JPS61124177A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61124177A
JPS61124177A JP24535984A JP24535984A JPS61124177A JP S61124177 A JPS61124177 A JP S61124177A JP 24535984 A JP24535984 A JP 24535984A JP 24535984 A JP24535984 A JP 24535984A JP S61124177 A JPS61124177 A JP S61124177A
Authority
JP
Japan
Prior art keywords
drain
source
substrate
gate
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24535984A
Other languages
Japanese (ja)
Inventor
Nobuyasu Taino
田井野 伸泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24535984A priority Critical patent/JPS61124177A/en
Publication of JPS61124177A publication Critical patent/JPS61124177A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To improve the withstand voltage between a source and a drain without forming a diffused N<-> type layer like a LDD structure by forming a high density transistor threshold value controlling impurity layer from a substrate at part of a channel between the source and the drain. CONSTITUTION:In a channel region between a source S and a drain D, part of a gate G side, i.e., the state that an impurity layer 13 is implanted in high density is obtained, and the other portion becomes the same impurity density as a substrate 11. Here, the state that a channel N<-> is formed as designated by a broken line even if a gate voltage is 0V, i.e., a depletion state is provided at the gate G side of the source S and the drain D in the portion that the layer 13 is removed by suitably selecting the impurity density of the electrode material of the gate electrode 14', i.e., the polysilicon and the substrate 11. Thus, the withstand voltage between the source S and the drain D can be improved by selecting the impurity density of the polysilicon of the gate electrode 14' with respect to the impurity density of the substrate 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、MO8型構造の半導体装置に関し、特にM
O8型トランジスタにおけるソース、ドレイン間の耐圧
を向上するようにしたものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor device having an MO8 type structure, and particularly to a semiconductor device having an MO8 type structure.
This improves the breakdown voltage between the source and drain of an O8 type transistor.

〔従来の技術〕[Conventional technology]

近年、半導体装置においては、その高集積化。 In recent years, semiconductor devices have become highly integrated.

高密度化が進んでいるが、その問題点の1つとして、M
O8型トランジスタにおけるソース、ドレイン間の耐圧
低下がある。
Densification is progressing, but one of the problems is that M
There is a drop in breakdown voltage between the source and drain of an O8 type transistor.

この対策としては、ドレイン空乏層がチャネル領域まで
伸びてこないようにすることが必要であり、一般的には
、チャネル領域の不純物濃度を増し、ゲート酸化膜を薄
くし、ドレイン、ソース接合を浅くすることが考えられ
ている。
To counter this, it is necessary to prevent the drain depletion layer from extending into the channel region. Generally, the impurity concentration in the channel region is increased, the gate oxide film is thinned, and the drain and source junctions are made shallow. It is considered to do.

そして、従来では、ソース、ドレイン耐圧向上のために
、たとえば第3図に示すようなLDD(Lightly
Doped Drain )構造のトランジスタやグレ
イデッドソース・ドレインを使ったトランジスタ等が提
案されている。
Conventionally, in order to improve the source and drain breakdown voltage, for example, an LDD (Lightly Drain) as shown in FIG.
Transistors with a doped drain structure and transistors using graded source/drain structures have been proposed.

すなわち、LDD構造のトランジスタは、その製造方法
が、1983年IEDM (p、 63〜66)に5E
PO8として示され、また、その特性が、1980年I
 E8VOL −ED 27&8 (p、1859〜1
867 S、 0GURA他)に示されているが、第3
図を用いて説明すると、P形S1基板(1)上における
N+のソース(S)領域およびドレイン(D) 領域の
それぞれのゲート(G)側に低濃度の拡散層N−を形成
し、ドレイン(D)からの電界を弱め、ソー4 ス(S
)、ドレイン(D)間にかがる実効的な電圧を低減して
耐圧向上を図っている。なお、第3図において、(2)
は8i02の酸化膜、(3)はポリS1よシなるゲート
電極である。
In other words, the manufacturing method for LDD structure transistors was 5E in the 1983 IEDM (p. 63-66).
PO8 and its properties were published in 1980 I
E8VOL-ED 27 & 8 (p, 1859-1
867 S, 0 GURA et al.), but the third
To explain using a diagram, a low concentration diffusion layer N- is formed on the gate (G) side of each of the N+ source (S) region and drain (D) region on the P-type S1 substrate (1), and the drain (D) weakens the electric field from source 4 (S).
), the effective voltage applied between the drain (D) and the drain (D) is reduced to improve the breakdown voltage. In addition, in Figure 3, (2)
8i02 is an oxide film, and (3) is a gate electrode made of poly S1.

また、ダレイブラドソース・ドレインを使ったトランジ
スタは、緩い傾斜形不純物濃度分布をもったソース、ド
レインを形成し、この濃度分布によシトレイン近傍の電
界強度をより弱くしている。
In addition, a transistor using a Dale-Brad source/drain forms the source and drain with a gently sloped impurity concentration distribution, and this concentration distribution weakens the electric field strength near the celltrain.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記従来技術によると、LDD構造の場合、予
めソース(S)、ドレイン(D)のそれぞれのゲート(
G)側に低濃度の拡散IN−を形成しておかねばならな
い問題があり、さらに、この拡散層N−。
However, according to the prior art, in the case of the LDD structure, each gate (of the source (S) and drain (D)) (
There is a problem that a low concentration diffusion layer IN- must be formed on the G) side, and furthermore, this diffusion layer N-.

すなわち抵抗成分がソース(S)、ドレイン(D)間に
シリーズに入ることになシ、トランジスタ特性が低下す
る結果となる。また、ダレイブラドソース・ドレイン構
造の場合、ソース、ドレインの1層の基板内周囲にN一
層が配置される構成となり、前述と同様に、その製造過
程においてドレインの濃度分布を形成する必要があシ、
しかも、N一層がドレインの全周に形成されるため、L
 D D構造の場合に比し、トランジスタ特性が低下す
る不都合が、ある。
In other words, if a resistance component enters the series between the source (S) and drain (D), the transistor characteristics will deteriorate. In addition, in the case of the Dalei Brad source/drain structure, a single layer of N is placed around the source and drain layers in the substrate, and as mentioned above, it is necessary to form the concentration distribution of the drain during the manufacturing process. C,
Moreover, since a single layer of N is formed around the entire circumference of the drain, L
There is a disadvantage that the transistor characteristics are lower than in the case of the DD structure.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、前記の点に留意し、前述のような構造にす
ることなくソース、ドレイン間耐圧向上を図るようにし
たものであシ、MO8型トランジスタにおけるソース、
ドレイン間のチャネル部のゲート側の一部に前記トラン
ジスタの基板よシ高濃度の不純物層を形成するとともに
、前記チャネル部の他の部分を前記基板の不純物濃度に
等しくし、かつ、ゲート電極に、前記基板、ゲート間電
圧OVにおいて前記ソース、ドレインのそれぞれのゲー
ト側にチャネルが形成される材料を用いたことを特徴と
する半導体装置を提供するものである。
The present invention takes the above points into consideration and aims to improve the withstand voltage between the source and the drain without using the above-described structure.
An impurity layer having a higher concentration than the substrate of the transistor is formed in a part of the channel part between the drains on the gate side, and the other part of the channel part is made to have an impurity concentration equal to that of the substrate, and is formed on the gate electrode. The present invention provides a semiconductor device characterized in that a material is used in which a channel is formed on the gate side of each of the source and drain at the substrate-to-gate voltage OV.

〔作 用〕[For production]

したがって、ソース、ドレイン間のチャネル部の一部に
基板より高濃度のトランジスタ閾値制御用の不純物層が
形成されるとともに、チャネル部のそれ以外の部分、す
なわち基板と同一不純物濃度の部分において、ソース、
ドレインのそれぞれのゲート側に、ゲート電極材料の選
定のみによりチャネルを形成することができるため、L
DD構造のように予め拡散層N一層を形成することなく
ソース、ドレイン間の耐圧向上が可能となる。
Therefore, an impurity layer for transistor threshold control with a higher concentration than the substrate is formed in a part of the channel part between the source and drain, and in the other part of the channel part, that is, a part with the same impurity concentration as the substrate. ,
Since a channel can be formed on each gate side of the drain by simply selecting the gate electrode material, L
Unlike the DD structure, it is possible to improve the breakdown voltage between the source and drain without forming a single diffusion layer N in advance.

〔実施例〕〔Example〕

つぎに、この発明を、その1実施例を示した第1図およ
び第2図とともに詳細に説明する。
Next, the present invention will be explained in detail with reference to FIGS. 1 and 2 showing one embodiment thereof.

第1図はこの発明の半導体装置、すなわちMO8型トラ
ンジスタを示し、その製造方法を第2図を用いて説明す
る。
FIG. 1 shows a semiconductor device of the present invention, that is, an MO8 type transistor, and a method for manufacturing the same will be explained with reference to FIG.

まず、第2図(a)に示すように、P形S1基板01)
の表面を酸化してS i02の酸化膜0りを形成し、こ
の上から矢印に示すイオン注入を施こしてトランジスタ
の閾値制御用の高濃度の不純物層03を形成する。
First, as shown in FIG. 2(a), a P-type S1 substrate 01)
The surface is oxidized to form an oxide film of Si02, and ions are implanted from above as shown by the arrows to form a highly concentrated impurity layer 03 for controlling the threshold of the transistor.

つぎに、同図(b)に示すように、酸化膜α功上にゲー
ト金属たとえばポリ8iQ4)をデポジションし、これ
をレジストQ5)によシバターン化スル。
Next, as shown in FIG. 5B, a gate metal such as poly 8iQ4) is deposited on the oxide film α, and this is turned into a pattern using a resist Q5).

そして、ゲート金属04)上のレジスト051ヲマスク
として、同図(C)に示すように、酸化膜0功とともに
基板0υヲaooo〜5000λエツチングする。
Then, using the resist 051 on the gate metal 04) as a mask, as shown in FIG. 3(C), the substrate is etched by 0υwoaoooo to 5000λ along with the oxide film.

さらに、同図(d)に示すように、基板01)表面を酸
化して5i02の酸化膜α)を形成し、前述のゲート金
属と同一のポ!JSI04)を再び基板αυ上の全面に
デポジションする。
Furthermore, as shown in the figure (d), the surface of the substrate 01) is oxidized to form an oxide film α) of 5i02, which is the same as the gate metal described above. JSI04) is again deposited on the entire surface of the substrate αυ.

つぎに、RIE(リアクティブ・イオン・エツチング)
技術を用い、基板0])表面のボIJ 51(14)を
、基板αηの側面方向のポリ5iQ4)が残るようエツ
チングし、第1図に示すように、ゲート電極04)を完
成し、さらに、このゲート電極04をマスクとしてイオ
ン注入によりN@、すなわちソース(S)、ドレイン(
D)を形成する。
Next, RIE (Reactive Ion Etching)
Using the etching technique, the holes IJ 51 (14) on the surface of the substrate 0]) are etched so that the poly 5iQ4) in the lateral direction of the substrate αη remains, and as shown in FIG. 1, the gate electrode 04) is completed. , N@, that is, source (S), drain (
D) is formed.

このとき、ソース(S) 、ドレイン(D)間のチャネ
ル領域においては、ゲー) (G)側の一部、すなわち
不純物層Q[有]が基板0])より高濃度に不純物が導
入された状態となり、他の部分が基板01)と同じ不純
物濃度となる。ここで、ゲート電極04)′の電極材料
、すなわちポリSiの不純物濃度と基板θηの不純物濃
度とを適当に選んでおくことにより、チャネル領域の不
純物層θ東を除いた部分におけるソース(S)、ドレイ
ン(D)のそれぞれのゲー1− t’G)側に、ゲート
電圧がOVでも第1図に破線に示すようなチャネ/I/
N−が形成される状態、すなわちデプレッション状態に
なる。
At this time, in the channel region between the source (S) and drain (D), impurities are introduced into a part of the gate (G) side, that is, the impurity layer Q [with] at a higher concentration than the substrate 0]). The other parts have the same impurity concentration as the substrate 01). Here, by appropriately selecting the impurity concentration of the electrode material of the gate electrode 04)', that is, the impurity concentration of poly-Si and the impurity concentration of the substrate θη, the source (S) in the region excluding the impurity layer θ east of the channel region can be , the drain (D) has a channel /I/
A state in which N- is formed, that is, a depression state is reached.

たとえば、実施例では、基板01)の濃度P形1×l0
15M、不純物@03の濃度P形5×10渭、ポリS+
の濃度N形] X 1020Ad 、ソース(S)およ
びドレイン(D)の濃度N形] X ] 020/dと
している。なお、ゲート酸化膜αつの膜厚は500Aで
ある。
For example, in the example, the concentration P type 1×l0 of the substrate 01)
15M, impurity @03 concentration P type 5 x 10 Wei, poly S+
The concentration of the source (S) and the drain (D) is N-type]X1020Ad, and the concentration of the source (S) and drain (D) is N-type]X]020/d. Note that the thickness of the gate oxide film α is 500A.

したがって、LDD構造のように製造過程において拡散
層N−を形成しなくても、基板01)の不純物濃度に対
するゲート電極04)′のポリSiの不純物濃度の選定
のみにより、ソース(S)、ドレイン(D)(7)(−
れぞれのゲート(G)寄りにチャネルNを形成すること
ができ、トランジスタの閾値制御用の不純物層03とと
もにデプレッション状態により形成されたチャネルN−
によシ、ソース(S)、ドレイン(D)間の耐圧向上が
図れることとなる。
Therefore, even if the diffusion layer N- is not formed in the manufacturing process as in the LDD structure, the source (S), drain (D) (7) (-
A channel N can be formed near each gate (G), and the channel N- formed by the depletion state together with the impurity layer 03 for controlling the threshold of the transistor.
Therefore, the breakdown voltage between the source (S) and drain (D) can be improved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の半導体装置によると、従来の
ようなLDD構造にしなくても、MO8形トランジスタ
におけるソース、ドレイン間の耐圧を向上することがで
きるものである。
As described above, according to the semiconductor device of the present invention, the withstand voltage between the source and drain of an MO8 type transistor can be improved without using a conventional LDD structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明の半導体装置の1実施例
を示し、第1図は断面図、第2図(a)〜(d)はそれ
ぞれ製造過程を示す断面図、第3図は従来のLDD構造
のMO8形トランジスタの断面図である。 01)・・・基板、0■・・・不純物層、04)′・・
・ゲート電1i 、(S)・・・ソース、(D)・・・
ドレイン、(G)・・・ゲート。
1 and 2 show one embodiment of the semiconductor device of the present invention, FIG. 1 is a sectional view, FIGS. 2(a) to 2(d) are sectional views showing the manufacturing process, and FIG. 3 is a sectional view showing the manufacturing process. 1 is a cross-sectional view of an MO8 type transistor with a conventional LDD structure. 01)...Substrate, 0■...Impurity layer, 04)'...
・Gate voltage 1i, (S)...source, (D)...
Drain, (G)...Gate.

Claims (1)

【特許請求の範囲】[Claims] (1)MOS型トランジスタにおけるソース、ドレイン
間のチャネル部のゲート側の一部に前記トランジスタの
基板より高濃度の不純物層を形成するとともに、前記チ
ャネル部の他の部分を前記基板の不純物濃度に等しくし
、かつ、ゲート電極に、前記基板、ゲート間電圧0Vに
おいて前記ソース、ドレインのそれぞれのゲート側にチ
ャネルが形成される材料を用いたことを特徴とする半導
体装置。
(1) An impurity layer having a higher concentration than the substrate of the transistor is formed in a part of the gate side of the channel part between the source and drain of the MOS transistor, and the other part of the channel part is made to have the impurity concentration of the substrate. A semiconductor device characterized in that the gate electrodes are made of a material that forms a channel on the gate side of each of the source and drain when the voltage between the substrate and the gate is 0V.
JP24535984A 1984-11-20 1984-11-20 Semiconductor device Pending JPS61124177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24535984A JPS61124177A (en) 1984-11-20 1984-11-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24535984A JPS61124177A (en) 1984-11-20 1984-11-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61124177A true JPS61124177A (en) 1986-06-11

Family

ID=17132492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24535984A Pending JPS61124177A (en) 1984-11-20 1984-11-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61124177A (en)

Similar Documents

Publication Publication Date Title
US4070687A (en) Composite channel field effect transistor and method of fabrication
JPH02237160A (en) Semiconductor device
US4507846A (en) Method for making complementary MOS semiconductor devices
JPH0237777A (en) Vertical type field-effect transistor
EP0130508A1 (en) Field effect transistor of the vertical MOS type
JP2809810B2 (en) Method for manufacturing semiconductor device
US4228447A (en) Submicron channel length MOS inverter with depletion-mode load transistor
JPH03160761A (en) Semiconductor device
JPS61124177A (en) Semiconductor device
JPS61174666A (en) Semiconductor device
JPH09223793A (en) Semiconductor device and its manufacture
JP2605757B2 (en) Method for manufacturing semiconductor device
JPH0612826B2 (en) Method of manufacturing thin film transistor
JPH05335503A (en) Manufacture of semiconductor device
JP2880885B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS63275179A (en) Mis type semiconductor integrated circuit device
JPS6211277A (en) Manufacture of semiconductor integrated circuit
JPS5864064A (en) Manufacture of semiconductor device
JPH0346272A (en) Manufacture of semiconductor device
JPS63114264A (en) Manufacture of semiconductor device
JPH0689903A (en) Manufacture of mos field-effect transistor
JPS61100975A (en) Junction type field-effect transistor
JPS62216269A (en) Manufacture of mis transistor
JPS63281470A (en) Semiconductor device
JPH04312928A (en) Semiconductor device