JPS61123507A - Manufacture of anisotropically conductive sheet - Google Patents

Manufacture of anisotropically conductive sheet

Info

Publication number
JPS61123507A
JPS61123507A JP24676784A JP24676784A JPS61123507A JP S61123507 A JPS61123507 A JP S61123507A JP 24676784 A JP24676784 A JP 24676784A JP 24676784 A JP24676784 A JP 24676784A JP S61123507 A JPS61123507 A JP S61123507A
Authority
JP
Japan
Prior art keywords
sheet
conductive
conductive powder
powder
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24676784A
Other languages
Japanese (ja)
Inventor
Shohei Tamura
田村 正平
Sadamitsu Sasaki
佐々木 貞光
Keiji Nakamoto
中本 啓次
Takashi Ichinose
一瀬 尚
Minoru Ezoe
江副 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP24676784A priority Critical patent/JPS61123507A/en
Publication of JPS61123507A publication Critical patent/JPS61123507A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/325Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor

Abstract

PURPOSE:To obtain the title sheet wherein a conductive powder is uniformly dispersed, and insulating property in the londgitudinal direction is secured, by mixing a conductive powder and a polytetrafluoroethylene, and rolling the mixture into a specified thickness. CONSTITUTION:A conductive powder for example of copper or ion and a polytetrafluoroethylene are mixed in a stirrer in the presence of a processing aid such as kerosine or the like. The mixture is filtered to remove the processing aid, and is rolled by even speed rolls into a sheet wherein the fibrillation of said polytetrafluoroethylene is facilitated. The rolling of the sheet is continued to have a thickness approximately equal to the particle diameter of the conductive powder so that the surfaces of each particle of the conductive powder are exposed on opposite sides of the sheet to obtain the intended sheet having conductivity in the direction of the thickness of the sheet.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は異方導電性シートの製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an anisotropically conductive sheet.

先行技術と問題点 厚み方向には導電性でらるが、横方向並びに縦方向には
絶縁性である異方導電性シートは、高密度コネクター、
例えば、プリント配線基板とフラットケーブルとの接続
、プリント配線基板とLSIパッケージとの接続等に有
用である。
Prior Art and Problems Anisotropic conductive sheets, which are conductive in the thickness direction but insulating in the horizontal and vertical directions, can be used for high-density connectors,
For example, it is useful for connecting a printed wiring board and a flat cable, and connecting a printed wiring board and an LSI package.

かかる異方導電性シートとしては、ゴムまたは合成樹脂
の絶縁性素材に導電性金属粉末を分散させたもの、導電
性繊維を埋め込んだものが公知である。後者の異方導電
性シートの1!造には、ゴムゲラステック絶縁材に導電
性繊維を分散させ、これを配向させた後、ゴム・グラス
チック材を硬化させ、この硬化物を導電性繊維の配向方
向にほぼ垂直な面に沿ってスライスする方法が用いられ
ており、導電性繊維の絡まりのな−分散、導電性繊維の
配向、ゴム・グラスチック材の硬化反応、並びにスライ
ス等を必要とするために製造装置の複雑化が避けられな
い。
As such anisotropically conductive sheets, those in which conductive metal powder is dispersed in an insulating material such as rubber or synthetic resin, and those in which conductive fibers are embedded are known. 1 of the latter anisotropic conductive sheet! In this process, conductive fibers are dispersed in a rubber gelastic insulation material, the fibers are oriented, the rubber/glasstic material is cured, and the cured material is spread along a plane almost perpendicular to the direction in which the conductive fibers are oriented. This method requires tangle-free dispersion of conductive fibers, orientation of conductive fibers, curing reaction of rubber/glass materials, and slicing, which makes the manufacturing equipment complicated. Inevitable.

これに対し、導電性粉末を分散させた異方導電性シート
においては装置的に有利であるが、導電性粉末の高密度
分散が困難である(高密度化すると導電性粉末の横方向
接触が生じて、横方向絶縁性が顕著に低下する)、接触
圧力によるシート厚み方向の抵抗値変動が顕著である等
の不利がろる。後者の原因については、導電性粉末がシ
ート厚み方向に連鎖状に接触しており、圧力によって導
電性粉末間の接触抵抗が変化す・ることか一原因として
考えられ、従って、理論的には金属粉末を単一分散(シ
ート厚み内に1箇存在させる)させれば上記接触抵抗の
問題を排除できるが、そのためには、シート厚みを導電
性粉末径近くKまで薄く成形する必要があり、かかる成
形は従来技術では至難である。
On the other hand, an anisotropic conductive sheet in which conductive powder is dispersed has an advantage in terms of equipment, but it is difficult to disperse the conductive powder at a high density (higher density reduces lateral contact of the conductive powder). There are disadvantages such as the resistance value variation in the sheet thickness direction due to contact pressure is significant. Regarding the latter cause, one possible cause is that the conductive powders are in chain contact in the sheet thickness direction, and the contact resistance between the conductive powders changes due to pressure.Therefore, theoretically, The above problem of contact resistance can be eliminated by dispersing the metal powder in a single manner (one location within the thickness of the sheet), but in order to do so, it is necessary to make the sheet thin to K, which is close to the diameter of the conductive powder. Such molding is extremely difficult with conventional techniques.

発明の目的 本発明の目的は、導電性粉末を単一分散させ得、しかも
、導電性粉末の高密度化にもかかわらず、シートの縦横
方向の絶縁性を充分に(1fp: 探し得る異方導電性
シートを容易に製造できる方法を提供することにるる。
OBJECTS OF THE INVENTION The object of the present invention is to make it possible to monodisperse conductive powder, and to maintain sufficient insulation properties in the longitudinal and lateral directions of the sheet (1 fp: anisotropic The object of the present invention is to provide a method for easily manufacturing a conductive sheet.

発明の構成 本発明に係る異方導電性シートの製造方法は、導電性粉
末とポリテトラフルオロエチレンとを加工助剤の存在下
で混合し、この混合物を圧延してシート状とすると共に
ポリテトラフルオロエチレンのフィブリル化を促進し、
シート圧延をシート厚みが導電性粉末径には?7f %
%’しくなるまで行って導電性粉末をシー1c貫通させ
ることによりシート厚み方向に導電性を付与することを
特徴とする方法である。
Structure of the Invention The method for manufacturing an anisotropically conductive sheet according to the present invention involves mixing conductive powder and polytetrafluoroethylene in the presence of a processing aid, rolling the mixture into a sheet, and rolling the mixture into a sheet. Promotes fibrillation of fluoroethylene,
What is the conductive powder diameter for sheet rolling and sheet thickness? 7f%
This method is characterized by imparting conductivity in the thickness direction of the sheet by penetrating the sheet 1c with conductive powder until the sheet 1c reaches 10%.

ポリテトラフルオロエチレン(以下、pTrEと称す)
が機械的応力のもとてフィブリル化することは常識であ
る。しかしながら、不発グ1者等は導電性粉末とPTF
’gとの混合物を圧延してフィブリル化すると導電性粉
末の間に繊維が根毛状に成長して導電性粉末相互間の接
触をよく排除できることを知った。これは、上記の常識
に対し予想外の現象である。この場合、シートは引張り
力を受けるが、フィブリル化のために引張り強度が増大
し、従って、シートを導電性粉末径にほぼ等しい厚さに
まで圧延することが可能となり、而して、容易に導電性
粉末を単一状態でシートに貫通させ得る。
Polytetrafluoroethylene (hereinafter referred to as pTrE)
It is common knowledge that fibrillation occurs under mechanical stress. However, the non-exploding cases are caused by conductive powder and PTF.
It has been found that when a mixture with 'g is rolled to form fibrils, fibers grow in the shape of root hairs between the conductive powders, thereby effectively eliminating contact between the conductive powders. This is an unexpected phenomenon in contrast to the common knowledge mentioned above. In this case, the sheet is subjected to tensile forces, but the tensile strength increases due to fibrillation, thus making it possible to roll the sheet to a thickness approximately equal to the diameter of the conductive powder, and thus easily The conductive powder can be passed through the sheet in a single state.

本発明(おいて、導電性粉末の高密度化を律する基本的
要件は導電性粉末とポリテトラフルオロエチレンとの混
合状態であり、上記フィブリル化はこの混合下での不可
避的な一部導電性粉末の連鎖的接触を分離することにあ
る。従来、燃料電池の電極材の製造方法として、P’r
F’Bを延伸により繊維と該繊維によって互に連結させ
た結節とからなるミクロ構造の多孔質とし、この多孔に
導電性粉末(例えばカーボンブラック)を含浸し、更に
圧延することが公知であるが(特許出願公開昭56−1
21202号公報)、多孔の均一分散性には限界がるり
、導電性粉末の含浸量もそれほど多くできず、しかも、
導電性粉末が連鎖状で導電性通路を構成するから、本発
明によって達成し得る導電性粉末の高密度化、シート厚
さ方向の接触圧力に対する抵抗値安定性等は期待し難い
In the present invention, the basic requirement governing the high density of the conductive powder is the mixed state of the conductive powder and polytetrafluoroethylene, and the above fibrillation is an unavoidable part of the conductive powder under this mixing. The purpose is to separate the chain contact of powder. Conventionally, as a method for manufacturing fuel cell electrode materials, P'r
It is known to make F'B into a porous microstructure consisting of fibers and nodes interconnected by the fibers by stretching, impregnating the pores with conductive powder (e.g. carbon black), and further rolling. (Patent application published 1982-1)
21202), there is a limit to the uniform dispersibility of pores, and the amount of conductive powder impregnated cannot be increased so much.
Since the conductive powder constitutes a conductive path in a chain, it is difficult to expect the present invention to achieve higher density of the conductive powder, stability of resistance value against contact pressure in the thickness direction of the sheet, etc.

本発明において、導電性粉末とPTFF、との混合をよ
り均一に行うには、PTFEのファインパウダーを加工
助剤の存在下、攪拌機により予備攪拌してフィブリル化
を予め進行させておき、このフィブリル化PTFIEV
c4電性粉末を混合することが望ましい。
In the present invention, in order to mix the conductive powder and PTFF more uniformly, the PTFE fine powder is pre-stirred with a stirrer in the presence of a processing aid to advance fibrillation. PTFIEV
It is desirable to mix c4 conductive powder.

本発明において導電性粉末には、機械的粉砕やアトマイ
ズ法などの一般的な金属粉末化法で得た金属粉末を使用
でき、球状粉末の使用が望ましいが、角状、針状のもの
も使用でき、大きさが5μ〜5龍、好ましくは1oμr
n〜0.3關のものである。
In the present invention, metal powder obtained by general metal powderization methods such as mechanical crushing or atomization can be used as the conductive powder, and it is preferable to use spherical powder, but angular or acicular powder can also be used. The size is 5μ to 5μr, preferably 1oμr.
It is about n~0.3.

本発明を実施するには、(イ)まずPTF Iのファイ
ンパウダーまたはフィブリル化PTFEと導電性粒子と
を加工助剤(クロシン、ホワイトオイル等)の存在下、
攪拌機により混合する。
To carry out the present invention, (a) first, fine powder of PTF I or fibrillated PTFE and conductive particles are mixed in the presence of a processing aid (crocin, white oil, etc.);
Mix with a stirrer.

攪拌によj7PTFEのフィブリル化が進行し、導電性
粉末の分散が促進される。攪拌機にはオートホモミキサ
ーを使用でき、攪拌羽根は円盤の周囲を上下90°に折
り曲げたホモディスパーで充分である。この攪拌時にお
ける加工助剤の量は配合物全体を浸し得る最小限度とす
ることが適当であり、これ以上にすると導電性粉末が分
離し易い。上記した予備攪拌並びに混合のための攪拌時
間は何れも、羽根回転速度2000〜:5oooR/m
のもとて2〜3分とすれば充分である。
Stirring progresses fibrillation of j7PTFE and promotes dispersion of the conductive powder. An autohomo mixer can be used as the stirrer, and a homodisper with stirring blades bent at 90° vertically around a disk is sufficient. It is appropriate that the amount of processing aid during this stirring be the minimum amount that can soak the entire mixture; if it is more than this, the conductive powder is likely to separate. The stirring time for the preliminary stirring and mixing described above was set at a blade rotation speed of 2000 to 5oooR/m.
2 to 3 minutes is sufficient.

導電性粉末には銅、アルミニウム、亜鉛、錫または鉄を
使用できる。粉末を単一状態でPTWEシートに貫通さ
せるから粉末径はシート厚み(圧延限界厚みO,OO5
tm )との関係で規制される他、異方導電性シートを
高密度コネクターとして使用する場合は用途上からも制
約を受けるが、その粉末径は通常、O,Ol tm〜0
.3Mである。PTPEiに対する導電性粉末の添加量
は、コネクターの高密度化上は多くすることが望まれる
が、多量に過ぎると異方導電性シートの機械的強度(引
張強度)を保障し難く、通常PTFEilOO重量部に
対し100〜2000重量部が適当でおる。
The conductive powder can be copper, aluminum, zinc, tin or iron. Since the powder is passed through the PTWE sheet in a single state, the powder diameter is determined by the sheet thickness (rolling limit thickness O, OO5
In addition to being regulated by the relationship between O, Ol tm and
.. It is 3M. It is desirable to increase the amount of conductive powder added to PTPEi in order to increase the density of the connector, but if the amount is too large, it is difficult to ensure the mechanical strength (tensile strength) of the anisotropic conductive sheet, and the weight of PTFEilOO is usually increased. 100 to 2000 parts by weight per part is appropriate.

(ロ)このようにして導電性粉末とp’rp’gとの混
合物を得れば、液分(加工助剤)をp過により除去し、
等速a−ルでロール圧延を行う。この場合、作業性を確
保するために、ロール温度は20〜80℃とすることが
適当である。このロール圧延においてフィブリル化を効
率よく促進するために、数段もしくはそれ以上の段数の
圧延で徐々に所定の厚みまで厚みを減じることが必要で
ある。また、導電性粉末の分散をより一層によくするた
めに、所定の厚みまで圧延したものを積重し、これを所
定の厚みにまで再圧延することを、シートに色ムラがな
くなるまで数回(例えば3〜5回)、繰り返えすことが
望ましい。
(b) Once the mixture of conductive powder and p'rp'g is obtained in this way, the liquid component (processing aid) is removed by p-filtration,
Roll rolling is performed at a constant speed. In this case, in order to ensure workability, it is appropriate that the roll temperature be 20 to 80°C. In order to efficiently promote fibrillation in this roll rolling, it is necessary to gradually reduce the thickness to a predetermined thickness by rolling in several or more stages. In addition, in order to further improve the dispersion of the conductive powder, sheets that have been rolled to a predetermined thickness are piled up and then re-rolled to the predetermined thickness several times until the sheets are uniform in color. It is desirable to repeat the procedure (for example, 3 to 5 times).

この圧延中に、上記攪拌や当該圧延時に分離した導電性
粉末を補充することが可能である。
During this rolling, it is possible to replenish the conductive powder separated during the stirring and rolling.

上記所定の圧延厚みとは、圧延シート中に導電性粉末を
単一分散させ得る厚みをいい、通常、導電性粉末の最大
径よりも大であるがその最大径の1.8倍よりも小なる
寸法である。
The above-mentioned predetermined rolling thickness refers to a thickness that allows the conductive powder to be monodispersed in the rolled sheet, and is usually larger than the maximum diameter of the conductive powder, but smaller than 1.8 times the maximum diameter. The dimensions are as follows.

(ハ)このようにして所定厚みの圧延シートを得れば、
加熱乾燥または溶剤浸漬によって加工助剤を最終的に除
去する。次いで、このシートを最終圧延して、上記単一
分散の導電性粉末をシート両面から露出させ、導電性粉
末を単一状態でシートに貫通させた状態とする。この最
終圧延の厚みは、使用する導電性粉末の粉末径分布に応
じて設定するが、通常は、最大粉末径〜平均粉末径の範
囲内である。
(c) If a rolled sheet of a predetermined thickness is obtained in this way,
Processing aids are finally removed by heat drying or solvent soaking. Next, this sheet is finally rolled to expose the monodispersed conductive powder from both sides of the sheet, so that the conductive powder passes through the sheet in a single state. The thickness of this final rolling is set depending on the powder diameter distribution of the conductive powder used, but is usually within the range of the maximum powder diameter to the average powder diameter.

に)最後に、PTF’Fiの焼成を行う。焼成温度は通
常360°〜380℃でめる。導電性粉末が酸化し易い
ものである場合、特に、銅粉末の場合は、窒素ガス等の
不活性ガス中で焼成する必要がある。
b) Finally, PTF'Fi is fired. The firing temperature is usually 360° to 380°C. When the conductive powder is easily oxidized, especially copper powder, it is necessary to sinter it in an inert gas such as nitrogen gas.

なお、異方尋電性シートを、例えばコネクタ一本体等の
基体に添着してから焼成する場合、または未焼成で使用
する場合、上記のに)の工程は省略できる。
Incidentally, when the anisotropically conductive sheet is attached to a substrate such as a connector main body and then fired, or when used unfired, the above step (2) can be omitted.

上記(ハ)の工程のように、加工助剤を除去してから、
最終圧延(導電性粒子のシート貫通)を行うと、加工助
剤の除去跡のピンホール等を圧延によって閉塞できる。
As in step (c) above, after removing the processing aid,
When final rolling (penetrating the sheet of conductive particles) is performed, pinholes and the like left after removal of the processing aid can be closed by rolling.

而るに、ピンホールの発生が僅少であるか、または問題
とならない場合、(ロ)の工程における最終厚み(所定
厚み)を上記の最終圧延厚み(導電性粒子径の最大径〜
平均径ンとし、上記e9の工程では加工助剤の除去のみ
を行ってもよい。
However, if the occurrence of pinholes is slight or not a problem, the final thickness (predetermined thickness) in the step (b) should be adjusted to the final rolling thickness (maximum diameter of conductive particles ~
The average diameter may be set as 1, and only the processing aid may be removed in step e9 above.

更に、上記(ハ)の工程において、最終圧延する加工助
剤除去シート(脱脂シート)の厚みを、導電性粉末がシ
ートを貫通するシート厚みよりもごく僅、かだけ厚い厚
さとする理由は、脱脂後でのPTFEの加工を可及的に
少なくすることにある。従って、脱脂によりPTFgが
固化するにもかかわらず、PTFFiの破損を良好に防
止できる。
Furthermore, in the step (c) above, the thickness of the processing aid-removed sheet (degreased sheet) to be final rolled is made to be very slightly thicker than the thickness of the sheet through which the conductive powder penetrates, because The purpose is to minimize the processing of PTFE after degreasing. Therefore, even though PTFg solidifies due to degreasing, damage to PTFFi can be effectively prevented.

本発明に係る異方導電性シートの製造方法によれば、P
TFEtのフィブリル化によって導電性粉末の相互間を
充分に非接触となし得、かつ導電性粉末の単一状態での
シート貫通により厚み方向の導電性を付与でき、しかも
、PTFEと導電性粉末との良好な分散性のために、混
合、圧延といった簡易な操作のみで、厚み方向の接触圧
に対する導電性、横縦方向の絶縁性に秀れた高密度異方
導電性シートを製造できる。
According to the method for manufacturing an anisotropically conductive sheet according to the present invention, P
By fibrillating TFEt, the conductive powder can be sufficiently non-contacted with each other, and conductivity in the thickness direction can be imparted by penetrating the sheet in a single state of the conductive powder. Due to its good dispersibility, it is possible to produce a high-density anisotropically conductive sheet with excellent conductivity against contact pressure in the thickness direction and insulation in the horizontal and vertical directions with only simple operations such as mixing and rolling.

実施例の説明 以下、本発明の実施例について説明する。Description of examples Examples of the present invention will be described below.

〔実施例1] PTFgのファインパウダー(ダイキン工業社製、商品
名FIOI)100重量部に灯油を入れ、PTF’lE
が灯油に浸る程度にして攪拌器(特殊機化工業製、オー
トホモミキサー)ホモデスパー羽根を使い回転数200
0=3000v分で2分間強制攪拌を行いその上に導電
性金属銅粉末(補出金属箔粉工業製、100〜200メ
ツシユ篩分、最大150μ、平均125μ)300重量
投入した。そして、さらに配合物の全体が浸る程度に灯
油を追加し、前回と同じ回転数で3分間1(シ拌を行な
った。これにより導電性金属銅粉末はほぼ均一に分散し
た。これをP紙で濾過し、過剰の灯油を除去し、これを
温度60°Cの等速圧延ロールに通し、最初のロールギ
ヤラグを5朋にし順次0.2mずつ薄くして、圧延をく
り返えし、厚さ0.5朋になったところで、ざらVこ、
シートを4重に折υ重ねて再度、厚さ、0.5j+mま
で圧延した。これを3回くり返した。これによりシート
の色ムラがなくなり均一な銅色となった。さらに圧延を
続行し厚さ0.15間のシートを得た。このシートには
加工助剤の灯油が含まれているので80℃の熱風乾燥器
で4時間保存して、脱脂した。これによシシートは金属
銅粉末が単一分散したPTFEiのシートになる。この
シートをさらに、圧延ロールギヤラグを狭ばめて、くシ
返し圧延を行い、シート厚さ9011rrLと60μm
との2種類のシートを作成した。これで金属銅粉末が単
一状態でシートの厚み方向に貫通した。このシートの機
械的強度の向上、及び金属銅粉末の固定を目的として焼
成を行う。
[Example 1] Kerosene was added to 100 parts by weight of PTFg fine powder (manufactured by Daikin Industries, Ltd., trade name FIOI), and PTF'lE was added.
immersed in kerosene, use a stirrer (manufactured by Tokushu Kika Kogyo, Auto Homo Mixer) with Homo Desper blades at 200 rpm.
Forced stirring was carried out for 2 minutes at 0=3000 V, and 300 weight of conductive metallic copper powder (manufactured by Shushu Metal Foil Powder Industries, 100 to 200 mesh sieve, maximum 150 μm, average 125 μm) was added thereto. Then, kerosene was added to the extent that the entire mixture was submerged, and the mixture was stirred for 3 minutes at the same rotation speed as before. As a result, the conductive metallic copper powder was almost uniformly dispersed. to remove excess kerosene, pass it through constant speed rolling rolls at a temperature of 60°C, make the first roll gear lug 5mm thick, successively thinner by 0.2m, and repeat rolling to achieve the desired thickness. When it became 0.5 tomo, Zara V-ko,
The sheet was folded four times and rolled again to a thickness of 0.5j+m. This was repeated three times. As a result, the color unevenness of the sheet was eliminated and the sheet became a uniform copper color. Further rolling was continued to obtain a sheet with a thickness of 0.15 mm. Since this sheet contains kerosene as a processing aid, it was stored in a hot air dryer at 80° C. for 4 hours to degrease it. As a result, the sheet becomes a sheet of PTFEi in which metallic copper powder is monodispersed. This sheet was further rolled by narrowing the rolling roll gear lugs to obtain a sheet thickness of 9011rrL and 60 μm.
I created two types of sheets. In this way, the metallic copper powder penetrated through the sheet in the thickness direction in a single state. Firing is performed for the purpose of improving the mechanical strength of this sheet and fixing the metallic copper powder.

焼成はシートの収縮を防ぐ目的でアルミ箔とともに鉄パ
イプに巻きつけ370’C窒素ガス雰囲気中で行なった
In order to prevent the sheet from shrinking, the sheet was wrapped around an iron pipe together with aluminum foil and fired at 370'C in a nitrogen gas atmosphere.

〔実施例2〕 実施例1と同様のPTFEと金属鋼粉末を用いた。ただ
、配合割合をPTFE 100.i置部に対して金属銅
粉末を1000重量部にした。実施例1と同様にして厚
さ90μmと60μ属との2種類の異方導電性シートを
作成した。
[Example 2] The same PTFE and metal steel powder as in Example 1 were used. However, the blending ratio is PTFE 100. The amount of metallic copper powder was 1000 parts by weight based on the i-placed part. Two types of anisotropically conductive sheets with thicknesses of 90 μm and 60 μm were prepared in the same manner as in Example 1.

〔実施例3〕 PTFEiには実施例1と同じものを用い、金属粉末に
は最大63μm平均45μrIL(福田金属箔粉工業c
U−Q−250)の銅粉末を用いた。PTF’EflO
O重量部に対し金属銅粉末、300重量部を使用し実施
例1と同様にして厚さ70μmの未脱脂シートを得、脱
脂後圧延して60μmと30μmとの2種類のシートを
得、焼成して異方導電性シートを作成した。
[Example 3] The same PTFEi as in Example 1 was used, and the metal powder had a maximum of 63 μm and an average of 45 μr IL (Fukuda Metal Foil & Powder Industry c.
Copper powder of U-Q-250) was used. PTF'EflO
An undegreased sheet with a thickness of 70 μm was obtained in the same manner as in Example 1 using 300 parts by weight of metallic copper powder per part by weight of O, and after degreasing, it was rolled to obtain two types of sheets, 60 μm and 30 μm, and fired. An anisotropically conductive sheet was prepared.

〔実施例4〕 実施例3と同様の組成で配合量をP T F’ glo
[Example 4] Same composition as Example 3, but with the amount of P T F' glo
.

重量部に対し、金属銅粉末を1000重量部とし、実施
例3と同様にしてシート厚さ60μtnと30μmとの
2種類の異方導電性シートを作成した。
Two types of anisotropically conductive sheets having sheet thicknesses of 60 μtn and 30 μm were prepared in the same manner as in Example 3 using 1000 parts by weight of metallic copper powder.

〔実施例5〕 実施例3と同様の組成で配合量をP T F” E10
0重量部に対し、金属銅粉末を1500重量部とし、実
施例3と同様にして、シート厚さ60μmルと30μm
との2種類の異方導電性シートを作成した。
[Example 5] Same composition as Example 3, but with a blending amount of PTF''E10
0 parts by weight, the metallic copper powder was 1500 parts by weight, and sheet thicknesses of 60 μm and 30 μm were prepared in the same manner as in Example 3.
Two types of anisotropically conductive sheets were created.

〔実施例6〕 実施例3と同様の組成で配合量をP T F glo。[Example 6] The composition was the same as in Example 3, but the amount was PTFglo.

重量部に対し金属銅粉末を2000重量部とし、実施例
3と同様にしてシート厚さ60μmと30μmとの2種
類の異方導電性シートを作成し九これら実施例1〜6で
得た異方導電性シートのシート厚み方向の導電性並びに
表面l朋間での電気抵抗を測定したところ、表1の通り
であった。
Two types of anisotropically conductive sheets with sheet thicknesses of 60 μm and 30 μm were prepared in the same manner as in Example 3 using 2000 parts by weight of metallic copper powder. The electrical conductivity in the sheet thickness direction and the electrical resistance across the surface of the electrically conductive sheet were measured, and the results were as shown in Table 1.

而して、PTF’ E 100重量部に対し20oO重
量部の銅粉末を配合した場合でも、縦または横方向の絶
縁性(シート表面1朋間での電気抵抗)を充分に確保で
き、銅粉末がよ〈分散されていることが明らかである。
Therefore, even when 20oO parts by weight of copper powder is blended with 100 parts by weight of PTF'E, sufficient insulation in the vertical or lateral direction (electrical resistance between the sheet surfaces) can be ensured, and the copper powder It is clear that the situation is very dispersed.

シート厚み方向の導電性をシート厚みを薄くすることに
よって増大できることも明らかである。
It is also clear that the conductivity through the sheet thickness can be increased by reducing the sheet thickness.

本発明との比較のため、ソリコーンゴム、ポリ塩化ビニ
ルのそれぞれにつき、こnら絶縁材100重量部に対し
、粒子径0.151uIの銅粉末を300重量部配合し
、これをロールでシート厚み0.1smに圧延したが、
シート強度が弱く使用できなかった。
For comparison with the present invention, 300 parts by weight of copper powder with a particle size of 0.151 uI was blended with 100 parts by weight of these insulating materials for each of soricone rubber and polyvinyl chloride, and this was rolled into a sheet with a thickness of 0. Although it was rolled to .1sm,
The sheet strength was so weak that it could not be used.

なお、上記の測定要領は次の通りである。The above measurement procedure is as follows.

シート厚み方向の導電性 電極としての黄銅平面板上に各実施例品の異方導電性シ
ートをのせ、該シート表面に4点グa−グ(針電極太さ
0.75 sm、針電極間距離3龍、直列)を当接し、
1本の針電極と黄銅平面板電極をデジタルマルチメータ
ー(タケダ理研(掬!’! T rl 6855 )に
接続して、抵抗を読み取る。
The anisotropic conductive sheet of each example was placed on a flat brass plate serving as a conductive electrode in the thickness direction of the sheet, and a 4-point groove (needle electrode thickness 0.75 sm, between needle electrodes) was placed on the surface of the sheet. Distance 3 dragons, series) contact,
Connect one needle electrode and the flat brass plate electrode to a digital multimeter (Takeda Riken (Kiku!'! T rl 6855) and read the resistance.

欠に、前記針電極とメーターとの接続を外し、他の針電
極をメーターに接続し、抵抗を読み取る。このようにし
て1試料について4点測定する。試料数は各実施例品と
も5個とした3、シート表([ili l u+間での
電気抵抗銅箔エポキ7グリント基板にエツチングにより
巾1顛の絶縁ギヤラグを設け、このうえに各実施例品の
異方導電性シートをのせ、そのうえに、l kgの荷重
下でグラスチック平面板を当板し、デジタルマルチメー
ターに接続して抵抗値を測定した。
At some point, disconnect the needle electrode from the meter, connect the other needle electrode to the meter, and read the resistance. In this way, four points are measured for one sample. The number of samples was five for each example. An anisotropically conductive sheet of the same type was placed on it, a glass flat plate was placed on top of it under a load of 1 kg, and the resistance was measured by connecting to a digital multimeter.

Claims (3)

【特許請求の範囲】[Claims] (1)導電性粉末とポリテトラフルオロエチレンとを加
工助剤の存在下で混合し、この混合物を圧延してシート
状とすると共にポリテトラフルオロエチレンのフィブリ
ル化を促進し、シート圧延をシート厚みが導電性粉末径
にほぼ等しくなるまで行って導電性粉末をシートに貫通
させることによりシート厚み方向に導電性を付与するこ
とを特徴とする異方導電性シートの製造方法。
(1) Conductive powder and polytetrafluoroethylene are mixed in the presence of a processing aid, this mixture is rolled into a sheet shape, and the fibrillation of the polytetrafluoroethylene is promoted, and the sheet rolling is adjusted to the sheet thickness. 1. A method for producing an anisotropic conductive sheet, characterized in that conductivity is imparted in the thickness direction of the sheet by penetrating the sheet with conductive powder until the diameter of the conductive powder becomes approximately equal to the diameter of the conductive powder.
(2)導電性粉末と混合するポリテトラフルオロエチレ
ンを加工助剤の存在下で攪拌してフィブリル化を進行さ
せておくことを特徴とする特許請求の範囲第1項記載の
異方導電性シートの製造方法。
(2) An anisotropic conductive sheet according to claim 1, characterized in that the polytetrafluoroethylene to be mixed with the conductive powder is stirred in the presence of a processing aid to advance fibrillation. manufacturing method.
(3)フィブリル化を促進させたシートを複数枚積重し
、この積重シートを圧延することを特徴とする特許請求
の範囲第1項または第2項記載の異方導電性シートの製
造方法。
(3) A method for producing an anisotropically conductive sheet according to claim 1 or 2, which comprises stacking a plurality of sheets with accelerated fibrillation and rolling the stacked sheets. .
JP24676784A 1984-11-20 1984-11-20 Manufacture of anisotropically conductive sheet Pending JPS61123507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24676784A JPS61123507A (en) 1984-11-20 1984-11-20 Manufacture of anisotropically conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24676784A JPS61123507A (en) 1984-11-20 1984-11-20 Manufacture of anisotropically conductive sheet

Publications (1)

Publication Number Publication Date
JPS61123507A true JPS61123507A (en) 1986-06-11

Family

ID=17153360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24676784A Pending JPS61123507A (en) 1984-11-20 1984-11-20 Manufacture of anisotropically conductive sheet

Country Status (1)

Country Link
JP (1) JPS61123507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090192A (en) * 2008-10-03 2010-04-22 Nhk Spring Co Ltd Anisotropically electroconductive resin film and method for manufacturing the same
JP2015077792A (en) * 2013-09-12 2015-04-23 日東電工株式会社 Method for producing filler-containing fluororesin sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090192A (en) * 2008-10-03 2010-04-22 Nhk Spring Co Ltd Anisotropically electroconductive resin film and method for manufacturing the same
JP2015077792A (en) * 2013-09-12 2015-04-23 日東電工株式会社 Method for producing filler-containing fluororesin sheet

Similar Documents

Publication Publication Date Title
US5498644A (en) Silcone elastomer incorporating electrically conductive microballoons and method for producing same
Waqas et al. A highly‐efficient composite separator with strong ligand interaction for high‐temperature lithium‐ion batteries
JPH08502762A (en) Carbon particle conductive composition and method for producing the same
EP1118130A2 (en) Screen printing method for producing a gas diffusion electrode
US4832870A (en) Electrically conductive composite material
DE112014000534T5 (en) Positive electrode for lithium ion secondary battery and manufacturing method thereof and lithium ion secondary battery
JP2595396B2 (en) Manufacturing method of conductive composite
WO2003044888A1 (en) Coating material for fuel cell separator
EP1108259B1 (en) Electrically conductive layer material
JPS61123507A (en) Manufacture of anisotropically conductive sheet
DE2924669C2 (en) Process for the production of a porous electrode for fuel cells
OnáChan et al. Characterization of chemically and electrochemically prepared polyanilines in inverse microemulsions
JPS61188818A (en) Anisotropic conducting sheet
Quadrat et al. The current noise and conductivity behaviour of spherical polyaniline particles dispersed in a poly (vinyl alcohol) matrix
JPS62229714A (en) Anisotropic conductive sheet
JPH0157467B2 (en)
JPS61206107A (en) Anisotropic conducting film
JP2004079406A (en) Method for manufacturing gas diffusion electrode, and fuel cell
KR960003010B1 (en) The preparation of conductivity sheet
KR102175984B1 (en) Conductive ink composition for manufacturing planar heating film
JPS6174829A (en) Manufacture of anisotropic-conductive sheet
JPS61200616A (en) Manufacture of anisotropic conducting sheet
JPH07724B2 (en) Tetrafluoroethylene resin composition
JPH10188670A (en) Flat conductive metal powder, its manufacture, and conductive paste with flat conductive metal powder
JPH0439814A (en) Manufacture of conductive sheet