JPS61120925A - Compound sensor for vibration sound - Google Patents

Compound sensor for vibration sound

Info

Publication number
JPS61120925A
JPS61120925A JP24378484A JP24378484A JPS61120925A JP S61120925 A JPS61120925 A JP S61120925A JP 24378484 A JP24378484 A JP 24378484A JP 24378484 A JP24378484 A JP 24378484A JP S61120925 A JPS61120925 A JP S61120925A
Authority
JP
Japan
Prior art keywords
light
vibration
reflection chamber
laser light
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24378484A
Other languages
Japanese (ja)
Other versions
JPH0544967B2 (en
Inventor
Hiroyuki Naono
博之 直野
Michio Matsumoto
松本 美治男
Katsunori Fujimura
藤村 勝典
Katsuji Hattori
服部 勝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24378484A priority Critical patent/JPS61120925A/en
Publication of JPS61120925A publication Critical patent/JPS61120925A/en
Publication of JPH0544967B2 publication Critical patent/JPH0544967B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

PURPOSE:To obtain a compound sensor which is capable of measuring changes both in the frequency and the intensity simultaneously, by building up both vibration and sound detector sections with a laser light source, a optical branch, an optical fiber, a repeated multiplex reflection chamber, a photo detector and the like as the same element. CONSTITUTION:A laser light leaving a laser light source 1 is divided with an optical branch 2 into a branch light travelling to a photo detector 8 and a straight light travelling straight to an optical fiber 3. The straight light is converted to a parallel light with a lens 4 and enters a reflection chamber 5, through which a part thereof is transmitted while a part thereof is reflected with a diaphragm 6 to be returned to the photo detector 8 via the optical branch 2 with the repetition of multiplex reflections. On the other hand, the light transmitted through the reflection chamber 5 is reflected on a surface 12 to be measured in the vibration, changed in the frequency due to Doppler shift according to the vibration rate and reaches the photo detector 8 again via the reflection chamber 5, the optical fiber 3 and the photo branch 2. Then, the sound pressure applied on the diaphragm 6 can be detected by reading changes in the intensity of the output of the photo detector 8 with a level meter 11 while the vibration of the surface 12 being measured by gauging the frequency with a spectrum analyzer 10.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ光を用いて従来と同等またはそれ以上の
音に対する感度とS/N  i有し、同時に非接触で振
動源の振動速度t リアルタイムで検出できる複合セン
サで、振動速度の計測やマイクロホンとして単独で利用
できるとともに、振動騒音の同時測定やスペクトル分析
ができるため、振動源が騒音に与える影響度等を分析で
きるレーザ方式振動音響複合センサに関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses a laser beam to achieve sound sensitivity and S/Ni equal to or higher than conventional ones, and at the same time to measure the vibration velocity t of the vibration source in real time without contact. This is a composite sensor that can detect vibration speed and can be used independently as a microphone, as well as simultaneous measurement and spectrum analysis of vibration noise, so it is related to a laser-based vibroacoustic composite sensor that can analyze the influence of vibration sources on noise. It is something.

従来の技術 従来より、振動センサは振動ピックアップとして、音響
センサはマイクロホンとしてそれぞれ単独に使用されて
いた。
2. Description of the Related Art Conventionally, vibration sensors have been used independently as vibration pickups, and acoustic sensors have been used independently as microphones.

振動センサは、使用形態から非接触形と接触形に分類さ
れる。一方構成上から動電形、圧電形。
Vibration sensors are classified into non-contact type and contact type based on usage type. On the other hand, electrodynamic type and piezoelectric type due to their configuration.

容量形、光電形、ホール素子など種々のものがあるが、
取扱の簡便さや安定度などから主として接触形で、圧電
形が使用されている。
There are various types such as capacitive type, photoelectric type, Hall element, etc.
The piezoelectric type is mainly used as a contact type due to its ease of handling and stability.

音響センナ(マイクロホン)は、指向性から無指向性、
単一指向性、超指向性がある。また構成上から動電形、
コンデンサ形、電磁形、圧電形などがあるが、周波数特
性の平坦性から主としてコ形 ンデンサゞが使用されている。
Acoustic sensors (microphones) can be directional to omnidirectional,
Unidirectional and superdirectional. Also, due to the configuration, electrodynamic type,
There are capacitor types, electromagnetic types, piezoelectric types, etc., but capacitors are mainly used because of their flat frequency characteristics.

発明が解決しようとする問題点 しかしながら、振動センサも音響センサも振動変位セン
サで構成できるから複合センサを構成しようとする場合
、振動センサは測定範囲が1μm〜1ocm等でその分
解能は1μmもあれば充分であるが、一方マイクロホン
の変位検出量は0.1人(オングストローム)〜100
人程度で分解能は0.1人必要であり、振動変位計との
分解能の差は1000倍〜10000倍の相違があり、
そこで振動センサと音響センサとの複合センサを構成す
ることはできなかった。また振動センサは王として接触
形で圧電形であるが接触形であるためセンサ質量が振動
状態に影響を与え振動量が変化する。
Problems to be Solved by the Invention However, since both vibration sensors and acoustic sensors can be constructed from vibration displacement sensors, when attempting to construct a composite sensor, the vibration sensor has a measurement range of 1 μm to 1 ocm, etc., and a resolution of 1 μm. On the other hand, the displacement detection amount of the microphone is 0.1 person (angstrom) to 100 angstroms.
The resolution is about 0.1 person, and the difference in resolution with a vibration displacement meter is 1000 to 10000 times.
Therefore, it has not been possible to construct a composite sensor consisting of a vibration sensor and an acoustic sensor. Furthermore, most vibration sensors are contact type and piezoelectric type, but since they are contact type, the mass of the sensor affects the vibration state and the amount of vibration changes.

また、出力インピーダンスが高いため電気的雑音を捨い
やすいなどの問題点があった。さらに体内振動センナな
どでは、電流洩れがないこと、また、工場プラント等で
は防爆性が要求され火花放電しない等の条件、一方マイ
クロホンにおいても電磁誘導雑音に強いことや、火花放
電しない、漏電しない等の条件を満足しなければならな
いという問題点を有していた。
Additionally, because the output impedance is high, electrical noise is easily discarded. Furthermore, internal vibration sensors and the like must be resistant to electromagnetic induction noise, have no current leakage, and must be explosion-proof in factories, etc., and must not have spark discharges.Microphones must also be resistant to electromagnetic induction noise, have no spark discharges, and must not leak current. The problem was that the following conditions had to be satisfied.

問題点を解決するための手段 本発明は、上記問題点を解決するもので、レーザ光源と
、上記レーザ光源と光学的に結合された光分岐器と、上
記光分岐器と光学的に結合された光ファイバと、上記光
ファイバの出射端面と上記光ファイバ出射端面に対向し
て、平行に配置された光半透過受音振動板とで入射光の
くり返し多重反射を形成する多重反射室と、上記光分岐
器と光学的に結合された受光器とを有し、上記光半透過
受音振動板の変位をくり返し多重反射室におけるレーザ
光の反射干渉による反射波にもとづき光の強度変調とし
て検出する音響検出部と、上記光半透過受音振動板を透
過し、振動被測定面で反射されたレーザ光にもとづき振
動速度を検出する機動検出部とを具備した構成となって
いる。
Means for Solving the Problems The present invention solves the above problems, and includes a laser light source, an optical splitter optically coupled to the laser light source, and an optical splitter optically coupled to the optical splitter. a multi-reflection chamber that repeatedly forms multiple reflections of incident light with an optical fiber and a semi-transparent sound receiving diaphragm arranged in parallel to face the output end face of the optical fiber and the output end face of the optical fiber; A light receiver is optically coupled to the light splitter, and the displacement of the light transmissive sound receiving diaphragm is repeatedly detected as light intensity modulation based on reflected waves caused by reflection interference of the laser light in the multiple reflection chamber. and a motion detection section that detects the vibration speed based on the laser light that is transmitted through the light transmissive sound receiving diaphragm and reflected on the vibration measurement surface.

作  用 本発明は上記した構成により、光半透過受音振動板の変
位力・ら音圧を検出し、レーザドツプラ法を用いて、レ
ーザ光のドツプラシフトの周波淑変化として振動速度全
検出することができる。
Effect: With the above-described configuration, the present invention detects the displacement force and sound pressure of the light transmissive sound receiving diaphragm, and uses the laser Doppler method to detect the entire vibration velocity as a frequency change of the Doppler shift of the laser beam. can.

実施例 以下、不発明の一実施り1jについて図面を該照しなが
ら説明する。
EXAMPLE Hereinafter, an embodiment 1j of the invention will be described with reference to the drawings.

第1図は、本発明の一実施例における振動音響複合セン
サの構成図、第2図は同要部構成図である。
FIG. 1 is a block diagram of a vibroacoustic composite sensor according to an embodiment of the present invention, and FIG. 2 is a block diagram of the main parts thereof.

第1図、第2図において、1はレーザ光源、2はレーザ
光源1と光学的に結合されたビームスプリッタ等の光分
岐器、3は光分岐器2と光学的に結合されt光ファイバ
、4は光ファイバ3の出射端部に設けられたレンズで、
レーザ光源1かもの直進光を平行光に変換するレンズで
、平行光に変換することにより効率を高めている。5は
レンズ4の出射端面に対向して平行に配置された厚さ2
0μmの光半透過受音振動板(以下振動板という)6と
レンズ4との間に形成されたくり返し多重反射室(以下
反射室という)、7は、レンズ42反射室6.振動板6
とで構成されるセンサヘッドである。8は光分岐器3か
らの分析光が入射される受光器、9は受光器8の出力信
号を増幅する増耀器、1Qは増幅器8の出力信号にもと
つき、周波数変化全検出し、振動速度を測定するスポク
トルアナライザ、11は増幅器8の出力信号の強度変化
を読みとり、振動板6に加わる音圧を測定するレベルメ
ータ、12¥′i振動被測定面である。尚、反射室6か
らみて、レンズ4の出射端面の光の反射率と振動板6の
光の反射率はコーティング等を施しほぼ同一の反射率と
なるように構成されている。
1 and 2, 1 is a laser light source, 2 is an optical splitter such as a beam splitter optically coupled to the laser light source 1, 3 is an optical fiber optically coupled to the optical splitter 2, 4 is a lens provided at the output end of the optical fiber 3;
This is a lens that converts the straight light from the laser light source 1 into parallel light, increasing efficiency by converting it into parallel light. 5 is a thickness 2 arranged parallel to and opposite to the output end surface of the lens 4.
A repeating multiple reflection chamber (hereinafter referred to as a reflection chamber) 7 formed between a 0 μm light transmissive sound receiving diaphragm (hereinafter referred to as a diaphragm) 6 and a lens 4 is a lens 42 reflection chamber 6. Vibration plate 6
The sensor head consists of: 8 is a photoreceiver into which the analysis light from the optical splitter 3 is incident; 9 is a multiplier for amplifying the output signal of the photoreceiver 8; 1Q is based on the output signal of the amplifier 8, and detects all frequency changes; A spot analyzer 11 measures the vibration velocity, a level meter 12 reads the intensity change of the output signal of the amplifier 8, and measures the sound pressure applied to the diaphragm 6, and 12 is a vibration measurement surface. Incidentally, when viewed from the reflection chamber 6, the light reflectance of the output end face of the lens 4 and the light reflectance of the diaphragm 6 are configured to be approximately the same by applying a coating or the like.

以上のように構成された不実施例について、以下その動
作を説明する。
The operation of the non-embodiment configured as above will be described below.

最初に音響センサとして用いる場合について説明する。First, the case where it is used as an acoustic sensor will be explained.

この場合は王として、レーザ光源1.光分岐器22元フ
ァイバ3.レンズ41反射室6゜振動板6.受光器8.
レベルメータ11で構成される。
In this case, the laser light source 1. Optical splitter 22 source fibers 3. Lens 41 Reflection chamber 6° Vibration plate 6. Receiver 8.
It is composed of a level meter 11.

まず、レーザ光源1を出たレーザ光は光分岐器2で蛍光
器8に進む分岐光と元ファイバ3に直進する直進光とに
分岐される。直進光は光ファイバを経て光ファイバ3の
出射端面に設けられたレンズ4で平行光に変換され、反
射室6に入る。反射室6に入射されたレーザ光は、その
一部は透過するが、その一部は振動板6で反射され、レ
ンズ端面と振動板6との間で多菫反射をくり返しながら
光分岐器2を経て受光器8へと返る。このときd/λ(
ただし、dはくり返し多重反射室の長さ、λはレーザの
波長)を適切に設定すると1反射光は振動板の微少な変
位で強度変調金堂け、変換効率の高い変位センサが得ら
れる。
First, the laser light emitted from the laser light source 1 is split by the optical splitter 2 into branched light that travels to the fluorescent device 8 and straight light that travels straight to the original fiber 3 . The rectilinear light passes through the optical fiber, is converted into parallel light by a lens 4 provided on the output end face of the optical fiber 3, and enters the reflection chamber 6. A part of the laser beam incident on the reflection chamber 6 is transmitted, but a part of it is reflected by the diaphragm 6, and the laser beam is repeatedly reflected by the diaphragm 6 between the end face of the lens and the diaphragm 6, and reaches the optical splitter 2. The light then returns to the light receiver 8. At this time, d/λ(
However, if d is the length of the repeated multiple reflection chamber and λ is the laser wavelength), one reflected light can be intensity modulated by a minute displacement of the diaphragm, and a displacement sensor with high conversion efficiency can be obtained.

多光束干渉系、すなわちくジ返し多重反射系について、
第3図を用いて説明する。第3図において、20は光の
屈折率n1  の媒質、21は屈折率n2の媒質、22
は媒質20.21間に設けられた屈折率n。の空気層で
、空気層22の厚さをdとする。
Regarding the multi-beam interference system, that is, the repeating multiple reflection system,
This will be explained using FIG. In FIG. 3, 20 is a medium with a refractive index of light n1, 21 is a medium with a refractive index of n2, and 22
is the refractive index n provided between the media 20 and 21. Let the thickness of the air layer 22 be d.

今、媒質20から空気層22への入射光の入射角をφ1
 その透過光の屈折角をX、空気層22から媒質21へ
の透過光の屈折角をφ2 とし、入射光の強度iI、、
反射光の強度を工7、透過光の第(1)式のようになる
Now, the angle of incidence of the incident light from the medium 20 to the air layer 22 is φ1
Let the refraction angle of the transmitted light be X, the refraction angle of the transmitted light from the air layer 22 to the medium 21 be φ2, and the intensity of the incident light iI,
When the intensity of the reflected light is calculated by Equation 7, the transmitted light is expressed as Equation (1).

ここでδは、入射光と反射光の位相差で第(2)式のよ
うに規定される。
Here, δ is defined as the phase difference between the incident light and the reflected light as shown in equation (2).

第(1)式で反射率rfパラメータとして位相差δと強
度反射係数I 、/Iエ との関係を第4図に示す。
FIG. 4 shows the relationship between the phase difference δ and the intensity reflection coefficients I and /Ie as reflectance rf parameters in equation (1).

今第4図は、δに関する周期関数であるので、r = 
0.6についての動作状態を示すと第5図のようになる
。ここにδxn0・d/λとした。第5図に示すとおり
、空気層22の厚さdが変化すると、強度反射係数工r
/工i の値が変化することがわかる。今、媒質21を
振動板6とすると、振動板6の微少な変位全検出できる
っ即ち入射音にエリ振動板6がPAのように変位すると
出力光はPL となり強度変調される。これが音響セン
サである。
Now, Figure 4 is a periodic function regarding δ, so r =
The operating state for 0.6 is shown in FIG. Here, δxn0·d/λ is set. As shown in FIG. 5, when the thickness d of the air layer 22 changes, the intensity reflection coefficient
It can be seen that the value of /engine i changes. Now, if the medium 21 is the diaphragm 6, the entire minute displacement of the diaphragm 6 can be detected. That is, when the diaphragm 6 is displaced like PA due to the incident sound, the output light becomes PL and is intensity-modulated. This is an acoustic sensor.

次に振動センサとして用いる場合について説明する。Next, the case where it is used as a vibration sensor will be explained.

この場合は、主としてレーザ光源1.光分岐器2、光フ
ァイバ3.レンズ4.受光器8.スペクトルアナライザ
1oで構成される。まずレーザ光源1を出たレーザ光(
振動数f=C/λ、Cは光速)は、光分岐器2を経て光
ファイバ3に入る。光ファイバ端面で入射光の一部は反
射される。この反射光の振動数+−1fとなる。一方、
反射室5を透過した光は、振動被測定面12で反射され
るとともに振動面の振動速度に応じてドツプラシフトに
よる周波数変化Jf−2■/λを受ける。λはレーザ光
の波長、■は被測定面の振動速度である。反射された光
は再び反射室6.光ファイバ3を経て光分岐器2に入射
、及び反射され受光器へ達する。
In this case, mainly the laser light source 1. Optical splitter 2, optical fiber 3. Lens 4. Receiver 8. It consists of a spectrum analyzer 1o. First, the laser light emitted from the laser light source 1 (
The frequency f=C/λ, where C is the speed of light) enters the optical fiber 3 via the optical splitter 2. A portion of the incident light is reflected at the end face of the optical fiber. The frequency of this reflected light is +-1f. on the other hand,
The light transmitted through the reflection chamber 5 is reflected by the vibrating surface to be measured 12 and undergoes a frequency change Jf-2/λ due to Doppler shift in accordance with the vibration speed of the vibrating surface. λ is the wavelength of the laser beam, and ■ is the vibration speed of the surface to be measured. The reflected light returns to the reflection chamber 6. The light enters the optical splitter 2 via the optical fiber 3, is reflected, and reaches the light receiver.

そこで光ファイバ端面で反射する反射光の振動数fとト
ップランフ)k受けて反射された反射光の振動数f+Δ
f とは、受光器8 (APD )  で光ヘテロゲイ
ン検波され、ドツプラソフト成分Δfが電気信号として
得られる。この周波数変化Δfをスペクトルアナライザ
10で検出すると振動速度vl非接触で測定できる。
Therefore, the frequency f of the reflected light reflected at the end face of the optical fiber and the frequency f + Δ of the reflected light received and reflected by the top rung)
f is optically heterogain detected by the optical receiver 8 (APD), and a Doppler soft component Δf is obtained as an electrical signal. When this frequency change Δf is detected by the spectrum analyzer 10, the vibration velocity vl can be measured without contact.

以上のように本実施例によれば、音響センサと、振動セ
ンサとを同一に構成できる複合センサで、受光器8の出
力の強度変化をレベルメータ11で読みとることにエリ
、振音板6V(加わる音圧を、またスペクトルアナライ
ザ1oで周波数を測定することにより、振動被測定面1
2の振動を検出することができる。
As described above, according to this embodiment, the sound sensor 6V ( By measuring the applied sound pressure and the frequency with the spectrum analyzer 1o, the vibration measurement surface 1
2 vibrations can be detected.

尚、本実施例では光ファイバ端面や反射室6など力・ら
光分岐器2に入射する光のうち、一部は光分岐器2を透
過しレーザ光源1へともどる。このためレーザ光源1を
安定化するためにレーザ光源1と光分岐器2との間に光
アイソレータを挿入し、光分岐器からの反射at阻止す
る構成としてもよい。また、レンズ5を省き構成を簡素
化してもよい。
In this embodiment, a portion of the light incident on the optical fiber splitter 2 such as the end face of the optical fiber or the reflection chamber 6 passes through the optical splitter 2 and returns to the laser light source 1. Therefore, in order to stabilize the laser light source 1, an optical isolator may be inserted between the laser light source 1 and the optical splitter 2 to block reflection at from the optical splitter. Furthermore, the lens 5 may be omitted to simplify the configuration.

発明の効果 本発明は、レーザ光源1元分岐器2元ファイバ。Effect of the invention The present invention is a laser light source single splitter dual fiber.

くり返し多重反射室、受光器の同一構成要素で振動速度
を非接触で、音圧を筒感度で測定できる。
Vibration velocity can be measured non-contact and sound pressure can be measured with cylinder sensitivity using the same components as the repeating multiple reflection chamber and receiver.

このセンサは、振動計測、音響計測など単独の計測セン
サとして利用できるだけでなく同一のセンサで振動セン
サは周波数変化、音響センサは強度変化として同時に計
測でき、まt騒音計測や解析等において騒音の発生源で
ある振動源と騒音とを同時に計測したいという要望も強
いが、このような要望にも対応することができる。
This sensor can not only be used as a standalone measurement sensor for vibration measurement and acoustic measurement, but also use the same sensor to simultaneously measure frequency changes for vibration sensors and intensity changes for acoustic sensors. There is also a strong desire to measure the vibration source and noise at the same time, and such a request can be met.

また電流洩れがlよとんどないため体内振動センサや音
響センサとして利用できる。またレーザ光であるので、
光ファイバが途中で折れても火花放電をすることはなく
防爆性を要求される工場プラント等で安全に使用するこ
とができる。さらに光ファイバであるので電磁誘導の影
響を受けない等多くの利点を有する。
Furthermore, since there is very little current leakage, it can be used as an internal vibration sensor or an acoustic sensor. Also, since it is a laser beam,
Even if the optical fiber is broken in the middle, there will be no spark discharge, and it can be safely used in factories that require explosion-proof properties. Furthermore, since it is an optical fiber, it has many advantages such as being unaffected by electromagnetic induction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における振動音響複合センサ
の構成図、第2図は同要部構成図、第3図は同多光束干
渉系を説明するための動作説明図、第4図は同位相差と
強度反射係数の関係を示す特性図、第6図は同動作原理
図である。 1・・・・・・レーザ光源、2・・・・・・光分岐器、
3・・・・・・ファイバ、4・・・・・レンズ、6・・
・・・・くり返し多重反射室、6・・・・・半透過平面
受音振動板、7・・・・・・センサヘッド、8・・・・
・・受光器、10・・・−・スペクトルアナライザ、1
1・・・・レベルメータ、12・・・・・・振動被測定
面。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名CI
+l                 Qフm   
        城
FIG. 1 is a configuration diagram of a vibroacoustic composite sensor according to an embodiment of the present invention, FIG. 2 is a configuration diagram of its main parts, FIG. 3 is an operation explanatory diagram for explaining the multi-beam interference system, and FIG. 4 is a characteristic diagram showing the relationship between the same phase difference and the intensity reflection coefficient, and FIG. 6 is a diagram showing the principle of the same operation. 1... Laser light source, 2... Optical splitter,
3...Fiber, 4...Lens, 6...
... Repeated multiple reflection chamber, 6 ... Semi-transparent plane sound receiving diaphragm, 7 ... Sensor head, 8 ...
...Receiver, 10...-Spectrum analyzer, 1
1... Level meter, 12... Vibration measurement surface. Name of agent: Patent attorney Toshio Nakao and one other CI
+l Qfum
castle

Claims (1)

【特許請求の範囲】 (1)レーザ光源と、上記レーザ光源と光学的に結合さ
れた光分岐器と、上記光分岐器と光学的に結合された光
ファイバと、上記光ファイバの出射端面と上記光ファイ
バ出射端面に対向して、平行に配置された光学透過受音
振動板とで入射光のくり返し多重反射を形成するくり返
し多重反射室と、上記光分岐器と光学的に結合された受
光器とを有し、上記光学透過受音振動板の変位を上記く
り返し多重反射室におけるレーザ光の反射干渉による反
射波にもとづき光の強度変調として検出する音響検出部
と、上記光学透過受音振動板を透過し振動被測定面で反
射されたレーザ光にもとづき振動速度を検出する振動検
出部とを具備してなる振動音響複合センサ。 (2)くり返し多重反射室のファイバ端面には、上記く
り返し多重反射室への入射光を平行光となるようにレン
ズを設けた特許請求の範囲第1項記載の振動音響複合セ
ンサ。 (3)くり返し多重反射室の光ファイバ端面を光学透過
受音振動板とほぼ同一の光反射率となるよう端面処理を
した特許請求の範囲第1項記載の振動音響複合センサ。 (4)レーザ光源と光分岐器との間に、アイソレータと
を挿入した特許請求の範囲第1項記載の振動音響複合セ
ンサ。 (6)くり返し多重反射室側のレンズ端面を光半透過受
音振動板とほぼ同一の光反射率となるよう端面処理をし
た特許請求の範囲第2項記載の振動音響複合センサ。
[Claims] (1) A laser light source, an optical splitter optically coupled to the laser light source, an optical fiber optically coupled to the optical splitter, and an output end face of the optical fiber. A repeating multiple reflection chamber that forms repeated multiple reflections of incident light with an optically transmitting sound receiving diaphragm arranged parallel to the output end face of the optical fiber, and a light receiving unit optically coupled to the optical splitter. an acoustic detection section that detects the displacement of the optically transmitting sound receiving diaphragm as intensity modulation of light based on reflected waves caused by reflection interference of laser light in the multiple reflection chamber; and the optically transmitting sound receiving vibration plate. A vibroacoustic composite sensor comprising a vibration detection section that detects vibration speed based on laser light transmitted through a plate and reflected by a vibration measurement surface. (2) The vibroacoustic composite sensor according to claim 1, wherein a lens is provided on the fiber end face of the repeating multiple reflection chamber so that the light incident on the repeating multiple reflection chamber becomes parallel light. (3) The vibroacoustic composite sensor according to claim 1, wherein the end face of the optical fiber in the repeating multiple reflection chamber is treated to have almost the same light reflectance as that of the optical transmission sound receiving diaphragm. (4) The vibroacoustic composite sensor according to claim 1, wherein an isolator is inserted between the laser light source and the optical splitter. (6) The vibroacoustic composite sensor according to claim 2, wherein the end face of the lens on the side of the repeating multiple reflection chamber is treated so as to have almost the same light reflectance as that of the semi-transmissive sound receiving diaphragm.
JP24378484A 1984-11-19 1984-11-19 Compound sensor for vibration sound Granted JPS61120925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24378484A JPS61120925A (en) 1984-11-19 1984-11-19 Compound sensor for vibration sound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24378484A JPS61120925A (en) 1984-11-19 1984-11-19 Compound sensor for vibration sound

Publications (2)

Publication Number Publication Date
JPS61120925A true JPS61120925A (en) 1986-06-09
JPH0544967B2 JPH0544967B2 (en) 1993-07-07

Family

ID=17108914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24378484A Granted JPS61120925A (en) 1984-11-19 1984-11-19 Compound sensor for vibration sound

Country Status (1)

Country Link
JP (1) JPS61120925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450752A (en) * 1989-08-29 1995-09-19 Regents Of The University Of California Ultrasonic position sensor for measuring movement of an object
JP2004133596A (en) * 2002-10-09 2004-04-30 Mitsubishi Heavy Ind Ltd Plant monitoring system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450752A (en) * 1989-08-29 1995-09-19 Regents Of The University Of California Ultrasonic position sensor for measuring movement of an object
US5591914A (en) * 1989-08-29 1997-01-07 The Regents Of The University Of California Ultrasonic position sensor
JP2004133596A (en) * 2002-10-09 2004-04-30 Mitsubishi Heavy Ind Ltd Plant monitoring system

Also Published As

Publication number Publication date
JPH0544967B2 (en) 1993-07-07

Similar Documents

Publication Publication Date Title
CA2007190C (en) Laser optical ultrasound detection
US4238856A (en) Fiber-optic acoustic sensor
US7697797B2 (en) Aligned embossed diaphragm based fiber optic sensor
JP2716207B2 (en) Interferometer sensor and use of the sensor in an interferometer device
CN1821727A (en) Fibre-optical acoustic sensor
JPH02171639A (en) Integrated optical apparatus for measuring refractive index of fluid
CN111289085B (en) Microphone diaphragm amplitude measuring method and device
CN1490598A (en) Fibre-optical sensor
JPS6118300A (en) Optical microphone
CN2890861Y (en) Fiber acoustic sensor
CN113589113A (en) Local discharge multi-frequency combined sensing array based on optical fiber Fabry-Perot interferometer
CN1079821A (en) Based on the shake optical pressure sensor in chamber of fabry-perot
CN110057439A (en) A kind of low quick sensing device of resonance eccentric core fiber sound based on F-P interference
JPS61120925A (en) Compound sensor for vibration sound
JPH0345328B2 (en)
JPS6281550A (en) Photoacoustic spectroscope
CN1203338C (en) Fibre-optical differential interferometer
US20230054431A1 (en) Sound detection device
Xu et al. Research on acoustic detective sensitivity of optical fiber sensors
WO2013073435A1 (en) Refraction sensor
Lu et al. A highly sensitive fiber-optic microphone based on corrugated MEMS diaphragm with sub-µm thickness
JPS61111100A (en) Optical sensor
CN114562942A (en) Measuring system and measuring method
JPS62127644A (en) Optoacoustic spectroscopic apparatus
JPH0319937B2 (en)