JPS61121287A - High frequency heater - Google Patents

High frequency heater

Info

Publication number
JPS61121287A
JPS61121287A JP24371384A JP24371384A JPS61121287A JP S61121287 A JPS61121287 A JP S61121287A JP 24371384 A JP24371384 A JP 24371384A JP 24371384 A JP24371384 A JP 24371384A JP S61121287 A JPS61121287 A JP S61121287A
Authority
JP
Japan
Prior art keywords
waveguide
radio wave
heating device
frequency heating
wave absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24371384A
Other languages
Japanese (ja)
Inventor
昌弘 新田
楠木 慈
等隆 信江
戸田 喜博
公明 山口
松本 孝広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24371384A priority Critical patent/JPS61121287A/en
Publication of JPS61121287A publication Critical patent/JPS61121287A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 木発EJ4は、食品などの被加熱物を電波を用いて高周
波加熱するところの高周波加熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of Application The Kihatsu EJ4 relates to a high-frequency heating device for high-frequency heating of objects to be heated, such as food, using radio waves.

従来の技術 高周波加熱装置にその使用が特に認可されている周波数
帯域は、2450MH2帯あるいは915MHz帯など
国によって多少異なるが、ある特定の帯域に限られてい
る。この帯域においては安全性が保証されれば電波法の
規1b11を受けない。しかしながら、高量波発振器は
一般だ高調波成分をイ〕し、基本周波数(以下fOと表
記する)が2450MH2で発振するマグネトロンの場
合、49oOMH2,7350MH2,9800MH2
゜12250MH2等に比較的大きな電力成分を有する
。(以下、この成分を210.310.4 / o、5
foと表記する) これらの高調波成分は電波法の厳しい規制を受けるため
、高周波加熱装置の加熱室開閉扉の電□波シールなどが
困難になる。このため加熱室内へ入射する高周波そのも
のの高調波成分を減衰させる工夫が種々とられてきてい
る。
Conventional Technology The frequency bands specifically approved for use in high-frequency heating devices are limited to certain specific bands, such as the 2450 MHz band or the 915 MHz band, although this varies somewhat depending on the country. In this band, if safety is guaranteed, it will not be subject to Regulation 1b11 of the Radio Law. However, high-volume oscillators generally emit harmonic components, and in the case of a magnetron that oscillates at a fundamental frequency (hereinafter referred to as fO) of 2450MH2, 49oOMH2, 7350MH2, 9800MH2
It has a relatively large power component such as ゜12250MH2. (Hereinafter, this component will be expressed as 210.310.4/o, 5
Since these harmonic components are subject to strict regulations under the Radio Law, it becomes difficult to seal the heating chamber opening/closing door of a high-frequency heating device. For this reason, various efforts have been made to attenuate the harmonic components of the high frequency itself that enters the heating chamber.

従来のこの種の高周波加熱装置は、第5図aに示すよう
に、導波管1の内部に長さの異なる醇体捧2a〜2cを
突出させて、バンド・パス・フィルタを構成して加熱室
3内にIO以外の高調波を含む雑音周波数の入射を阻止
するようになっていた。(例えば、実公昭51−145
14号公報)また、同図b’に示すように導波管の管軸
方向に幅を有する導体板4a〜4CをfOの導波管管内
波長をλ1としたときはyλ9/2の間隔で配設する構
成により、各導体板と各導体板の間隔により立体共振回
路が形成され、fo以外の周波数の伝送を阻止するよう
になっている。(例えば特公昭59−16714号公報
) 発明が解決しようとする問題点 しかしながら上記のような4体捧を導波管内に突出させ
る構成では、突出長によって阻止できる周波数が決定さ
れ、かつその周波数帯域は非常に狭い。この帯域を広く
取るには、導体環の故を増せばよいが、各高調波に対し
て実施することは困難である。
As shown in FIG. 5a, a conventional high-frequency heating device of this kind has a band pass filter configured by protruding bodies 2a to 2c of different lengths inside a waveguide 1. Noise frequencies including harmonics other than IO are prevented from entering the heating chamber 3. (For example, Jikoko Sho 51-145
(No. 14 Publication) Furthermore, as shown in figure b', the conductor plates 4a to 4C having widths in the axial direction of the waveguide are spaced at intervals of yλ9/2 when the wavelength in the waveguide of fO is λ1. Due to the arrangement, a three-dimensional resonant circuit is formed by the spacing between each conductive plate and the transmission of frequencies other than fo is blocked. (For example, Japanese Patent Publication No. 59-16714) Problems to be Solved by the Invention However, in the configuration in which the four-piece beam protrudes into the waveguide as described above, the frequency that can be blocked is determined by the length of the protrusion, and the frequency band is is very narrow. In order to widen this band, it is possible to increase the number of conductor rings, but this is difficult to implement for each harmonic.

また、f、に共振する立体共振回路を形成させる構成で
は、高調波成分をマグネトロン側へ反射させ、理想的に
fOのみを加熱室に伝送させたとしても、高調波成分が
マグネトロン内部で消滅することはない。このため、こ
の反射させた高調波によりマグネトロンが異常動作を起
こす危険性がある。
In addition, in a configuration that forms a three-dimensional resonant circuit that resonates with f, the harmonic components are reflected to the magnetron side, and even if only fO is ideally transmitted to the heating chamber, the harmonic components disappear inside the magnetron. Never. Therefore, there is a risk that the magnetron will malfunction due to the reflected harmonics.

本発明はかかる従来の問題を解消するものであり、簡単
な構成にて基本波以外の各高調波成分を減衰消滅させて
装置の高調波に対する電波漏えい本発明の高周波加熱装
置は発振管と加熱室だ介在する導波管の一部にfOをし
ゃ断する空間(副導波管)を設け、この空間(副導波管
)に電波吸収体を設けるものである。
The present invention solves such conventional problems, and uses a simple configuration to attenuate and eliminate each harmonic component other than the fundamental wave, thereby preventing radio wave leakage due to the harmonics of the device. A space (sub-waveguide) for blocking fO is provided in a part of the waveguide interposed in the chamber, and a radio wave absorber is provided in this space (sub-waveguide).

作  用 本発明の高周波加熱装置は電波が導波管内におけるfo
の伝搬モードに対し、しゃ断波長を持つ部分を有する導
波管に電波吸収体を設けることによって、fOに対する
挿入損失が極めて小さく、かつ、高調波成分に対しては
電波吸収体の持つ特性を選択的に使用することにより、
(吸収体において最大の電波吸収量を得る周波数を共振
同波数と呼ぶ)高調波成分を熱エネルギーに変換し、減
衰出来るものである。
Function: The high-frequency heating device of the present invention allows radio waves to
By providing a radio wave absorber in a waveguide that has a cutoff wavelength for the propagation mode of By using
(The frequency at which the absorber obtains the maximum amount of radio wave absorption is called the resonant frequency.) It is capable of converting harmonic components into thermal energy and attenuating them.

実施例 以下、本発明の一実施例の高周波加熱装置を図面を参照
して説明する。
EXAMPLE Hereinafter, a high frequency heating device according to an example of the present invention will be explained with reference to the drawings.

第1図において5はマグネトロンであり発振された高8
波電磁波(以下マイクロ波と表記する)は主4波管6に
挿入されたマグネトロンアンテナ7より主導波管内を伝
搬モード(この場合TE 10モード)により伝搬し、
終端部に設けられた開口部8より加熱室9に入射する。
In Figure 1, 5 is a magnetron and the oscillated high 8
Wave electromagnetic waves (hereinafter referred to as microwaves) propagate within the main wave tube from the magnetron antenna 7 inserted into the main 4-wave tube 6 in a propagation mode (TE 10 mode in this case),
The light enters the heating chamber 9 through the opening 8 provided at the terminal end.

10は加熱室9の前面に設けられた扉であり食品の搬入
、搬出等において開閉されるものである。ここで主導波
管内のマイクロ波の伝搬状態を考えてみると、まず管内
波長(2g)は λ     λ:自由空間波長 ″=ζ石−7Ac : I、qユウヶ の式で表わされる。又、基本モードであるTE10モー
ドにおいてしゃ断波長(λC)は主導波管の広幅辺(a
)の、2倍となる。したがってfOの自由空間波長(λ
0)と主導波管の広幅辺(a)との関係が2・a≧λ0
の場合λgは実数となりマイクロ波は減衰することなく
主導波管内を波gJ L伝搬するが2・a〈λ0の場合
はλfは虚数となり急激に減衰して伝搬しなくなる。
Reference numeral 10 denotes a door provided at the front of the heating chamber 9, which is opened and closed when food is brought in and taken out. Now, when considering the propagation state of microwaves in the main wave tube, the tube wavelength (2g) is first expressed by the formula λ λ: free space wavelength'' = ζ stone - 7 Ac: I, q Yuga. In the TE10 mode, the cutoff wavelength (λC) is the wide side (a
) is twice as much. Therefore, the free space wavelength of fO (λ
0) and the wide side (a) of the main wave tube is 2・a≧λ0
In the case λg becomes a real number and the microwave propagates in the main wave tube without attenuation, λf becomes an imaginary number and rapidly attenuates and no longer propagates when 2·a<λ0.

そこで副導波管11であるがC寸法を2・C〈λ0とし
、その内部に電波吸収体12か設けられている。第1図
の品分断面図である第2図で更に詳しく説明する。マグ
ネトロンアンテナ6より主導波管7に励振されたマイク
ロ波は、上に記述した、2a)λ0の関係に3寸法が設
定されている為、管軸(X−X’)方向に伝搬する。X
方向に伝搬するマイクロ波は導波管短絡面(Y−Y’面
)で反射されX′力方向合成される。アンテナ(色と短
絡面までの距離(d)はマグネトロンと導波管のインピ
ーダンス整合を行なう時のパラメーターとなる。今、訓
導波管11及び電波吸収体12が短絡面に設けられてい
るが、導波管11のしゃ断波長がλ0(f。
Therefore, the sub-waveguide 11 has a C dimension of 2·C<λ0, and a radio wave absorber 12 is provided inside it. This will be explained in more detail with reference to FIG. 2, which is a cross-sectional view of the product shown in FIG. The microwave excited in the main wave tube 7 by the magnetron antenna 6 propagates in the tube axis (X-X') direction because the three dimensions are set in the relationship 2a) λ0 described above. X
The microwaves propagating in the X' direction are reflected by the waveguide short-circuit plane (Y-Y' plane) and synthesized in the X' force direction. The antenna (color and distance (d) to the short-circuit surface are parameters when performing impedance matching between the magnetron and the waveguide.Currently, the training waveguide 11 and the radio wave absorber 12 are provided on the short-circuit surface. The cutoff wavelength of the waveguide 11 is λ0(f.

=2450MH2の場合約12.2 cm )より小さ
い為、fOに対するマグネトロンから主導波管7のイン
ピーダンスの状態は短絡面が平面の場合と比べてほとん
ど変化が無いことより実証される。
= 2450 MH2 (approximately 12.2 cm ), it is demonstrated that there is almost no change in the state of impedance from the magnetron to the main waveguide 7 with respect to fO compared to when the short-circuit surface is a plane.

したがって電波吸収体12はエネルギーが極めて大きい
10を吸収し発熱、焼損する事は無い。
Therefore, the radio wave absorber 12 absorbs the extremely large amount of energy 10 and does not generate heat or burn out.

又、f、以外の高調波成分に対しては、主導波管内の伝
搬モードが異なる(例えば2 / oでけTE20゜3
10ではTE30等)為、訓導波管にはマイクロ波は自
由に伝搬し、電波吸収体12によって熱エネルギーに置
き換えられ減衰する。高調波成分が副導波管に伝搬し吸
収体により減衰され易くするには訓導波管の長さく、)
や電波吸収体厚み(1)やその位置を変え、高調波に対
する副導波管のインピーダンスをマグネトロンと整合さ
せればよい。
Furthermore, for harmonic components other than f, the propagation mode in the main waveguide is different (for example, 2/o and TE20°3
10, TE30, etc.) Therefore, microwaves freely propagate in the training waveguide, and are replaced by thermal energy and attenuated by the radio wave absorber 12. In order to make it easier for harmonic components to propagate to the sub-waveguide and be attenuated by the absorber, the length of the sub-waveguide should be increased.)
The impedance of the sub-waveguide with respect to harmonics can be matched with that of the magnetron by changing the thickness (1) of the radio wave absorber and its position.

次に本発明の池の実施例を第3図を用いて説明する。第
3図において前記実施例と相遠する点は副導波管及び電
波吸収体が複数個設ける構成知したことにありこの構成
によれば前記高調波成分の内fOの偶数倍(2fO14
fO)はその伝搬モードがそれぞれTE20.TE40
のため主導波管の広幅辺(、)に波が2個あるいけ4個
立つ、したがって管軸中央部の副導波管11a常に波の
節gも(電界の弱い点)となり電波吸収体12aK吸収
されにくく減衰効果が少ないが、管軸部より離れた第2
、第3の訓導波管11b、llc及び電波吸収体12b
112cが波の腹部(電界の強い点)近傍に位置するた
め減衰効果を増すことが出来る。
Next, an embodiment of the pond according to the present invention will be explained using FIG. In FIG. 3, the difference from the above embodiment lies in the structure in which a plurality of sub waveguides and radio wave absorbers are provided. According to this structure, among the harmonic components, an even multiple of fO (2fO14
fO) whose propagation modes are TE20. TE40
Therefore, two or four waves stand on the wide side (,) of the main waveguide.Therefore, the sub waveguide 11a at the center of the tube axis always also has a wave node g (weak electric field point), and the radio wave absorber 12aK Although it is difficult to absorb and has little damping effect, the second
, third training waveguide 11b, llc and radio wave absorber 12b
Since the point 112c is located near the wave abdomen (point of strong electric field), the attenuation effect can be increased.

更に、特性の異なる電波吸収体を各々の副導波管に設け
る。又は1個の訓導波管に複数種の電波吸収体を分割し
て設ける事により減衰効果が増す。
Furthermore, radio wave absorbers with different characteristics are provided in each sub waveguide. Alternatively, the attenuation effect can be increased by separately providing a plurality of types of radio wave absorbers in one training waveguide.

次にもう一つ本発明の他の実施例を第4図を用いて説明
する。第4図において前記実施例と相違する点は訓導波
管11及び電波吸収体12の取付は位置を主導波管の上
面にした事と形状を円筒形にしたことにある。円形導波
管の基本モードはTE11であり、しゃ断波長(λC)
と円形の直径(g)(3,41・9VC!寸法を設定す
れば副導波管に/。
Next, another embodiment of the present invention will be described using FIG. 4. The difference in FIG. 4 from the previous embodiment is that the training waveguide 11 and the radio wave absorber 12 are mounted on the upper surface of the main waveguide and are cylindrical in shape. The fundamental mode of the circular waveguide is TE11, and the cutoff wavelength (λC)
and the circular diameter (g) (3,41・9VC! If you set the dimensions, it becomes a sub-waveguide/.

け伝搬しなくなる。will no longer propagate.

この構成だよれば、円筒形である為絞り等で簡単に導波
管が作成出来る。又特性の異なる電波吸収体を放射状に
配置し易く簡単な構□成で幅広い高調波成分を吸収し減
衰させることが出来る。
According to this configuration, since it is cylindrical, a waveguide can be easily created using an aperture or the like. Furthermore, radio wave absorbers with different characteristics can be easily arranged radially, and a wide range of harmonic components can be absorbed and attenuated with a simple configuration.

上記副導波管の設ける位置は主導波管の下面、側面及び
主導波管負荷短絡面であっても同様の効果は得られる。
The same effect can be obtained even if the sub-waveguide is provided on the lower surface, side surface, or load short-circuit surface of the main waveguide.

尚、電波吸収体は高調波成分を吸収し発熱するため複合
フェライト等を使用する場合は耐熱湿度の高いシリコー
ンゴム、不飽和ボIJ 1ステル等を基材にすれば良い
。又、マグネトロンの発熱を防ぐ冷却手段(例えば強制
空冷の風)で訓導波管及び電波吸収体を冷却すれば更に
電波°吸収体の発熱を抑えることが出来る◎ 発明の効果 以上の様に本発明の高周波加熱装置によれば次の効果が
得られる。
Note that the radio wave absorber absorbs harmonic components and generates heat, so if composite ferrite or the like is used, silicone rubber, unsaturated plastic IJ 1 Stell, etc. with high heat and humidity resistance may be used as the base material. Furthermore, if the training waveguide and the radio wave absorber are cooled with a cooling means (for example, forced air cooling) that prevents the magnetron from generating heat, the heat generation of the radio wave absorber can be further suppressed. According to the high frequency heating device, the following effects can be obtained.

1)電波吸収体を導波管内に設けているので不要な幅広
い周波数帯に渡る高調波成分が然エネルギーに変換され
消滅するのでマグネトロンへの反射等が無く安定した性
能が得られる。
1) Since a radio wave absorber is provided in the waveguide, harmonic components over a wide range of unnecessary frequencies are converted into natural energy and disappear, so there is no reflection to the magnetron, and stable performance can be obtained.

2)訓導波管は基本波に対してしゃ断波長を有するので
基本波における挿入損失、インピーダンスの変化が無く
既存の導波管に容易く適用出来る。
2) Since the training waveguide has a cutoff wavelength for the fundamental wave, there is no insertion loss or change in impedance in the fundamental wave, and it can be easily applied to existing waveguides.

3)焼損等がなく使用する電波吸収体を適宜選択するこ
とが可能なため、任意の高調波成分の減衰が希望出来る
3) Since there is no burnout and it is possible to appropriately select the radio wave absorber to be used, it is possible to attenuate any harmonic component.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における高周波加熱装置
の斜視図1.第2図は・未発明における第1の実施例に
おける高周波加熱装置のワ、)電拡人断UIJ図、第3
図は本発明の第2の実施例における高周波加熱装置の要
部拡大断面図、第4図は未発明の第3の実施例における
高周波加熱装置の要部斜視図、第5図(、)及び第5図
(b)は従来の高周波加熱装置の断面図である。 5・・・・・・マグネトロン、7・・・・・・主導波管
、9・・・・・・加熱室、1言、lla、llb、  
璽1 c −−副導波管、12.12a、f2b、12
cm電波吸収体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
3 図 7・・15斗ンl蚕で一一一 第4図 第5図
FIG. 1 is a perspective view of a high-frequency heating device according to a first embodiment of the present invention. Figure 2 shows the high-frequency heating device according to the first embodiment of the invention.
The figure is an enlarged cross-sectional view of the main part of the high-frequency heating device in the second embodiment of the present invention, FIG. 4 is a perspective view of the main part of the high-frequency heating device in the third embodiment of the invention, and FIGS. FIG. 5(b) is a cross-sectional view of a conventional high-frequency heating device. 5... Magnetron, 7... Main wave tube, 9... Heating chamber, 1 word, lla, llb,
Seal 1 c -- Sub-waveguide, 12.12a, f2b, 12
cm radio wave absorber. Name of agent: Patent attorney Toshio Nakao and 1 other person
3 Figure 7...15 Toonl Silkworm Figure 4 Figure 5

Claims (5)

【特許請求の範囲】[Claims] (1)被加熱物を収納する加熱室と、マイクロ波発振器
を結合する第1の導波管とを備え、前記第1の導波管壁
に前記マイクロ波発振器の発振基本周波数より高いしゃ
断周波数を有する第2の導波管を設け、前記第2の導波
管内に電波吸収体を充填する構成とした高周波加熱装置
(1) A heating chamber that stores an object to be heated and a first waveguide that couples a microwave oscillator, the first waveguide wall having a cutoff frequency higher than the oscillation fundamental frequency of the microwave oscillator. A high-frequency heating device comprising: a second waveguide having a second waveguide, and a radio wave absorber filled in the second waveguide.
(2)第2の導波管を第1の導波管の壁面に2個以上、
あるいは異なった2個以上の壁面に設ける構成とした特
許請求の範囲第1項記載の高周波加熱装置。
(2) Two or more second waveguides on the wall of the first waveguide,
Alternatively, the high-frequency heating device according to claim 1 is configured to be installed on two or more different wall surfaces.
(3)第2の導波管を第1の導波管壁面に突出させ一体
的に形成する構成とした特許請求の範囲第1項記載の高
周波加熱装置。
(3) The high-frequency heating device according to claim 1, wherein the second waveguide is formed integrally with the wall surface of the first waveguide so as to protrude from the wall surface of the first waveguide.
(4)電波吸収体をシリコーンゴム、不飽和ポリエステ
ル等を基材とする耐熱温度200℃以上の複合フェライ
ト材で構成した特許請求の範囲第1項記載の高周波加熱
装置。
(4) The high-frequency heating device according to claim 1, wherein the radio wave absorber is made of a composite ferrite material having a heat resistance temperature of 200° C. or more and having a base material such as silicone rubber or unsaturated polyester.
(5)第2の導波管及び電波吸収体を強制冷却する構成
とした特許請求の範囲第1項記載の高周波加熱装置。
(5) The high-frequency heating device according to claim 1, which is configured to forcibly cool the second waveguide and the radio wave absorber.
JP24371384A 1984-11-19 1984-11-19 High frequency heater Pending JPS61121287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24371384A JPS61121287A (en) 1984-11-19 1984-11-19 High frequency heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24371384A JPS61121287A (en) 1984-11-19 1984-11-19 High frequency heater

Publications (1)

Publication Number Publication Date
JPS61121287A true JPS61121287A (en) 1986-06-09

Family

ID=17107876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24371384A Pending JPS61121287A (en) 1984-11-19 1984-11-19 High frequency heater

Country Status (1)

Country Link
JP (1) JPS61121287A (en)

Similar Documents

Publication Publication Date Title
US3427573A (en) Low-pass non-reactive frequency selective filter in which high frequencies are absorbed in dissipative material
US3205462A (en) Low-loss waveguide for propagation of h10 wave
US4254318A (en) Door seal arrangement for high-frequency heating apparatus
US4733037A (en) High frequency heating device having an energy feed system including a cylindrical wave guide
KR890004507B1 (en) Device for preventing electromagnetic wave in microwaves range
USRE32664E (en) Energy seal for high frequency energy apparatus
JPS61121287A (en) High frequency heater
US2625605A (en) Resonator
JP2014216067A (en) High-frequency wave heating device
US3909754A (en) Waveguide bandstop filter
JPS6332215B2 (en)
JP3387452B2 (en) Dielectric line attenuator, terminator and wireless device
Fuks et al. Waveguide resonators with combined Bragg reflectors
US3428922A (en) Mode trap band-pass filters
KR100230774B1 (en) Microwave leakage shielding apparatus for microwave oven
JPS61121288A (en) High frequency heater
JPH08102604A (en) Non-radioactive dielectric line and method for controlling phase
JPS607038Y2 (en) High frequency heating device
JPH08330065A (en) Microwave thawing/heating device
JPH0461474B2 (en)
McCabe et al. Survey of high-power microwave filters
KR100284500B1 (en) Waveguide system for electronic range
KR0116571Y1 (en) Extinction apparatus for microwave oven reflex wave
JPS5916714B2 (en) High frequency heating device
KR0165056B1 (en) Magnetron apparatus of microwave oven