JPS61122244A - Production of cycloalkanecarboxylic acid compound - Google Patents

Production of cycloalkanecarboxylic acid compound

Info

Publication number
JPS61122244A
JPS61122244A JP24418984A JP24418984A JPS61122244A JP S61122244 A JPS61122244 A JP S61122244A JP 24418984 A JP24418984 A JP 24418984A JP 24418984 A JP24418984 A JP 24418984A JP S61122244 A JPS61122244 A JP S61122244A
Authority
JP
Japan
Prior art keywords
reaction
cyclic ketone
organic phase
aqueous phase
cycloalkane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24418984A
Other languages
Japanese (ja)
Inventor
Kinichi Okumura
奥村 欽一
Munetoshi Nakano
中野 宗俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP24418984A priority Critical patent/JPS61122244A/en
Publication of JPS61122244A publication Critical patent/JPS61122244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To produce the titled compound from an inexpensive raw material, with simple operation, in an improved yield, by halogenating a cyclic ketone via specific steps such as a synthesizing step, separation of an organic phase from an aqueous phase, the ring-shrinkage of the intermediate product, etc. CONSTITUTION:The titled compound can be produced by (1) halogenating the cyclic ketone such as cyclopentanone with preferably chlorine in the presence of water to obtain 2-halogenoxycloalkanone, (2) separating the reaction liquid of the step (1) into the organic phase and the aqueous phase, (3) contacting the organic phase containing 2-halogenocycloalkanone and separated in the step (2) with astrong inorganic base, preferably in alkali metal hydroxide to effect the shrinkage of the ring to obtain a cycloalkanecarboxylic acid salt having smaller number of ring member than the cyclic ketone by one, and (4) optionally hydrolyzing the cycloalkanecarboxylic acid salt produced in the step (3).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はシクロアルカンカルボン酸化合物の製造法に関
し、さらに詳しくは簡単な操作で効峯よくシクロアルカ
ンカルボン酸化合物を製造する方法に関する・ (従来の技術) シクロペンタンカルボン酸、シクロヘキサンカルボン酸
、シクロヘプタンカル・ボン酸などのごときシクロアル
カンカルボン酸類の製造法として、従来から2−ハロゲ
ノシクロアルカノンをアルコール溶剤下に水酸化アルカ
リと反応させる方法がある( A、 Favorssc
y st L J3ojovsky、 Bull。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing a cycloalkane carboxylic acid compound, and more specifically to a method for producing a cycloalkane carboxylic acid compound with high efficiency using simple operations. Technology) As a method for producing cycloalkanecarboxylic acids such as cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, and cycloheptancarboxylic acid, there has traditionally been a method in which 2-halogenocycloalkanone is reacted with an alkali hydroxide in an alcohol solvent. There is (A, Favorssc
y st L J3 ojovsky, Bull.

Soc、ahim、Prone@、 18.615(1
915)−)。
Soc, ahim, Prone@, 18.615 (1
915)-).

この方法は、通常、ファボルスキー転位反応として知ら
れている〇 (発明が解決しようとする問題点) この反応で原料として用いられる2−ハロゲノ7クロア
ルカノンは一般に環式ケトンをハロゲン化することによ
って合成されるが、熱的に非常に不安定な物質でおるた
め蒸留の際に+鮮しやす(高収率で単離することが困難
である。この問題点は環式ケトンをハロゲン化して2−
ハロゲノククロアルカノンを合成した際の反応液をその
ままファボルスキー転位反応に供することによって解決
しうるが、その場合には副生物が多量に発生し目的物の
収率が大幅に低下するという別の問題が発生する。
This method is usually known as the Faborski rearrangement reaction (problem to be solved by the invention) The 2-halogeno7-chloroalkanone used as a raw material in this reaction is generally synthesized by halogenating a cyclic ketone. However, since it is a very thermally unstable substance, it is difficult to isolate in a high yield during distillation.
This can be solved by directly subjecting the reaction solution used to synthesize the halogenocloalkanone to the Faborski rearrangement reaction, but in that case, another problem is that a large amount of by-products are generated and the yield of the target product is significantly reduced. occurs.

そこで本発明者らはこれらの欠点を改良すべ(鋭意検討
を進めた結果、特定な7oセスを採用することによって
安価な環式ケトンから出発して効率良(シクロアルカン
カルボン酸化合物を合成する方法を見い出し、本発明を
完成するに至った・(問題点を解決するための手段) かくして本発明によれば、環式ケトンを水の存在下にハ
ロゲン化して2−ハロゲノシクロアルカノンを合成する
過程囚、該過程(A)の反応液を有機相と水相に分離す
る過程(B)、前記有機相中に存在する2−ハロゲノシ
クロアルカノンを極性有機浴剤の存在下に強塩基と接触
させて縮環させることにより原料の環式ケトンよりも員
数が1つ小さいシクロアルカンカルボン酸塩を合成する
過程(cl及び所望によシ前記シクロアルカンカルボン
酸塩を加水分解してンクロアルカンカルボン酸を合成す
る過程(DJとから成ることを特徴とする製造法が提供
される。
Therefore, the inventors of the present invention sought to improve these shortcomings (as a result of intensive studies, they found that by adopting a specific 7o process, an efficient method for synthesizing cycloalkane carboxylic acid compounds starting from an inexpensive cyclic ketone) was developed. Thus, according to the present invention, a cyclic ketone is halogenated in the presence of water to synthesize a 2-halogenocycloalkanone. Step (B) of separating the reaction solution of step (A) into an organic phase and an aqueous phase, in which the 2-halogenocycloalkanone present in the organic phase is treated with a strong base in the presence of a polar organic bath. A process of synthesizing a cycloalkane carboxylate having one member smaller than the raw material cyclic ketone by contacting and condensing the cycloalkane. A manufacturing method is provided, characterized in that it comprises a process of synthesizing an acid (DJ).

本発明において用いられる原料の環式ケトンとしては、
例えば7クロペンタノン、シクロヘキサノン、フクロヘ
プタノン、シクロオクタノン、シクロデカノン、4−メ
チルシクロヘキサノンなどが例示され、α位の水素がハ
ロゲンによって容易に置換されうるケトンならいずれも
使用できる。
As the raw material cyclic ketone used in the present invention,
Examples include 7clopentanone, cyclohexanone, fucloheptanone, cyclooctanone, cyclodecanone, and 4-methylcyclohexanone, and any ketone can be used as long as the hydrogen at the α-position can be easily substituted with a halogen.

過程(、A)のハロゲン化反応で用いられるハロゲンは
、塩素、臭素などのよりなケトンのα位の水素を置換し
うるものであればよ(、特に塩素が賞月される。この反
応は常法に従って行えばよく、通常は液相で水の存在下
に反応温度0〜90°C1好ましくは10〜60℃で行
われる。圧力は何ら限定されず、通常、大気圧下で実施
される。
The halogen used in the halogenation reaction in step (A) may be any halogen that can replace the hydrogen at the alpha position of the ketone, such as chlorine or bromine (chlorine is particularly preferred. It may be carried out according to a conventional method, and is usually carried out in a liquid phase in the presence of water at a reaction temperature of 0 to 90°C, preferably 10 to 60°C.The pressure is not limited at all, and it is usually carried out under atmospheric pressure. .

反応は環状ケトンと水の混合物にガス状のI・ロゲンを
添加することで開始し、環式ケトンの転化率はハロゲン
の添加量によって調整される。環式ケトン1モル当りの
ハロゲン使用量は、通常、α8〜t3モル、好ましくは
α9〜12モルである◎水は環式ケトンに対し、通常、
11〜5重量倍、好ましくはQ、5〜3重量倍の割合で
使用され、その使用量が過度に大きくなると生産性の低
下に、過度に少ない場合は選択性の低下になることがあ
る◇反応は強い攪拌雰囲気下に行うことが望ましく、ま
た環式ケトンの転化率は80慢以上とすることが好まし
い。
The reaction is started by adding gaseous I.logen to a mixture of cyclic ketone and water, and the conversion rate of the cyclic ketone is adjusted by the amount of halogen added. The amount of halogen used per mole of cyclic ketone is usually α8 to t3 moles, preferably α9 to 12 moles.
It is used at a ratio of 11 to 5 times by weight, preferably 5 to 3 times by weight, and if the amount used is too large, productivity may decrease, and if it is too small, selectivity may decrease◇ The reaction is preferably carried out under a strong stirring atmosphere, and the conversion rate of the cyclic ketone is preferably 80% or more.

本発明においては、過程(Nに続いて過程(B)におい
て反応液が有機相と水相に分離される。水相中には未反
応の環式ケトンや生成した2−ハロゲノシクロアルカノ
ンが溶解してシシ、これらの有機が好ましい。ここで回
収された有機物は次の過程(C)におけるファボルスキ
ー転位反応の溶剤として使用できる◇他方、水相中の副
生塩酸は、必要に応じて過程(旬におけるシクロアルカ
ンカルボン酸塩の加水分解に使用できる。
In the present invention, following step (N), the reaction solution is separated into an organic phase and an aqueous phase in step (B).In the aqueous phase, unreacted cyclic ketone and generated 2-halogenocycloalkanone are contained. These organic substances are preferably dissolved and dissolved.The organic substances recovered here can be used as a solvent for the Faborski rearrangement reaction in the next step (C).◇On the other hand, the by-product hydrochloric acid in the aqueous phase can be used as a solvent for the Faborski rearrangement reaction in the next step (C). (Can be used to hydrolyze cycloalkane carboxylates in season.

過程(B)で分離された有機相は次いで過程(C1のフ
ァボルスキー反応に供される。ここで用いられる無機塩
基は一般に使用されているものであればよく、その具体
例として、水酸化リチウム、水酸化ナトリウム、水酸化
カリウム等の水酸化アルカリ金属、炭酸ナトリウム、炭
酸水素ナトリウム、炭酸カリウムなどのごとき炭酸塩な
どが例示され、なかでも水酸化アルカリ金属が賞月され
る。
The organic phase separated in step (B) is then subjected to the Faborski reaction in step (C1).The inorganic base used here may be any commonly used inorganic base, and specific examples include lithium hydroxide, Examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and carbonates such as sodium carbonate, sodium bicarbonate, potassium carbonate, etc. Among them, alkali metal hydroxides are particularly prized.

かかる塩基は2−ハロゲノ7クロヘキサノン化合物に対
し、通常、15〜6当量、好ましくは2〜4当量の割合
で使用される。塩基は無水の状態で使用するのが好まし
く、水浴液の形で用いる場合には収率が低下しやすい。
Such a base is generally used in an amount of 15 to 6 equivalents, preferably 2 to 4 equivalents, based on the 2-halogeno-7 clohexanone compound. It is preferable to use the base in an anhydrous state; if it is used in the form of a water bath solution, the yield tends to decrease.

反応条件はと(に制限されるものではないが、通常は反
応温度が10〜150℃、好ましくは40〜120℃で
大気圧下で行われる。反応に用いられる極性有機溶剤は
塩基と容易に反応するものでなければ特に限定されろも
のではなく、その具体例として、例えばメタノール、エ
タノール、ブタノール、ヘキサノール、オクタツール、
ラウリルアルコールなどのごときアルコール類、ジエチ
ルエーテル、シフチルエーテル、ジフェニルエーテル、
テトラヒドロフランなどのエーテル類、アセトニトリル
、ベンゾニトリルなどのニトリル類などが挙げられ、必
要に応じてベンゼン、トルエン、キシレン、ヘキサン、
シクロヘキサンナトの非極性溶剤を混合して用いること
ができる。これらの極性有機溶剤のなかでも、アルコー
ル類、とくに疎水性のアルコール類を用いることが収率
向上の見地から好ましい◇ かかる有機溶剤の使用量は適宜選択しうるが、通常は原
料の2−ハロゲノシクロヘキサノンに対して15〜10
重量倍、好ましくは1〜51量倍であり、その使用量が
少な(なるにつれて反応の制御が困難となり、また高沸
点副生成が増大する。
Although the reaction conditions are not limited to (but are not limited to), the reaction temperature is usually 10 to 150°C, preferably 40 to 120°C, and the reaction is carried out under atmospheric pressure.The polar organic solvent used in the reaction easily interacts with a base. There is no particular limitation as long as it does not react, and specific examples include methanol, ethanol, butanol, hexanol, octatool,
Alcohols such as lauryl alcohol, diethyl ether, cyphthyl ether, diphenyl ether,
Examples include ethers such as tetrahydrofuran, nitriles such as acetonitrile and benzonitrile, and as necessary, benzene, toluene, xylene, hexane,
A mixture of non-polar solvents such as cyclohexannatate can be used. Among these polar organic solvents, it is preferable to use alcohols, especially hydrophobic alcohols, from the viewpoint of improving the yield◇ The amount of such organic solvent to be used can be selected as appropriate, but it is usually 15-10 for cyclohexanone
The amount is preferably 1 to 51 times the amount by weight, and the smaller the amount used, the more difficult it becomes to control the reaction and the higher the amount of high-boiling by-products.

有機溶剤の添加方法は反応器内に最初から塩基水溶液と
存在させてお(か、その一部又は全量をト原料の2−ハ
ロゲノシクロヘキサノンと同時に添加してもよい。
The organic solvent may be added from the beginning to the base aqueous solution in the reactor, or a part or all of it may be added simultaneously with the raw material 2-halogenocyclohexanone.

反応終了後、生成したシクロアルカンカルボン酸塩は反
応系から常法に従って分離される。例えば反応系に水を
加えることにより水相中に抽出する方法が用いられる。
After the reaction is completed, the produced cycloalkane carboxylate is separated from the reaction system according to a conventional method. For example, a method of extraction into an aqueous phase by adding water to the reaction system is used.

水相中に抽出されたシクロアルカンカルボン酸塩は必要
に応じて過程(Diにおいて酸により加水分解されシク
ロアルカンカルボン酸が合成される。用いられる酸は塩
酸、硫酸、リン酸などの強酸の水溶液であシ、この水浴
液として過程(B)における水相(すなわちハロゲン酸
水溶液)を利用するのが合理的である。
The cycloalkane carboxylic acid salt extracted into the aqueous phase is hydrolyzed with acid in the process (Di) to synthesize cycloalkane carboxylic acid.The acid used is an aqueous solution of a strong acid such as hydrochloric acid, sulfuric acid, or phosphoric acid. However, it is reasonable to use the aqueous phase (ie, halogen acid aqueous solution) in step (B) as this water bath liquid.

(発明の効果) かくして本発明によれば安価な原料から出発して簡単な
・操作で効率良(フクロアルカンカルボン酸化合物を得
ることができる。
(Effects of the Invention) Thus, according to the present invention, a fuchloroalkanecarboxylic acid compound can be obtained efficiently by starting from inexpensive raw materials and using simple operations.

以下に実施例を挙けて本発明をさらに具体的に説明する
。なお、実施例及び比較例中の部及び慢はと(に断りの
ないかぎり重量基準である〇実施例1 攪拌機、冷却還流器、温度計及び塩素カス添加インター
ナルパイプのついた40のフラスコに300部の7クロ
ヘキサノンと水500部を加えた。攪拌しつつ塩素ガス
を流量計にて反応液相に添加した0添加fは200部で
5時間を要した。
The present invention will be explained in more detail below with reference to Examples. In addition, parts in Examples and Comparative Examples are based on weight unless otherwise specified. 300 parts of 7-chlorhexanone and 500 parts of water were added. Chlorine gas was added to the reaction liquid phase using a flow meter while stirring, and 200 parts of chlorine gas were added, which took 5 hours.

反応は発熱反応であるのでフラスコは氷水の恒温槽で冷
却され、反応温度25°Cで維持された(過程A)O反
応終了後、有機相と水相に分離しく過程B)、有機相を
ガスクロマトグラフィーによって定量したところ、7ク
ロヘキサノンの塩素化率は91モルラで2−クロルシク
ロへキサノンへの選択率は93モル係であった0有機相
量は403部、水相量は597部でそれぞれ別容器に取
り出した0水相にトルエンを100部入れ、水相中の有
機物を90%抽出した。
Since the reaction is exothermic, the flask was cooled in a constant temperature bath of ice water, and the reaction temperature was maintained at 25 °C. As determined by gas chromatography, the chlorination rate of 7-chlorohexanone was 91 molar, and the selectivity to 2-chlorocyclohexanone was 93 molar.The amount of organic phase was 403 parts, and the amount of aqueous phase was 597 parts. 100 parts of toluene was added to each of the aqueous phases taken out into separate containers to extract 90% of the organic matter in the aqueous phases.

次にファボルスキー反応を行うために上記反応器に50
0部のルーへキサノール、前記水相を抽出したトルエン
および300部の無水苛性ソーダを加えた。PJt拌し
つつ過程Bで分離した有機相を2時間かけて添加した。
Next, in order to perform the Faborski reaction, 50
0 parts of roohexanol, the toluene from which the aqueous phase was extracted, and 300 parts of anhydrous caustic soda were added. The organic phase separated in step B was added over a period of 2 hours while stirring.

反応温度は60°Cで温水恒温槽で維持した(過程c)
The reaction temperature was maintained at 60°C in a hot water bath (process c).
.

反応終了後、500部の水を加えて析出塩を溶解シ、/
クロペンタンカルボン酸ナトリウム水浴液として 13
00部を得た。
After the reaction is complete, add 500 parts of water to dissolve the precipitated salt.
Sodium clopentanecarboxylate as a water bath solution 13
I got 00 copies.

次に7クロペンタンカルボン酸ナトリウムの収率な測定
するためにこの水浴液の一部をとり、55チの塩酸をP
H−5になるまで少しずつ加え、シクロペンタンカルボ
ン酸に転化し、トルエンにて抽出したのち、このトルエ
ン相をガスクロマトグラフィーにより定量した(シクロ
ペンタンカルボン酸ナトリウムから7クロベンタンカル
ボン酸への転化は定量的に進む)。その結果、シクロペ
ンタンカルボン酸ナトリウムのモル収率は66.2%で
あった。
Next, in order to measure the yield of sodium 7-clopentanecarboxylate, a portion of this water bath solution was taken and 55% of hydrochloric acid was added to P.
It was added little by little until H-5 was obtained, converted to cyclopentanecarboxylic acid, extracted with toluene, and the toluene phase was quantified by gas chromatography (conversion of sodium cyclopentanecarboxylate to 7-cyclopentanecarboxylic acid). (proceeds quantitatively). As a result, the molar yield of sodium cyclopentanecarboxylate was 66.2%.

比較例1 実施例1と同様の塩素化反応を行い、反応液をガラスの
充填剤をつめた蒸留器に入れ、−750龍HP 、温度
100°Cで真空蒸留を行った。98%純度の2−クロ
ルフクロヘキサノンを2409得た。蒸留による回収率
は7011予で、蒸留器底部の液は重合物が生成し、こ
れ以上の回収は無理であった。
Comparative Example 1 A chlorination reaction similar to that in Example 1 was carried out, and the reaction solution was placed in a distiller filled with a glass filler, and vacuum distillation was carried out at -750 HP and a temperature of 100°C. 2409 2-chlorofuclohexanone with 98% purity was obtained. The recovery rate by distillation was 7,011 mm, and a polymer was formed in the liquid at the bottom of the distiller, making it impossible to recover any more.

次に実施例1と同様のファボルスキー反応を実施し、7
クロヘキサンカルボン酸ナトリウムのガスクロマトグラ
フイーによる定量を行い、モル収率57.5チを得た。
Next, the same Faborski reaction as in Example 1 was carried out, and 7
Sodium chlorhexanecarboxylate was quantitatively determined by gas chromatography, and a molar yield of 57.5% was obtained.

この結果から、蒸留による中間生成物の損失が大きいた
め経済的でないことがわかる。
This result shows that distillation is not economical because the loss of intermediate products is large.

比較例2 実施例1と同様の反応器に600部の7クロヘキサノン
と水500部を加え、塩素ガスを260部添加し九。反
応温反20℃で4時間を要し友。
Comparative Example 2 600 parts of 7-chlorohexanone and 500 parts of water were added to the same reactor as in Example 1, and 260 parts of chlorine gas was added thereto. The reaction took 4 hours at 20°C.

反応後、ガスクロマトグラフィで塩素化率を測定したと
ころ、100モルチで2−クロルシクロへキサノンへの
選択率は70モルチであった。
After the reaction, the chlorination rate was measured by gas chromatography, and the selectivity to 2-chlorocyclohexanone was 70 molti at 100 molti.

次に反応液から水相を分離せずにそotま7アボルスキ
一反応に供した@実施例1と同じ装置に500部のヘキ
サノールと500部の無苛性ソーダを加え、攪拌しなが
ら前記反応液を5時間かけて添加した。反応温度は60
℃で行った。反応終了後、実施例1と同様にガスクロマ
トグラフィーによる定量を行ったところ、フクロペンタ
ンカルボン酸ナトリウムのモル収率は9%であった。
Next, 500 parts of hexanol and 500 parts of non-caustic soda were added to the same apparatus as in Example 1, which was subjected to the Aborski reaction without separating the aqueous phase from the reaction solution, and the reaction solution was mixed with stirring. It was added over a period of 5 hours. The reaction temperature is 60
It was carried out at ℃. After the reaction was completed, quantitative determination by gas chromatography was performed in the same manner as in Example 1, and the molar yield of sodium fuclopentanecarboxylate was 9%.

Claims (1)

【特許請求の範囲】[Claims] 1、環式ケトンを水の存在下にハロゲン化して2−ハロ
ゲノシクロアルカノンを合成する過程(A)、該過程(
A)の反応液を有機相と水相に分離する過程(B)、前
記有機相中に存在する2−ハロゲノシクロアルカノンを
極性有機溶剤の存在下に無機強塩基と接触させて縮環さ
せることにより原料の環式ケトンよりも員数が1つ小さ
いシクロアルカンカルボン酸塩を合成する過程(C)及
び所望により前記シクロアルカンカルボン酸塩を加水分
解してシクロアルカンカルボン酸を合成する過程(D)
とから成ることを特徴とするシクロアルカンカルボン酸
化合物の製造法。
1. Process (A) of synthesizing 2-halogenocycloalkanone by halogenating a cyclic ketone in the presence of water, the process (
Step (B) of separating the reaction solution of A) into an organic phase and an aqueous phase, in which the 2-halogenocycloalkanone present in the organic phase is brought into contact with a strong inorganic base in the presence of a polar organic solvent to undergo ring condensation. A step (C) of synthesizing a cycloalkane carboxylate having one member smaller than the raw material cyclic ketone (C) and optionally a step (D) of hydrolyzing the cycloalkane carboxylate to synthesize a cycloalkane carboxylic acid. )
A method for producing a cycloalkane carboxylic acid compound, characterized by comprising the steps of:
JP24418984A 1984-11-19 1984-11-19 Production of cycloalkanecarboxylic acid compound Pending JPS61122244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24418984A JPS61122244A (en) 1984-11-19 1984-11-19 Production of cycloalkanecarboxylic acid compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24418984A JPS61122244A (en) 1984-11-19 1984-11-19 Production of cycloalkanecarboxylic acid compound

Publications (1)

Publication Number Publication Date
JPS61122244A true JPS61122244A (en) 1986-06-10

Family

ID=17115092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24418984A Pending JPS61122244A (en) 1984-11-19 1984-11-19 Production of cycloalkanecarboxylic acid compound

Country Status (1)

Country Link
JP (1) JPS61122244A (en)

Similar Documents

Publication Publication Date Title
US7057077B2 (en) Method for producing 2- (alkyl) cycloalkenone
JPS61122244A (en) Production of cycloalkanecarboxylic acid compound
US6162946A (en) Processing for producing allyl 2-hydroxyisobutyrate
JPH06234689A (en) Continuous industrial production of dimethoxyethanal
JP2006298855A (en) Method for producing 3,3,3-trifluoropropionic acid
US5502234A (en) Process for the preparation and separation of cyclopropanecarbonitrile
JP2002053540A (en) Method for producing aliphatic tricarbonitrile
JPS6133829B2 (en)
JPH0717548B2 (en) Method for producing 1,1-difluorocyclohexane
JP2002193883A (en) Method for producing 2-alkyl-2-adamantyl(meth)acrylates
JP2586949B2 (en) Method for producing p- or m-hydroxybenzaldehyde
WO2008075468A1 (en) Process for producing 2-isopropenyl-5-methyl-4-hexene-1-yl- 3-methyl-2-butenoate
JPH1059892A (en) Production of alpha,beta-unsaturated aldehyde
JP2000159716A (en) Production of orthoester
JP4374987B2 (en) Method for producing 2-bromocyclopentanone
JP4000278B2 (en) Process for producing ω-bromoalkylmalonic acid and ω-bromoalkylcarboxylic acid
JP2720934B2 (en) Process for producing 3- (2-chloro-2- (4-chlorophenyl) -vinyl) -2,2-dimethylcyclopropanecarboxylic acid
JP4087494B2 (en) Process for producing 1-amino-1-methyl-3 (4) -aminomethylcyclohexane
JP3056359B2 (en) Process for producing 2,2,4-trimethyl-cyclohexenecarbaldehyde
JP2003183267A (en) Method of preparing optically pure (r)- or (s)- tetrahydrofuranyl ketone
JP3393882B2 (en) Method for producing 4-amino-3-fluorobenzotrifluoride
JP2002338544A (en) Method for producing n-alkoxycarbonyllactam compound
JPS62142137A (en) Production of e,e 3,7,11-trimethyl-2,6,10-dodecatrienoic acid
JPS6344536A (en) Production of 1,1-difluorocyclohexane
JPS59164736A (en) Process for combined production of phenylacetic acid ester and phenylacetaldehyde