JPS6112198B2 - - Google Patents

Info

Publication number
JPS6112198B2
JPS6112198B2 JP14494680A JP14494680A JPS6112198B2 JP S6112198 B2 JPS6112198 B2 JP S6112198B2 JP 14494680 A JP14494680 A JP 14494680A JP 14494680 A JP14494680 A JP 14494680A JP S6112198 B2 JPS6112198 B2 JP S6112198B2
Authority
JP
Japan
Prior art keywords
blade
impeller
inner support
thickness direction
annular ventilation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14494680A
Other languages
Japanese (ja)
Other versions
JPS5767789A (en
Inventor
Toshoshi Yamamoto
Masao Torigoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14494680A priority Critical patent/JPS5767789A/en
Publication of JPS5767789A publication Critical patent/JPS5767789A/en
Publication of JPS6112198B2 publication Critical patent/JPS6112198B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 本発明は熱交換機能を有する渦流タイプの送風
機に関するもので、波形板によりインペラを構成
し、このインペラの溝部分を渦流通路の一部とす
ることによつて、波形板の両面において波形板と
ケーシングとの間に構成される環状通風路に異な
る渦流を発生させ、両面の温度差を利用して前記
波形板表面を介して極めて効率の良い熱交換機能
を得ることを目的としたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vortex-type blower having a heat exchange function, in which an impeller is constructed of a corrugated plate, and by making the groove portion of the impeller a part of the vortex passage, the waveform To obtain an extremely efficient heat exchange function through the surface of the corrugated plate by generating different vortices in the annular ventilation passage constructed between the corrugated plate and the casing on both sides of the plate and utilizing the temperature difference between the two sides. The purpose is to

従来、熱交換器における動作流体は、熱交換器
本体とは別個の送風機あるいはポンプによつて熱
交換器内に送り込まれる形態のものが一般的で、
このため、高温側、低温側それぞれ異なる送風装
置を必要としている。さらに熱交換器内の流路抵
抗が大きいため、熱交換器を通過した後の動作流
体の圧力は激減し、熱交換後の圧力、流速等を必
要とする場合、新たに別の送風装置またはポンプ
を設置せねばならず、装置が大型となり構造も複
雑なものとなつている。
Conventionally, the working fluid in a heat exchanger is generally fed into the heat exchanger by a blower or pump that is separate from the heat exchanger body.
Therefore, different blowers are required for the high temperature side and the low temperature side. Furthermore, because the flow path resistance inside the heat exchanger is large, the pressure of the working fluid after passing through the heat exchanger decreases dramatically, and if the pressure and flow rate after heat exchange are required, a new blower or A pump must be installed, making the device large and complicated in structure.

従来の一般的な熱交換器の一例を第1図に示し
たが、流通路2を通過する動作流体は冷却フイン
1の表面から熱を奪われ温度が降下する。この場
合、動作流体は流通路2を通過する際、流通路が
狭いため大きな流路抵抗を受け、また流通路2内
での目詰まり等も問題となる。同様に冷却用流体
も冷却フイン間での流路抵抗、目詰まり等の影響
を受けやすく、フイン間距離、流通路2のピツチ
等、使用に際しては十分検討しなければならない
もので、熱交換自体にも問題がある。
An example of a conventional general heat exchanger is shown in FIG. 1, in which the working fluid passing through the flow path 2 loses heat from the surface of the cooling fin 1 and its temperature drops. In this case, when the working fluid passes through the flow path 2, it is subjected to large flow resistance because the flow path is narrow, and clogging in the flow path 2 also poses a problem. Similarly, the cooling fluid is susceptible to flow path resistance and clogging between the cooling fins, and the distance between the fins, the pitch of the flow path 2, etc. must be carefully considered before use, and the heat exchange itself There is also a problem.

さらに、一部に熱交換と送風の両機能をあわせ
もつたもの(例えば特公昭30−4092号公報)もあ
るが、両機能を共有しているがために両機能もし
くは一方の機能が犠性とならざるを得ず、性能的
には単独の熱交換器又は送風機に劣るものであつ
た。
Furthermore, there are some products that have both heat exchange and air blowing functions (for example, Japanese Patent Publication No. 30-4092), but since they share both functions, either or both functions may be sacrificed. Therefore, in terms of performance, it was inferior to a single heat exchanger or blower.

本発明は上記従来の問題を解消したものであつ
て、以下その実施例を第2図〜第6図をもとに説
明する。図において3は回転軸に固定するためホ
ス部を有する内側支持部、4は内側支持部3の外
周部に設けられ流体の通路となる溝部分が回転軸
から放射状に位置するよう配設した板厚の薄い金
属板等の波形板からなるブレード部で、熱交換作
用は主としてこのブレード部の表面を介して行な
われる。5は前記ブレード部4の外周部に設けら
れ、前記内側支持部3との間でブレード部4を保
持し、ブレード部4両面における温度の異なる流
れの吐出部を分離する外側支持部である。また内
側および外側支持部3,5は前記ブレード部4の
厚さ方向のほぼ中央に位置して設けられている。
そして上記各構成部材で送風機のインペラを構成
しているものである。6は内側支持部3の外周部
に設けたブレード部4への空気流れをインペラの
一方の面からだけに制限する内側閉塞板、7は同
様に外側支持部5に設けた外側閉塞板で、それぞ
れブレード部4の内側および外側の厚さ方向にお
いて、前記内側支持部3および外側支持部5を境
にして両支持部からブレード部4の波頂部4cに
至るまでの部分を閉じた形状となつている。また
8はインペラの一方の面からの流入空気の流れ、
9は他方の面からの流入空気の流れを示したもの
である。10は前記インペラとの間に渦流の環状
通風路11を形成するため、ブレード部4と間隙
をもつて対向するケーシング、12はインペラを
回転させる回転軸13を回転支持するための軸
受、14は送風機の吐出口である。15は渦流の
流れを示したもので、16はインペラの回転方向
を示したものである。17は吸込口、18は環状
通風路11を仕切る隔壁で、この部分で環状通風
路11が仕切られ、始端11aおよび終端11b
が形成される。
The present invention solves the above-mentioned conventional problems, and embodiments thereof will be described below with reference to FIGS. 2 to 6. In the figure, 3 is an inner support part having a host part for fixing it to the rotating shaft, and 4 is a plate provided on the outer periphery of the inner supporting part 3 so that the groove part serving as a fluid passage is located radially from the rotating shaft. The blade portion is made of a corrugated plate such as a thin metal plate, and the heat exchange action is mainly performed through the surface of the blade portion. Reference numeral 5 denotes an outer support portion provided on the outer circumference of the blade portion 4, holding the blade portion 4 between it and the inner support portion 3, and separating discharge portions of flows having different temperatures on both sides of the blade portion 4. Further, the inner and outer support portions 3 and 5 are provided approximately at the center of the blade portion 4 in the thickness direction.
The above-mentioned components constitute an impeller of the blower. Reference numeral 6 designates an inner blocking plate provided on the outer periphery of the inner support portion 3 for restricting air flow to the blade portion 4 from only one side of the impeller; 7 indicates an outer blocking plate similarly provided on the outer support portion 5; In the thickness direction of the inner and outer sides of the blade part 4, respectively, the inner support part 3 and the outer support part 5 are bounded, and the part from both support parts to the wave crest part 4c of the blade part 4 has a closed shape. ing. 8 is the flow of air flowing in from one side of the impeller;
9 shows the flow of air flowing in from the other side. 10 is a casing that faces the blade part 4 with a gap in order to form a swirling annular ventilation passage 11 between the impeller, 12 is a bearing for rotationally supporting the rotating shaft 13 that rotates the impeller, and 14 is a casing that faces the blade portion 4 with a gap therebetween; This is the outlet of the blower. Reference numeral 15 indicates the flow of the vortex, and reference numeral 16 indicates the rotation direction of the impeller. 17 is a suction port, 18 is a partition that partitions the annular ventilation passage 11, and the annular ventilation passage 11 is partitioned at this part, and has a starting end 11a and a terminal end 11b.
is formed.

上記構成において、インペラを第5図矢印16
の方向に回転させると、環状通風路11内の動作
流体はブレード部4とケーシング10で構成され
る環状通風路11の作用で第5図矢印15に示し
たような渦流を生じ、ブレード部での渦流は第3
図及び第4図に示したように両面において2つの
分離された異なる流れ8,9を生ずる。この時ブ
レード部4両面の流れ8,9に一定の温度差を設
けると、両面の流体は波形板からなるブレード部
4を表面を介して熱交換される。この場合、第5
図からもわかるように温度の異なる2つの流体は
ブレード部4を構成する波形板両面の溝部分を流
路として流れるため、低温、高温の2流体がブレ
ード4の波形板1枚を介して互いに隣り合う形と
なり、波形板の厚みを十分に薄くすることによつ
て極めて効率の良い熱交換を行なうことができ
る。さらにこの送風機は、いわゆる渦流送風機で
あることから、動作流体は環状通風路11内で旋
回流となつており、送風機吸込口17から吐出口
14に至るまでに流体が渦を巻きながらブレード
部4の溝間を次々に移動してほぼ360゜周方向に
流れるため、ブレード部4の溝部を流体が通過す
る回数が極めて多く、熱交換経路、すなわち、熱
交換面積が実質的に拡大されることとなり、これ
により、熱交換効率を大巾に向上させることがで
きる。しかも渦流送風機はそれ自体、低回転で高
圧を発生することを特徴とする送風機であるた
め、一般の熱交換器に見られるような圧力低下を
心配する必要もなく、目詰まりも少ない。
In the above configuration, the impeller is connected to the arrow 16 in FIG.
When the working fluid in the annular ventilation passage 11 is rotated in the direction shown in FIG. The vortex is the third
As shown in FIG. 4, two separate and different flows 8, 9 are produced on both sides. At this time, if a certain temperature difference is provided between the flows 8 and 9 on both sides of the blade part 4, the fluids on both sides exchange heat through the blade part 4 made of a corrugated plate through the surface. In this case, the fifth
As can be seen from the figure, two fluids with different temperatures flow through the grooves on both sides of the corrugated plate constituting the blade section 4, so that the two fluids, one at low temperature and one at high temperature, mutually pass through one corrugated plate of the blade 4. By making the thickness of the corrugated plates sufficiently thin, extremely efficient heat exchange can be achieved. Furthermore, since this blower is a so-called vortex blower, the working fluid forms a swirling flow within the annular ventilation passage 11, and the fluid swirls from the blower suction port 17 to the discharge port 14 while passing through the blade portion 4. Since the fluid flows approximately 360° circumferentially through the grooves of the blade section 4, the number of times the fluid passes through the grooves of the blade section 4 is extremely large, and the heat exchange path, that is, the heat exchange area, is substantially expanded. As a result, heat exchange efficiency can be greatly improved. Moreover, since the vortex blower itself is a blower that generates high pressure at low rotation speeds, there is no need to worry about pressure drop as seen in general heat exchangers, and there is less clogging.

この様に、本発明によれば、送風機のブレード
を波形板で構成し、この波形板の両面に環状通風
路を形成して渦流を発生させることによつて、極
めて効率の良い熱交換機能をもたせることができ
るとともに、送風機としても渦流送風機の特徴を
生した高い送風性能をもたせることができるの
で、従来の熱交換器によくおこる目詰りを心配す
る必要もない。しかも送風機と熱交換器の両機能
が一体となつていることから、小型にすることが
でき、構造も簡単で、故障の少ないものとなる。
さらに、従来の熱交換器のような圧力低下もな
く、逆に希望する吐出圧力を自在に発生させるこ
とが可能であり、極めて実用性の高い熱交換器を
提供するものである。
As described above, according to the present invention, the blades of the blower are constructed of corrugated plates, and annular ventilation passages are formed on both sides of the corrugated plates to generate eddy currents, thereby achieving an extremely efficient heat exchange function. In addition to being able to provide high air blowing performance that is characteristic of a vortex blower, there is no need to worry about clogging that often occurs in conventional heat exchangers. Moreover, since both the blower and heat exchanger functions are integrated, it can be made smaller, has a simple structure, and is less likely to break down.
Furthermore, unlike conventional heat exchangers, there is no pressure drop, and on the contrary, it is possible to freely generate a desired discharge pressure, thereby providing an extremely practical heat exchanger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一般的な熱交換器の一例を示し
た斜視図、第2図は本発明による熱交換型送風機
のインペラの一例を示す斜視図、第3図は第2図
のインペラの軸方向断面図、第4図は本発明によ
る熱交換型送風機の一実施例を示す断面図、第5
図は渦流の流れを示し、Aはインペラの側面図、
BはAの平面図、第6図はケーシング通風路の形
状を示した断面図である。 3……内側支持部、4……ブレード部、4c…
…波頂部、5……外側支持部、10……ケーシン
グ、11……環状通風路、11a……始端、11
b……終端、14……吐出口、17……吸込口。
Fig. 1 is a perspective view showing an example of a conventional general heat exchanger, Fig. 2 is a perspective view showing an example of an impeller of a heat exchange type blower according to the present invention, and Fig. 3 is a perspective view of an example of the impeller of Fig. 2. An axial sectional view, FIG. 4 is a sectional view showing one embodiment of the heat exchange type blower according to the present invention, and FIG.
The figure shows the vortex flow, A is a side view of the impeller,
B is a plan view of A, and FIG. 6 is a sectional view showing the shape of the casing ventilation passage. 3...Inner support part, 4...Blade part, 4c...
... wave crest, 5 ... outer support section, 10 ... casing, 11 ... annular ventilation passage, 11a ... starting end, 11
b...Terminal end, 14...Discharge port, 17...Suction port.

Claims (1)

【特許請求の範囲】[Claims] 1 流体の通路となる溝部分が回転軸から放射状
に位置するように配設した波形板をブレード部と
したインペラと、このインペラのブレード部と間
隙をもつて対向し、渦流発生用の環状通風路をイ
ンペラ両面に形成するケーシングとにより構成
し、前記インペラは、回転軸に固定し、前記ブレ
ード厚さ方向のほぼ中央に位置する内側支持部
と、その外周のブレード部分と、さらにこのブレ
ード部の外周を支持し、前記内側支持部と同様に
ブレード厚さ方向のほぼ中央に位置する外側支持
部とを有し、かつ波形板からなるブレード部の内
側および外側の厚さ方向において前記内側支持部
および外側支持部を境にして両支持部から波形頂
部に至るまでの部分を閉じた形状とし、さらに前
記環状通風路は、一部において隔壁で仕切られて
始端、終端を形成し、それぞれ吸込口、および吐
出口を備えてなる熱交換型送風機。
1. An impeller with blades made of corrugated plates arranged so that the grooves that serve as fluid passages are positioned radially from the rotation axis, and an annular ventilation system that faces the blades of this impeller with a gap to generate vortices. a casing that forms channels on both sides of the impeller, and the impeller includes an inner support part fixed to the rotating shaft and located approximately at the center in the thickness direction of the blade, a blade part on the outer periphery of the inner support part, and a blade part on the outer periphery of the inner support part. and an outer support section located approximately at the center in the thickness direction of the blade like the inner support section, and the inner support section is provided in the thickness direction on the inside and outside of the blade section made of a corrugated plate. The annular ventilation passage has a closed shape from both the support parts to the corrugated top part with the outer support part as the boundary, and furthermore, the annular ventilation passage is partitioned in part by a partition wall to form a start end and a termination end, respectively. A heat exchange type blower equipped with an opening and a discharge opening.
JP14494680A 1980-10-15 1980-10-15 Heat exchange type air blower Granted JPS5767789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14494680A JPS5767789A (en) 1980-10-15 1980-10-15 Heat exchange type air blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14494680A JPS5767789A (en) 1980-10-15 1980-10-15 Heat exchange type air blower

Publications (2)

Publication Number Publication Date
JPS5767789A JPS5767789A (en) 1982-04-24
JPS6112198B2 true JPS6112198B2 (en) 1986-04-07

Family

ID=15373858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14494680A Granted JPS5767789A (en) 1980-10-15 1980-10-15 Heat exchange type air blower

Country Status (1)

Country Link
JP (1) JPS5767789A (en)

Also Published As

Publication number Publication date
JPS5767789A (en) 1982-04-24

Similar Documents

Publication Publication Date Title
EP1340921B1 (en) Fan assembly
US5427212A (en) Brake disc rotor
US5707205A (en) Fan device
US3275223A (en) Fluid moving means
US6695038B2 (en) Heat exchanger type fan
JP4374897B2 (en) Axial fan
JPH08291988A (en) Structure of heat exchanger
US4732531A (en) Air sealed turbine blades
JPH1144432A (en) Air conditioner
JPS6112198B2 (en)
JP2003206891A (en) Fan motor
JPH0498092A (en) Rotary radiator
JP2002357194A (en) Cross-flow fan
JPS6270698A (en) Motor fan
JPS6115997B2 (en)
JPH01315695A (en) Impeller in multi-blade blower
JPH0454078B2 (en)
RU2224913C2 (en) Fan-heat exchanger
JPH08327082A (en) Indoor unit of air conditioner
JPH029994A (en) Vortex turbomachinery
JPH06129388A (en) Blower
JPS5934497A (en) Cross flow fan
JPS61200395A (en) Blower
JPH0211900A (en) Compound fan
JPH0544697A (en) Thin type mixed flow fan