブ、 14は引回ポン
プ、15は引回配管、16は連続固液分離機。Reference numeral 11 denotes a charging pipe, in which the charging liquid stored in the raw material tank 8 is heated to 35° C. by a heat exchanger 9, and then transferred to the stationary acetic acid fermentation tank (■) via the charging pipe 11 using a charging pump 1O. send. 12 is a lead-in port, 13 is a draw-down valve, 14 is a lead-in pump, 15 is a lead-in pipe, and 16 is a continuous solid-liquid separator.
17は供餌タンク、18は槽内洗浄ポンプ、 19はソ
ヤワーノズル、 20は菌膜受は皿である。17 is a feeding tank, 18 is an in-tank cleaning pump, 19 is a sower nozzle, and 20 is a plate for receiving bacterial membrane.
発酵が完了すると、引卸バルブ13を開けて引回ロ12
.引卸バルブ13.引卸ポンプ14を経て引回配管15
により連続固液分離機16に送られる。連続固液分離機
16により酢酸菌膜が取除かれた清澄液が供餌タンク1
7に導入される。When the fermentation is completed, open the pull-down valve 13 and remove the pull-out valve 12.
.. Unloading valve 13. Plumbing 15 via unloading pump 14
is sent to the continuous solid-liquid separator 16. The clear liquid from which the acetic acid bacteria membrane has been removed by the continuous solid-liquid separator 16 is sent to the feeding tank 1.
7 will be introduced.
引卸しがほぼ完了した頃、槽内洗浄ポンプ1Bを稼働さ
せるとシャワーノズル19から清澄な引回液を静置酢酸
発酵槽1の内壁に散布し、静置酢酸発酵槽1の内壁に付
着した酢酸菌膜を洗い流すことが出来る。また、制卸時
に発酵槽1内の液位が下がってい(過程で液位が菌膜受
は皿20の上端を経過する時、菌膜受は皿20に少量の
醪と共に酢酸菌膜が採取される。When the unloading was almost completed, when the tank cleaning pump 1B was operated, the clear drawn liquid was sprayed from the shower nozzle 19 onto the inner wall of the stationary acetic acid fermentation tank 1, and it adhered to the inner wall of the stationary acetic acid fermentation tank 1. The acetic acid bacteria film can be washed away. In addition, when the liquid level in the fermenter 1 is lowered during the control process (in the process, when the liquid level passes the upper end of the plate 20, the acetic acid bacteria membrane is collected on the plate 20 along with a small amount of moromi). be done.
採取された酢酸菌膜は次の仕込みの際に、静置酢酸発酵
槽1内の液位が菌膜受は皿20を経過する時、菌膜受は
皿20内の液面にある酢酸菌膜が仕込液の液面に浮かび
、自動的に前に用いた酢酸菌が植菌される。The collected acetic acid bacteria film will be used for the next preparation, when the liquid level in the static acetic acid fermentation tank 1 passes through the plate 20, the bacteria film plate will collect the acetic acid bacteria on the liquid level in the plate 20. The membrane floats on the surface of the preparation solution and is automatically inoculated with the acetic acid bacteria used previously.
21は排気管、22はガス交換装置、23は空気吸引口
、24はガス交換ブロワ−925は空気吐出口、26は
給気管、27はガス循環ブロワ−128はインバーター
、29はガス流量計、 30はガス冷却除湿器である。21 is an exhaust pipe, 22 is a gas exchange device, 23 is an air suction port, 24 is a gas exchange blower, 925 is an air discharge port, 26 is an air supply pipe, 27 is a gas circulation blower, 128 is an inverter, 29 is a gas flow meter, 30 is a gas cooling dehumidifier.
静置酢酸発酵槽l内のガスの一部はガス循環ブロワ−2
7により排気管21を通りガス交換装置22に送られガ
ス交換したのち給気管26.ガス循環ブロワ−27,ガ
ス流量計29.ガス冷却除湿器30を経て再度静置酢酸
発酵槽1内に供給される。A part of the gas in the static acetic acid fermenter l is transferred to the gas circulation blower 2.
7 through an exhaust pipe 21 to a gas exchange device 22 for gas exchange, and then an air supply pipe 26. Gas circulation blower 27, gas flow meter 29. The gas is supplied to the stationary acetic acid fermentation tank 1 again through the gas cooling dehumidifier 30.
ガス循環ブロワ−27の回転数はインバーター28によ
り自由に変更でき、循環ガス流量およびガス循環ブロワ
−27の吐出圧力も加減できる。The rotation speed of the gas circulation blower 27 can be freely changed by the inverter 28, and the flow rate of the circulating gas and the discharge pressure of the gas circulation blower 27 can also be adjusted.
次に、第2図に示したガス冷却除湿器について説明する
。26Aは循環ガス入口、26Bは循環ガス出口、33
は流量調整弁、34は冷却管、35は冷却水量調整バル
ブ、36はドレン溜め、37はドレンバルブ、38はド
レン回収管、39は温度計、40は圧力計である。Next, the gas cooling dehumidifier shown in FIG. 2 will be explained. 26A is a circulating gas inlet, 26B is a circulating gas outlet, 33
34 is a flow rate adjustment valve, 34 is a cooling pipe, 35 is a cooling water amount adjustment valve, 36 is a drain reservoir, 37 is a drain valve, 38 is a drain recovery pipe, 39 is a thermometer, and 40 is a pressure gauge.
ガス循環ブロワ−27により加圧され温度が上昇した循
環ガスは循環ガス人口26Aからガス冷却除湿器30内
に入り、冷却管34により冷却され、循環ガス内の水蒸
気が凝結してドレン溜め36に溜まる。The circulating gas whose temperature has been increased by being pressurized by the gas circulating blower 27 enters the gas cooling dehumidifier 30 from the circulating gas port 26A, is cooled by the cooling pipe 34, and the water vapor in the circulating gas is condensed and flows into the drain reservoir 36. Accumulate.
ドレン溜め36の中のドレン量が多くなると、ドレンバ
ルブ37を開けてドレン回収管38を使って静置酢酸発
酵槽1の中に戻す。When the amount of drain in the drain reservoir 36 increases, the drain valve 37 is opened and the drain is returned to the stationary acetic acid fermentation tank 1 using the drain collection pipe 38.
冷却管34の中を流れる冷却水の量は冷却水量調整バル
ブ35で加減する。供給する冷却水の温度は通常、18
〜24℃であり、ガス冷却除湿器内で循環ガスは27〜
35℃に冷却され、かつ除湿される。The amount of cooling water flowing through the cooling pipe 34 is adjusted by a cooling water amount adjustment valve 35. The temperature of the supplied cooling water is usually 18
~24℃, and the circulating gas in the gas-cooled dehumidifier is 27~
Cooled to 35°C and dehumidified.
本発明の装置に自動制御機構を組込むことによって静置
酢酸発酵を一層効率的に行なうことができる。第3図は
そのamを示したものである。図中、41は自動酸度測
定装置、42はプログラマブルコントローラー、43は
電源である。自動酸度測定装置41はプログラマブルコ
ントローラー42により仕込直後、仕込完了してから4
時間後ならびにそれ以後は1時間毎にサンプリングして
酸度測定を行ない、そのときの気相温度計5の指示値と
共にプログラマブルコントローラー42に入力する。プ
ログラマブルコントローラー42は入力されたデータに
基いて演算し、演算結果に暴きインバーター28の発す
る周波数の制御等を行ない、ガス循環用ブロワ−27の
回転数を自動的に調整する。これによりガス冷却除湿器
内の圧力は調整され、発酵槽に送入されるガスの温度が
適切に調整される。その結果、発酵槽気相部の温度を設
定値の±0.3℃の範囲内に制御することが可能である
。なお、第3図から明らかな如く、熱交換器9.仕込ポ
ンプ10、供餌バルブ13.引卸ポンプ14もプログラ
マブルコントローラー42によって制御される。By incorporating an automatic control mechanism into the apparatus of the present invention, static acetic acid fermentation can be carried out more efficiently. FIG. 3 shows the am. In the figure, 41 is an automatic acidity measuring device, 42 is a programmable controller, and 43 is a power source. The automatic acidity measuring device 41 is operated by the programmable controller 42 immediately after the preparation and after the preparation is completed.
After that time and every hour thereafter, the acidity is measured by sampling and inputted into the programmable controller 42 together with the indicated value of the gas phase thermometer 5 at that time. The programmable controller 42 performs calculations based on the input data, uses the calculation results to control the frequency emitted by the inverter 28, and automatically adjusts the rotational speed of the gas circulation blower 27. This regulates the pressure within the gas-cooled dehumidifier and appropriately regulates the temperature of the gas fed into the fermenter. As a result, it is possible to control the temperature of the fermenter gas phase within a range of ±0.3°C of the set value. In addition, as is clear from FIG. 3, the heat exchanger 9. Feeding pump 10, feeding valve 13. The unloading pump 14 is also controlled by the programmable controller 42.
仕込ポンプ10の能力は発酵槽1の容量に対して適当に
定められるが、実験では40分間で仕込が完了する定流
量ポンプを使用した。したがって、仕込ポンプ10は仕
込開始後40分経過すると、プログラマブルコントロー
ラー42により自動的に停止される。また、醪の酸度測
定値が4.90%以上になったとき、プログラマブルコ
ントローラーにより引回バルブ13が開けられ、同時に
引回ポンプ14が稼働して発酵槽内の醪が引回口121
より引回され、連続固液分離機16を経て引卸タンク1
7へ送られる。The capacity of the charging pump 10 is appropriately determined based on the capacity of the fermenter 1, but in the experiment, a constant flow pump was used which completes charging in 40 minutes. Therefore, the charging pump 10 is automatically stopped by the programmable controller 42 after 40 minutes have passed since the start of charging. Furthermore, when the measured acidity of the moromi reaches 4.90% or more, the programmable controller opens the circulation valve 13 and at the same time operates the circulation pump 14 to pump the moromi in the fermentation tank to the circulation port 121.
It is routed through the continuous solid-liquid separator 16 to the unloading tank 1.
Sent to 7.
その後は第1図に示した実施例と同様にして操作する。Thereafter, operations are performed in the same manner as in the embodiment shown in FIG.
次に、本発明の静置酢酸発酵槽を用いて実際に静置酢酸
発酵を行なった実施例について説明する。Next, an example in which static acetic acid fermentation was actually performed using the static acetic acid fermentation tank of the present invention will be described.
実施例
容量2.8 klの静置酢酸発酵槽1に原料タンク8か
らアルコール分3.16%、酸度2.0%になるように
種酢と原料を調整した仕込液を熱交換器9で35℃迄加
温し、仕込ポンプ10.仕込配管11により供給した。Example: Into a static acetic acid fermentation tank 1 with a capacity of 2.8 kl, a stock solution prepared by adjusting the seed vinegar and raw materials so that the alcohol content is 3.16% and the acidity is 2.0% is added from the raw material tank 8 using a heat exchanger 9. Heat to 35°C and pump the charging pump 10. It was supplied through the feed pipe 11.
(通常の静置酢酸発酵の場合、仕込液はアルコールの飛
散が多い為、アルコール’/74 度を3.5%として
いる。)仕込液量は正確に2.0 klとした。仕込ポ
ンプ10の液輸送能力は時間当り3.0dであり、40
分かけて仕込液を発酵槽に注入した。(In the case of normal stationary acetic acid fermentation, there is a lot of alcohol scattering in the charging liquid, so alcohol'/74 degrees is set to 3.5%.) The volume of the charging liquid was set to be exactly 2.0 kl. The liquid transport capacity of the charging pump 10 is 3.0 d per hour, and 40 d per hour.
The charge was poured into the fermenter in portions.
次に、液温計4で仕込液の温度が35°Cになっている
ことを確認し、マンホール2を開けて静置酢酸発酵用保
存酢酸菌を仕込液の表面に植菌したのちマンホール2を
閉じた。Next, confirm that the temperature of the preparation liquid is 35°C with the liquid thermometer 4, open the manhole 2, inoculate the surface of the preparation liquid with preserved acetic acid bacteria for static acetic acid fermentation, and then open the manhole 2. closed.
次に、ガス交換ブロワ−24を稼働させる。さらに、イ
ンバーター28で最少の回転数に設定してガス循環ブロ
ワ−27を稼働させる。Next, the gas exchange blower 24 is operated. Furthermore, the gas circulation blower 27 is operated with the inverter 28 set to the minimum rotation speed.
仕込完了後4時間毎にサンプリングコック31からサン
プルを少量づつ採取して酸度の測定を行ない、液温計4
.気相温度計5、酸素ガス濃度計6および温度計39.
圧力計40の指示値もチェクした。After the preparation is completed, a small sample is taken from the sampling cock 31 every 4 hours to measure the acidity, and the liquid thermometer 4 is used to measure the acidity.
.. Gas phase thermometer 5, oxygen gas concentration meter 6 and thermometer 39.
The reading on the pressure gauge 40 was also checked.
酸度測定結果に基づき、その後4時間の酸度上昇速度を
予測してインバーター28にてガス循環ブロワ−27の
回転数を加減する。Based on the acidity measurement results, the rate of increase in acidity over the next four hours is predicted and the rotational speed of the gas circulation blower 27 is adjusted by the inverter 28.
また、気相温度計5の指示値が設定値より下がった場合
は、インバーター28でガス循環ブロワ−27の回転数
を下げる。但し、この場合は酸素ガス濃度計の指示値も
低下するときは冷却水量調整バルブ35を少し閉じても
よい。Further, when the indicated value of the gas phase thermometer 5 falls below the set value, the rotation speed of the gas circulation blower 27 is lowered by the inverter 28. However, in this case, if the indicated value of the oxygen gas concentration meter also decreases, the cooling water amount adjustment valve 35 may be slightly closed.
現実には酸度上昇速度の予測値に基づきインバーター2
8でガス循環ブロワ−27の回転数を加減するだけで静
置酢酸発酵槽内の温度および酸素ガス濃度を併せて制御
することができた。In reality, inverter 2 is
8, it was possible to control the temperature and oxygen gas concentration in the stationary acetic acid fermentation tank by simply adjusting the rotation speed of the gas circulation blower 27.
サンプリングコック31から4時間毎にサンプリングし
酸度測定を継続し、酸度測定値が4.9%以上に達する
と、引回バルブ13を開け、引回ポンプ14を稼働させ
て発酵を終えた醪を引回口12から引卸バルブ13.引
卸ポンプ14を経て用油配管15により連続固液分離機
16に送り、酢酸菌膜を取除いた清澄液を引卸タンク1
7に貯えた。The acidity measurement is continued by sampling from the sampling cock 31 every 4 hours, and when the measured acidity value reaches 4.9% or more, the circulation valve 13 is opened and the circulation pump 14 is operated to drain the fermented moromi. Pull-out valve 13 from the lead-in port 12. The clear liquid from which the acetic acid bacteria membrane has been removed is sent to the continuous solid-liquid separator 16 via the oil pipe 15 via the draw-down pump 14, and is transferred to the draw-down tank 1.
I saved it to 7.
引回ポンプ14の液輸送能力は毎時3kl・で約40分
で引卸しを完了した。The liquid transport capacity of the pulling pump 14 was 3 kl/hour, and the unloading was completed in about 40 minutes.
2回目以降の仕込は菌膜受は皿20に残された酢酸菌膜
がそのまま使用出来た為、マンホール2は開けることな
く発酵をmmすることができた。For the second and subsequent preparations, the acetic acid bacteria membrane left on the plate 20 could be used as it was, so the fermentation could be carried out without opening the manhole 2.
静置酢酸発酵を3回繰り返したデータの平均値を従来法
で行なった場合と比較すると表1の様になる。Table 1 shows a comparison of the average values of data obtained by repeating static acetic acid fermentation three times with those obtained by the conventional method.
表1から明らかな様に、仕込液のアルコール濃度を従来
法の3.5%から3.16%に削減しても同様の製品が
出来る。さらに従来法では出来高が6.5%減少してい
たが、本発明によれば出来高の減少も殆んどなくなった
。As is clear from Table 1, a similar product can be produced even if the alcohol concentration of the charging solution is reduced from 3.5% in the conventional method to 3.16%. Furthermore, with the conventional method, the volume of production decreased by 6.5%, but according to the present invention, the decrease in volume of production almost disappeared.
これにより、原料アルコールの使用量を約10%削減で
き、さらに製品出来高を約7%増加させることが出来た
。As a result, the amount of raw alcohol used could be reduced by about 10%, and the product yield could be increased by about 7%.
菌の混入に悩まされていたが、本発明の方法では雑菌汚
染の経路が殆んどない為、優良な酢酸菌のみによる静置
酢酸発酵が可能となり、従来法で製造した食酢と比較し
てより芳醇な食酢が出来上がった。However, with the method of the present invention, there are almost no routes for contamination with bacteria, so static acetic acid fermentation using only excellent acetic acid bacteria is possible, and compared to vinegar produced using conventional methods, A more mellow vinegar was created.
なお、ガス交換装置として直径1.5n+、長さ約1m
のシリコーン中空子を約1500本束ね、直径約10印
の塩化ビニール製のカラムの中に入れ、カラムの外側を
金属で補強して4本並列に並べたものを二つ連結して用
いた。In addition, as a gas exchange device, the diameter is 1.5n+ and the length is approximately 1m.
Approximately 1,500 silicone hollow particles were bundled together, placed in a vinyl chloride column with a diameter of about 10 marks, the outside of the column was reinforced with metal, and two of the 4 pieces were connected in parallel.
発酵槽から排出されるガスをサンプリングし、除湿後質
量分析計で分析したところ窒素、酸素。When we sampled the gas discharged from the fermenter and analyzed it with a mass spectrometer after dehumidifying it, we found nitrogen and oxygen.
およびアルゴンの比が80:19:1であった。また、
ガス交換装置を出たガスについて同様にサンプリングし
、除湿後質量分析計で分析したところ窒素。and argon ratio was 80:19:1. Also,
The gas that exited the gas exchange device was sampled in the same manner, and after dehumidification was analyzed using a mass spectrometer, and it was found to be nitrogen.
酸素、およびアルゴンの比は79:20:Iであった。The ratio of oxygen and argon was 79:20:I.
循環ガスの流量はガス流量計29で測定したが、測定下
限域以下から55Q1/min、の間で変動した。The flow rate of the circulating gas was measured with a gas flow meter 29, and varied between below the lower measurement limit and 55Q1/min.
また、ガス冷却除湿器30は肉厚5顛のステンレス鋼に
て製作した容量751の缶である。冷却管34は直径1
9鶴、肉厚1mのステンレスパイプをコイル状にしたも
のを使用し、18〜24℃の水を毎時300〜5001
流した。ガス冷却除湿器内のガスの圧力および温度はガ
ス循環ブロワ−27の回転数により変動したが、温度計
39の指示値は27〜35℃、圧力計40の指示値は1
〜3気圧の範囲にあった。Further, the gas cooling dehumidifier 30 is a can with a capacity of 751 mm made of stainless steel with a wall thickness of 5 mm. The cooling pipe 34 has a diameter of 1
9 Tsuru uses a coiled stainless steel pipe with a wall thickness of 1m, and uses water at a temperature of 18 to 24 degrees Celsius to flow at 300 to 5,000 liters per hour.
It flowed. The pressure and temperature of the gas in the gas cooling dehumidifier varied depending on the rotation speed of the gas circulation blower 27, but the reading on the thermometer 39 was 27 to 35°C, and the reading on the pressure gauge 40 was 1.
It was in the range of ~3 atmospheres.
また、発酵槽内の気相部の温度は35±0.3°Cに保
たれた。Furthermore, the temperature of the gas phase within the fermenter was maintained at 35±0.3°C.
第1図および第3図は本発明の装置の態様を示す概要図
であり、第2図は本発明に用いるガス冷却除湿器の態様
を示す概要図である。
1・・・静置酢酸発酵槽、 8・・・原料タンク。
17・・・引回タンク、22・・・ガス交換装置。
27・・・ガス循環ブロワ−2
30・・・ガス冷却除湿器FIGS. 1 and 3 are schematic diagrams showing an embodiment of the apparatus of the present invention, and FIG. 2 is a schematic diagram showing an embodiment of a gas-cooled dehumidifier used in the present invention. 1... Stationary acetic acid fermenter, 8... Raw material tank. 17... Leading tank, 22... Gas exchange device. 27... Gas circulation blower 2 30... Gas cooling dehumidifier
Claims (1)
酸発酵槽、(ロ)気体透過膜を備えたガス交換装置、(
ハ)加圧して冷却、除湿を行なうことが出来るガス冷却
除湿器および(ニ)ブロワーを装備し、配管系で接続し
てなる静置酢酸発酵装置。(a) A stationary acetic acid fermenter capable of continuously supplying and exhausting air, (b) A gas exchange device equipped with a gas permeable membrane, (
c) A stationary acetic acid fermentation device equipped with a gas-cooled dehumidifier capable of cooling and dehumidifying under pressure and (d) a blower and connected through a piping system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59246183A JPS61124371A (en) | 1984-11-22 | 1984-11-22 | Stationary acetic acid fermentation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59246183A JPS61124371A (en) | 1984-11-22 | 1984-11-22 | Stationary acetic acid fermentation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61124371A true JPS61124371A (en) | 1986-06-12 |
JPH0517829B2 JPH0517829B2 (en) | 1993-03-10 |
Family
ID=17144744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59246183A Granted JPS61124371A (en) | 1984-11-22 | 1984-11-22 | Stationary acetic acid fermentation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61124371A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2824070A1 (en) * | 2001-04-27 | 2002-10-31 | Unilever Nv | Production of beer vinegar comprises removing carbon dioxide from beer before acetic fermentation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS486398U (en) * | 1971-06-10 | 1973-01-24 | ||
JPS5651802A (en) * | 1979-10-03 | 1981-05-09 | Kyoto Ceramic | Resistance element for compensating temperature used for titania oxygen detector |
JPS575684A (en) * | 1980-06-11 | 1982-01-12 | Kikkoman Corp | Preparation of vinegar and its apparatus |
-
1984
- 1984-11-22 JP JP59246183A patent/JPS61124371A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS486398U (en) * | 1971-06-10 | 1973-01-24 | ||
JPS5651802A (en) * | 1979-10-03 | 1981-05-09 | Kyoto Ceramic | Resistance element for compensating temperature used for titania oxygen detector |
JPS575684A (en) * | 1980-06-11 | 1982-01-12 | Kikkoman Corp | Preparation of vinegar and its apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2824070A1 (en) * | 2001-04-27 | 2002-10-31 | Unilever Nv | Production of beer vinegar comprises removing carbon dioxide from beer before acetic fermentation |
WO2002094977A1 (en) * | 2001-04-27 | 2002-11-28 | Unilever N.V. | Process and apparatus for manufacturing beer vinegar, and beer vinegar |
Also Published As
Publication number | Publication date |
---|---|
JPH0517829B2 (en) | 1993-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10017723B2 (en) | Volatile organic compound recovery system and method | |
AU2008212073B2 (en) | Improved equipment for the rehydration of yeasts, in particular for oenology | |
CN104403711A (en) | Method and apparatus for separating CO2 in biogas based on hydrate process | |
JPS6355914B2 (en) | ||
RU2644344C1 (en) | Biological reactor for transforming gas-hydrogen hydrocarbons to biologically active compounds | |
JP2010124703A (en) | Cell culture apparatus | |
JPS61124371A (en) | Stationary acetic acid fermentation device | |
CN111282403B (en) | Three-tower absorption and desorption experimental device and process thereof | |
JP3549949B2 (en) | Low oxygen incubator | |
Gowthaman et al. | Estimation of KLa in solid-state fermentation using a packed-bed bioreactor | |
CN217202647U (en) | Solid fermented grain variable-pressure distillation system | |
GB2029391A (en) | Biochemical Thermophilic Waster Water Treatment | |
US3062656A (en) | Method of champagnizing wine in a continuous stream and installation for same | |
JP2010264447A (en) | Process for biological-thermal treatment of refuse | |
CN115615366B (en) | Shale pore adsorption layer thickness detection device and method | |
US3252870A (en) | Method for controlling the fermentative oxidation of alcohol to acetic acid | |
JPS61195682A (en) | Fermentation apparatus for liquor | |
JPH0630797B2 (en) | Anaerobic methane fermentation method | |
JP2000127155A (en) | Method and apparatus for dehumidifying and drying granular particle material using carrier gas substitution | |
CN213506833U (en) | Fermented glutinous rice experiment detection platform | |
CN218003383U (en) | Multi-cabin small-sized environment cabin system | |
CN115343125B (en) | Carbonate precipitation device and lithium carbonate isotope analysis method | |
CN212594822U (en) | Activated carbon adsorption exhaust treatment device | |
CN214020870U (en) | Laboratory polyester synthesizer for simulating industrialization | |
CN106811386A (en) | A kind of distillation steeping in wine meat ageing device and the distillation steeping in wine meat ageing method based on it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |