JPS61122124A - Production of piezoelectric ceramic powder - Google Patents

Production of piezoelectric ceramic powder

Info

Publication number
JPS61122124A
JPS61122124A JP59245100A JP24510084A JPS61122124A JP S61122124 A JPS61122124 A JP S61122124A JP 59245100 A JP59245100 A JP 59245100A JP 24510084 A JP24510084 A JP 24510084A JP S61122124 A JPS61122124 A JP S61122124A
Authority
JP
Japan
Prior art keywords
aqueous solution
nitric acid
titanium
piezoelectric ceramic
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59245100A
Other languages
Japanese (ja)
Other versions
JPH06651B2 (en
Inventor
Takeshi Iino
飯野 猛
Miyuki Ishikawa
石川 みゆき
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59245100A priority Critical patent/JPH06651B2/en
Publication of JPS61122124A publication Critical patent/JPS61122124A/en
Publication of JPH06651B2 publication Critical patent/JPH06651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce the titled powder having fine particle size and giving a sintered material having excellent flexural strength, by adding Sb2O3 and ammonia water to a mixed aqueous solution of nitric acid containing lead nitrate, Ti, Zr, and Sn, separating the precipitated composite by filtration, and calcining the composite. CONSTITUTION:A nitric acid aqueous solution of titanium oxynitrate is prepared e.g. by adding an aqueous solution of nitric acid to titanium tetrapropoxide or titanium tetrabutoxide. The aqueous solution is further added with lead nitrate, zirconium oxynitrate and stannous acetate to obtain a mixed aqueous solution of nitric acid. Antimony oxide and a precipitant consisting of ammonia water are added to the aqueous solution to effect the coprecipitation of a composite composed of the elements of Pb, Ti, Zr and Sn. The precipitate is filtered, washed, dried, calcined at 550-800 deg.C, crushed, and dried to obtain the objective piezoelectric ceramic powder.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はフィルタや点火栓等に用いらnる、スズアンチ
モン酸チタン酸ジルコン酸鉛よりなる圧電セラミックス
粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing piezoelectric ceramic powder made of lead zirconate tin antimonate titanate and used for filters, spark plugs, etc.

従来例の構成とその問題点 従来のスズアンチモン酸チタン酸ジルコン酸鉛よりなる
圧電セラミックス粉末は、第1図に示すように、1でP
 bo 、 Tie。、 ZfO□、 SnO2,5b
203の各種酸化物粉末を目的組成に応じて配合し、湿
式ボールミルで混合し、2で乾燥させ、3で仮焼して固
相反応させ、4で湿式のボールミルで粉砕し、5で乾燥
させて製造する。この方法の欠点は、組成の均質度合が
ミクロな観点からすると悪く、粉末粒径も比較的大きく
、1μm以下にすることは困難なことである。このため
、焼結体を薄板に加工したとき、薄板の強度が不十分で
あった。
Structure of the conventional example and its problems The conventional piezoelectric ceramic powder made of tin antimonate titanate lead zirconate has a P of 1 as shown in Fig. 1.
bo, Tie. , ZfO□, SnO2,5b
Various oxide powders of 203 are blended according to the target composition, mixed in a wet ball mill, dried in step 2, calcined in step 3 for solid phase reaction, pulverized in step 4 with a wet ball mill, and dried in step 5. Manufactured by The disadvantages of this method are that the degree of homogeneity of the composition is poor from a microscopic point of view, and the powder particle size is also relatively large, making it difficult to reduce the particle size to 1 μm or less. For this reason, when the sintered body was processed into a thin plate, the strength of the thin plate was insufficient.

ところがフィルタとして用いる場合、共振周波数が融帯
になると厚みたて振動や厚みすべり振動を用いる。この
場合、共振周波数は材料定数と素子の厚みで決まり、共
振周波数が高周波となればなるほど素子の厚みを薄くす
ることが要求される。
However, when used as a filter, if the resonant frequency is in the fusion zone, thickness vertical vibration or thickness shear vibration is used. In this case, the resonant frequency is determined by the material constant and the thickness of the element, and the higher the resonant frequency, the thinner the element is required to be.

例えば周波数定数が9501−1z−m の材料では、
4.6−の共振周波数を得るのに素子厚みは約210μ
mとなる。
For example, for a material with a frequency constant of 9501-1z-m,
The element thickness is approximately 210μ to obtain a resonance frequency of 4.6-
m.

このため、均質で微粒子の圧電セラミックス粉末が要求
されている。均質で微粒子を作る方法として、共沈法と
アルコキシド法が知られている。
Therefore, homogeneous and fine-grained piezoelectric ceramic powder is required. The coprecipitation method and the alkoxide method are known as methods for producing homogeneous fine particles.

共沈法ではジルコン酸チタン酸鉛やPLZTの合成につ
いては、すでに文献などで公知であるが、成分が多くな
るほど合成が困難となる。またアルコキシド法では、一
度各成分の金属アルコキシドを合成しなければならない
ので、製法が煩雑となり実用的でない。
Although the synthesis of lead zirconate titanate and PLZT using the coprecipitation method is already known in the literature, the synthesis becomes more difficult as the number of components increases. Furthermore, in the alkoxide method, each component metal alkoxide must be synthesized once, making the production process complicated and impractical.

発明の目的 本発明は共沈法により、均質で粉末粒径の小さいスズア
ンチモン酸チタン酸ジルコン酸鉛よりなる圧電セラミッ
クス粉末の製造方法を提供することを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for producing piezoelectric ceramic powder made of lead zirconate tin antimonate titanate, which is homogeneous and has a small powder particle size, by a coprecipitation method.

発明の構成 上記目的を達成するため本発明は、硝酸鉛、オキシ硝酸
チタニウム、オキシ硝酸ジルコニウム。
Constitution of the Invention In order to achieve the above objects, the present invention provides lead nitrate, titanium oxynitrate, and zirconium oxynitrate.

酢酸第1スズの混合硝酸水溶液から、沈殿剤としてアン
モニア水溶液を用いて、Pb、Ti、Zt、Snの各元
素からなる複合物を共沈させる過程で、酸化アンチモン
を添加混合し、沈殿物を生成させた後、沈殿物をヂ過、
洗浄し、乾燥させ、sso’c〜aOO°Cで仮焼する
ことを特徴とする圧電セラミックス粉末の製造方法であ
る。ここでオキシ硝酸チタニウムは、チタンテトラプロ
ボキシドまた −はチタンテトラブトキシドに硝酸水溶
液を加えて作るか、または四塩化チタンをアンモニア水
で水酸化チタンとし、これに硝酸水溶液を加えて作る。
In the process of co-precipitating a composite consisting of the elements Pb, Ti, Zt, and Sn from a mixed nitric acid aqueous solution of stannous acetate using an ammonia aqueous solution as a precipitant, antimony oxide was added and mixed to remove the precipitate. After the formation, the precipitate is passed through,
This is a method for producing piezoelectric ceramic powder, which is characterized by washing, drying, and calcining at sso'c to aOO°C. Titanium oxynitrate is prepared by adding an aqueous nitric acid solution to titanium tetraproboxoxide or titanium tetrabutoxide, or by converting titanium tetrachloride into titanium hydroxide with aqueous ammonia and adding an aqueous nitric acid solution thereto.

実施例の説明 以下、本発明の一実施例を第2図のフローチャートを用
いて説明する〇 出発原料は目的の組成になるように秤量して、下記の処
理を行う。第2図の6で硝酸鉛Pb(NO3)2および
、t −? シ硝酸ジルコニウムzrO(NO3)21
12H2゜は純水に溶かし、チタンテトラプロボキシド
T I (QC3H7)4を6倍に希釈した硝酸水溶液
に混合し、オキシ硝酸チタニウムTi0(NO3)2溶
液とし、酢酸第1スズを6倍に希釈した硝酸水溶液に溶
かす。これらを硝酸水溶液中に加えて攪拌し、共沈用混
合硝酸水溶液とする。この水溶液のPHはおよそ1であ
る。Tに示すようにまた酸化アンチモン5b203を目
的の組成分秤量しておく。反応槽にミキサーを用いて、
希釈したアンモニア水8を入れて強く攪拌しながら、酸
化アンチモンの粉末を添加し、9に示すように共沈用混
合硝酸水溶液および沈殿剤のアンモニア水浴液を、反応
槽中の液のPHが7〜8の範囲になるように調節しなが
ら添加する。この操作で得た沈殿物を10で示すように
濾過、洗浄した後、11で示すように純水中に分散させ
噴霧乾燥させた。この粉末を600°Cの温度で12に
示すように2時間仮焼し、13に示すように湿式ボール
ミルで粉砕し、14に示すように乾燥させてスズアンチ
モン酸チタン酸ジルコン酸鉛よりなる圧電セラミックス
粉末を作製した。この方法による沈殿物の粒子は、粉末
で添加している酸化アンチモン以外の部分では100人
オーダーで非常に微粒子となっている。このため反応性
が良く、550″C付近の仮焼温度でペロプスカイトの
単−相の結晶構造となることがX線解析により確認され
た。従来法ではペロプスカイトの単−相の結晶構造とな
る仮焼温度はおよ°そ860°Cでめった。また粉末の
平均粒径も0.8μmと従来法の場合の1.6μmに比
べて小さくなっている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the flowchart shown in FIG. 2. Starting materials are weighed so as to have the desired composition and subjected to the following treatment. At 6 in Fig. 2, lead nitrate Pb(NO3)2 and t -? Zirconium nitrate zrO(NO3)21
12H2° was dissolved in pure water, mixed with a 6-fold diluted nitric acid aqueous solution of titanium tetraproboxoxide T I (QC3H7)4 to form a titanium oxynitrate Ti0(NO3)2 solution, and stannous acetate was diluted 6-fold. Dissolve in aqueous nitric acid solution. These are added to a nitric acid aqueous solution and stirred to obtain a mixed nitric acid aqueous solution for coprecipitation. The pH of this aqueous solution is approximately 1. As shown in T, the desired composition of antimony oxide 5b203 was weighed out. Using a mixer in the reaction tank,
Add diluted ammonia water 8 and add antimony oxide powder while stirring strongly, and as shown in 9, mix the mixed nitric acid aqueous solution for coprecipitation and the ammonia water bath solution as a precipitant until the pH of the liquid in the reaction tank is 7. Add while adjusting it so that it is in the range of ~8. The precipitate obtained in this operation was filtered and washed as shown in 10, then dispersed in pure water and spray-dried as shown in 11. This powder was calcined at a temperature of 600°C for 2 hours as shown in 12, pulverized in a wet ball mill as shown in 13, and dried as shown in 14. Ceramic powder was produced. The particles of the precipitate produced by this method are very fine particles, on the order of 100 particles, except for the antimony oxide added in the form of powder. Therefore, the reactivity is good, and it was confirmed by X-ray analysis that a single-phase crystal structure of perovskite is formed at a calcination temperature of around 550''C. The calcination temperature was approximately 860°C.The average particle size of the powder was also 0.8 μm, which was smaller than 1.6 μm in the conventional method.

次に本発明の方法および従来法で、組成を変えてスズア
ンチモン酸チタン酸ジルコン酸鉛の粉末をつくり、これ
らの焼結体より厚み200 pmにスライスした薄板を
作り、三点面げによる抗折強度を比較した。この結果を
下表に示す。本発明の方法による粉末を用いた場合、焼
結体の抗折強度が向上する。
Next, using the method of the present invention and the conventional method, powders of lead zirconate tin antimonate titanate were made with different compositions, and thin plates were sliced to a thickness of 200 pm from these sintered bodies. The bending strengths were compared. The results are shown in the table below. When the powder produced by the method of the present invention is used, the bending strength of the sintered body is improved.

抗折強度測定結果 組成 Pb(Sn、ASbH)xTi、Zr2O3(z
+y+z=1)本発明の方法で、アンチモンは酸化物の
粉末で添加しているが、酸化アンチモンの融点が666
°Cと低いため、仮焼の比較的低い温度でも反応し易い
ことに着目し酸化物で添加した。
Result of bending strength measurement Composition Pb(Sn, ASbH)xTi, Zr2O3(z
+y+z=1) In the method of the present invention, antimony is added in the form of oxide powder, but the melting point of antimony oxide is 666
It was added in the form of an oxide, noting that since it is as low as 10°C, it is easy to react even at a relatively low temperature during calcination.

本実施例ではオキシ硝酸チタニウムTio(NO3)2
をチタンテトラプロボキシドから作ったが、チタンテト
ラブトキシドに硝酸水溶液を加えて作るか、または四塩
化チタンをアンモニア水で水酸化チタンとし、これに硝
酸水溶液を加えて作っても同様な結果が得られる。また
仮焼温度は、550″Cより低い場合顛は仮焼による反
応が十分ではなく、800″Cより高い場合には粒子径
の成長が大きく、反応性が低下し共沈法により微粒子を
作るという目的にそぐわなくなる。
In this example, titanium oxynitrate Tio(NO3)2
was made from titanium tetraproboxoxide, but similar results can be obtained by adding a nitric acid aqueous solution to titanium tetrabutoxide, or by making titanium tetrachloride into titanium hydroxide with ammonia water and adding a nitric acid aqueous solution to this. It will be done. In addition, if the calcination temperature is lower than 550"C, the reaction due to calcination will not be sufficient, and if it is higher than 800"C, the particle size will grow large, the reactivity will decrease, and fine particles will be formed by the coprecipitation method. It becomes unsuitable for that purpose.

発明の効果 以上述べたように、本発明の方法により作成したスズア
ンチモン酸チタン酸ジルコン酸鉛の粉末は微粒子であり
、これより得られる焼結体は、従来法のものに比べ抗折
強度が強く、高周波用フィルタのように薄板として用い
る用途には効果が大きい0
Effects of the Invention As mentioned above, the tin antimonate titanate lead zirconate powder produced by the method of the present invention is fine particles, and the sintered body obtained from it has a higher bending strength than that of the conventional method. It is strong and highly effective for applications where it is used as a thin plate such as high frequency filters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法の圧電セラミックス粉末の製造工程を示
すフローチャート、第2図は本発明の一実施例の圧電セ
ラミックス粉末の製造工程を示すフローチャートである
FIG. 1 is a flowchart showing the manufacturing process of piezoelectric ceramic powder according to a conventional method, and FIG. 2 is a flowchart showing the manufacturing process of piezoelectric ceramic powder according to an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)硝酸鉛、オキシ硝酸チタニウム、オキシ硝酸ジル
コニウム、酢酸第1スズの混合硝酸水溶液から、沈殿剤
としてアンモニア水溶液を用いて、Pb、Ti、Zt、
Snの各元素からなる複合物を共沈させる過程で、酸化
アンチモンを添加混合し、沈殿物を生成させた後、沈殿
物を濾過、洗浄し、乾燥させ、550℃〜800℃で仮
焼することを特徴とする圧電セラミックス粉末の製造方
法。
(1) Using an aqueous ammonia solution as a precipitant, Pb, Ti, Zt,
In the process of co-precipitating a composite consisting of each element of Sn, antimony oxide is added and mixed to form a precipitate, then the precipitate is filtered, washed, dried, and calcined at 550°C to 800°C. A method for producing piezoelectric ceramic powder, characterized by:
(2)オキシ硝酸チタニウムをチタンテトラプロボキシ
ドまたはチタンテトラブトキシドに硝酸水溶液を加えて
作るか、または四塩化チタンをアンモニア水で水酸化チ
タンとし、これに硝酸水溶液を加えて作ることを特徴と
する特許請求の範囲第(1)項記載の圧電セラミックス
粉末の製造方法。
(2) Titanium oxynitrate is made by adding a nitric acid aqueous solution to titanium tetraproboxoxide or titanium tetrabutoxide, or titanium tetrachloride is made into titanium hydroxide with aqueous ammonia, and a nitric acid aqueous solution is added thereto. A method for producing piezoelectric ceramic powder according to claim (1).
JP59245100A 1984-11-20 1984-11-20 Method for producing piezoelectric ceramic powder Expired - Lifetime JPH06651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59245100A JPH06651B2 (en) 1984-11-20 1984-11-20 Method for producing piezoelectric ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59245100A JPH06651B2 (en) 1984-11-20 1984-11-20 Method for producing piezoelectric ceramic powder

Publications (2)

Publication Number Publication Date
JPS61122124A true JPS61122124A (en) 1986-06-10
JPH06651B2 JPH06651B2 (en) 1994-01-05

Family

ID=17128608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59245100A Expired - Lifetime JPH06651B2 (en) 1984-11-20 1984-11-20 Method for producing piezoelectric ceramic powder

Country Status (1)

Country Link
JP (1) JPH06651B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358048B1 (en) * 1999-12-27 2002-10-25 주식회사 하이닉스반도체 Method of fabrication a piezoelectric ceramics
KR100492935B1 (en) * 2002-11-15 2005-06-02 한국에너지기술연구원 Low temperature sintering of piezoelectric element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358048B1 (en) * 1999-12-27 2002-10-25 주식회사 하이닉스반도체 Method of fabrication a piezoelectric ceramics
KR100492935B1 (en) * 2002-11-15 2005-06-02 한국에너지기술연구원 Low temperature sintering of piezoelectric element

Also Published As

Publication number Publication date
JPH06651B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
JPS61122124A (en) Production of piezoelectric ceramic powder
CN106518053A (en) Crystal orientation template for BaTiO3-based lead-free piezoelectric ceramics and method for fabricating the same
Yoshikawa et al. Preparation of PLZT powders from several aqueous solutions
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPS61122125A (en) Production of piezoelectric ceramic powder
JPS6363511B2 (en)
JPH0527571B2 (en)
JPH0262496B2 (en)
JPS63151673A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPH0712922B2 (en) Method of forming inorganic hydroxide precipitate
JPH01122907A (en) Production of perovskite oxide powder
KR960004400B1 (en) Process for the preparation of ba1-x pbx tio3
JP3041411B2 (en) Method for producing raw material powder for piezoelectric ceramics
JP3085587B2 (en) Method for producing piezoelectric porcelain composition
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
JPH0527570B2 (en)
JPS61186221A (en) Production of fine powder of lead-containing oxide
JPH0639331B2 (en) Method for producing piezoelectric ceramic powder
JP3309467B2 (en) Method for producing lead-containing composite oxide powder
JPS6385015A (en) Production of lead-containing compound oxide solid solution of perovskite type
JPH0649575B2 (en) Method for producing piezoelectric ceramic powder
JPS62162623A (en) Production of fine powder of lead titanate zirconate
JP2533305B2 (en) Manufacturing method of dielectric resonator material
JPS63248774A (en) Manufacture of polycomponent ceramics
JPH0651570B2 (en) Method for manufacturing piezoelectric ceramic raw material powder