JPS61120422A - Method of treating with plasma - Google Patents

Method of treating with plasma

Info

Publication number
JPS61120422A
JPS61120422A JP24063284A JP24063284A JPS61120422A JP S61120422 A JPS61120422 A JP S61120422A JP 24063284 A JP24063284 A JP 24063284A JP 24063284 A JP24063284 A JP 24063284A JP S61120422 A JPS61120422 A JP S61120422A
Authority
JP
Japan
Prior art keywords
plasma
electric field
sample
processing
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24063284A
Other languages
Japanese (ja)
Inventor
Yutaka Kakehi
掛樋 豊
Makoto Nawata
誠 縄田
Norio Nakazato
仲里 則男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24063284A priority Critical patent/JPS61120422A/en
Publication of JPS61120422A publication Critical patent/JPS61120422A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To improve the uniformity of treatment in a material to be treated, by changing the correlation between the directions of electric field and of magnetic flux during the plasma treatment in accordance with a treating speed in the material. CONSTITUTION:When glow discharge is caused to occur between upper and lower electrodes 10 and 11 for producing plasma, the produced plasma becomes stronger in the central region where magnetic flux and electric field intersect orthogonally while weaker in the end regions. If a magnet element 17 is inclined to the direction of the electric field by an angle theta, the region having stronger plasma is shifted from the center toward the end. By appropriately setting an angle theta and a treating time, the concentrations of plasma from the center to the ends can be controlled as required. Accordingly, the treating speed of a semiconductor substrate 40 can be uniformized by providing stronger plasma in the central region or in the peripheral region in this manner.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、プラズマ処理方法に係り、特に真空下のガス
を電界と磁界との作用のもとてプラズマ化させ、該プラ
ズマ中のイオン或は活性種によって試料を処理するプラ
ズマ処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a plasma processing method, and particularly to a plasma processing method, in which gas under vacuum is turned into plasma under the action of an electric field and a magnetic field, and ions or The present invention relates to a plasma processing method for processing a sample with active species.

〔発明の背景〕[Background of the invention]

真空下のガスを電界によるグロー放電によりてプラズマ
化させ、該プラズマ中のイオン或は活性種によって試料
を処理する技術は、試料表面の改質および加工、さらに
試料表面への物質の堆積と種々の分野で使用されている
The technique of turning gas under vacuum into plasma by glow discharge using an electric field and treating a sample with ions or active species in the plasma is used for various purposes such as modification and processing of the sample surface, as well as deposition of substances on the sample surface. used in the field of

一方、電界によるグロー放電に磁界を作用させると電気
的なり−ロン力と電磁気によるローレンツ力とが作用し
、特に電界と磁界が直交するようにすれば、荷電粒子が
サイクロイド運動をなす。
On the other hand, when a magnetic field is applied to a glow discharge caused by an electric field, an electric Ron force and an electromagnetic Lorentz force act, and especially if the electric field and the magnetic field are orthogonal to each other, charged particles make a cycloidal motion.

これによって粒子ないし分子間の衝突頻度が増しイオン
或は活性種の密度が増加し、試料の処理速度が向上する
This increases the frequency of collisions between particles or molecules, increases the density of ions or active species, and improves sample processing speed.

このような電界、磁界の併用のプラズマ処理技術は、シ
リコン半導体および化合物半導体の基板を処理するスパ
ッタリング技術、ドライエツチング技術、気相成長技術
への利用が特に効果的である。(特公昭54−3263
8号公報、特開昭58−16078号公報) 一方、ドライエツチング技術等では、試料の処理速度が
試料内で半径方向の分布を有しており、例えば、Mのド
ライエツチングでは試料内周辺での処理速度が高く中央
で低いという傾向がある。
Such a plasma processing technology that uses both an electric field and a magnetic field is particularly effective in use in sputtering technology, dry etching technology, and vapor phase growth technology for processing silicon semiconductor and compound semiconductor substrates. (Tokuko Sho 54-3263
On the other hand, in dry etching techniques, etc., the sample processing speed has a radial distribution within the sample. For example, in M dry etching, There is a tendency for the processing speed to be high in the middle and slow in the middle.

上記した従来の電界、磁界の併用のプラズマ処理技術で
は、試料の処理速度の向上を図ることができるが、しか
し、試料内の処理速度の不均一、それによろ試料内の処
理の均一性の低下に対しては、未だ問題を有している。
The above-mentioned conventional plasma processing technology that uses both an electric field and a magnetic field can improve the processing speed of the sample, but the processing speed within the sample is non-uniform, which reduces the uniformity of the processing within the sample. There are still problems with .

〔発明の目的〕[Purpose of the invention]

本発明の目的は、試料内の処理速度の不均一さを改善す
ることで、試料内の処理の均一性を向上できる電界、磁
界の併用のプラズマ処理方法を提供することにある。
An object of the present invention is to provide a plasma processing method that uses both an electric field and a magnetic field, which can improve the uniformity of processing within a sample by improving the non-uniformity of processing speed within the sample.

〔発明の概要〕[Summary of the invention]

本発明は、試料の処理中に電界の方向と磁界の磁力線の
方向との相関関係を試料内の処理速度に応じて変化させ
ることを特徴とするもので、試料内の処理速度の不均一
さを改善しようとするものである。
The present invention is characterized by changing the correlation between the direction of an electric field and the direction of magnetic lines of force of a magnetic field during processing of a sample, depending on the processing speed within the sample. This is an attempt to improve.

〔発明の実施例〕[Embodiments of the invention]

磁石要素を用いて電磁場を併用するプラズマ処理技術に
おいては、電界と磁界とが直交する所で最も強いプラズ
マが発生する。実際に使用する磁石要素では、磁界の磁
力線が曲線となり電界と直交する成分の大きい所で最も
強いプラズマが発生する。本発明は、このような事実を
もとに、試料の処理中に電界の方向と磁界の磁力線の方
向との相関関係を試料内の処理速度に応じて変化させ、
例えば、試料内で最も処理速度が低い所に対応して最も
強いプラズマを発生させるようにすることで、試料内の
処理速度の不均一さを改善するものである。
In plasma processing techniques that use magnetic elements in combination with electromagnetic fields, the strongest plasma is generated where the electric and magnetic fields are perpendicular to each other. In the magnet elements actually used, the lines of magnetic force of the magnetic field are curved, and the strongest plasma is generated where the component perpendicular to the electric field is large. Based on these facts, the present invention changes the correlation between the direction of the electric field and the direction of the magnetic lines of force of the magnetic field during sample processing according to the processing speed within the sample,
For example, non-uniformity in processing speed within a sample is improved by generating the strongest plasma corresponding to the location within the sample where the processing speed is lowest.

本発明の一実施例を、試料が半導体基板で、かつ、該半
導体基板をドライエツチング処理する場合につき第1図
〜第3図により説明する。
An embodiment of the present invention will be described with reference to FIGS. 1 to 3 in the case where the sample is a semiconductor substrate and the semiconductor substrate is subjected to a dry etching process.

第1図で、ドライエツチング装置は、この場合、互いに
平行な上部電極Wと下部電極■の両放電電極とを内蔵し
、ガスの供給孔13と半導体基板の搬入孔14とを有す
る真空容器正と、回転軸16囲りに回転揺動される磁石
要素17とを具備している。ここで、上部電極IOは絶
縁物彷を介して真空容器3に取付けられ、下部電!Iu
は絶縁部19を介して真空客器正の一部を構成する電極
支持材mに取付けられる。磁石要素17は片側がN極9
片側がSSとなるように構成され、回転揺動手段乙によ
り矢印Iのような回転揺動が可能な状態に支持されてい
るO このように構成されたドライエツチング装置の動作を以
下に説明する。
In FIG. 1, the dry etching apparatus is a vacuum vessel main body which houses two discharge electrodes, an upper electrode W and a lower electrode (2), which are parallel to each other, and has a gas supply hole 13 and a semiconductor substrate loading hole 14. and a magnet element 17 that is rotated and oscillated around the rotating shaft 16. Here, the upper electrode IO is attached to the vacuum vessel 3 via an insulator, and the lower electrode IO is attached to the vacuum vessel 3 via an insulating material. Iu
is attached via an insulating section 19 to an electrode support material m that constitutes a part of the vacuum chamber. Magnet element 17 has N pole 9 on one side
The dry etching apparatus is configured such that one side thereof is SS, and is supported in a state where it can rotate and oscillate as shown by the arrow I by the rotation and oscillation means B. The operation of the dry etching apparatus configured in this way will be explained below. .

半導体基板荀のエツチングに必要なガスが供給孔認から
供給され、かつ排気孔13から排気されるとともに、下
部電極Uに高周波電源(図示省略)から電力が印加され
ると上下電極10.11間でグロー放電が生じプラズマ
が得られる。プラズマの状態は第2図に詳述するように
、電界と磁力線が直交する中央では強いプラズマが生じ
(XXX印で表示)、両端にいくにつれて磁力線が曲が
り、磁束密度の上下成分(電界と平行な成分)が強まろ
につれてプラズマは弱くなる。一方、第3図に示すよう
にこの磁石要素17を電界の方向に対してθ方向に回転
させると磁力線もそれに伴って回転し、プラズマの強い
部分は中央から端の方へ移動する。
Gas necessary for etching the semiconductor substrate is supplied from the supply hole and exhausted from the exhaust hole 13, and when power is applied to the lower electrode U from a high-frequency power source (not shown), the gas flows between the upper and lower electrodes 10 and 11. A glow discharge occurs and plasma is obtained. As detailed in Figure 2, the state of plasma is as follows: a strong plasma occurs at the center where the electric field and magnetic lines of force intersect at right angles (indicated by XXX marks), and as it goes to both ends, the lines of magnetic force bend, and the upper and lower components of the magnetic flux density (parallel to the electric field) occur. The plasma becomes weaker as the components (components) become stronger. On the other hand, as shown in FIG. 3, when this magnet element 17 is rotated in the θ direction with respect to the direction of the electric field, the lines of magnetic force also rotate accordingly, and the areas where the plasma is strong move from the center to the edges.

したがって、回転角θと処理時間との関係を適切に設定
してやれば、中央から端に至るプラズマの濃淡を自由に
コントロールできるので、AJのようにエッチャントの
濃度が律速となり周辺の処理速度が高鳴なりがちなプロ
セスに対しては中央のプラズマを強くし、あるいは逆に
中央の処理速度が高すぎるプロセスに対しては周辺のプ
ラズマを強くすることにより、半導体基板ψ内の処理速
度の不均一さを改善でき、半導体基板荀内の処理の均一
性を向上させることができる。
Therefore, by appropriately setting the relationship between the rotation angle θ and the processing time, it is possible to freely control the density of the plasma from the center to the edges, and as in AJ, the etchant concentration becomes rate-determining and the processing speed in the periphery increases. By increasing the strength of the plasma in the center for processes that tend to occur, or conversely, by increasing the strength of the peripheral plasma for processes where the processing speed at the center is too high, we can reduce the non-uniformity of processing speed within the semiconductor substrate ψ. It is possible to improve the uniformity of processing within a semiconductor substrate.

以上、本発明の一実施例をドライエツチングの場合を対
象に説明したが、ここで次の変化がありても本発明の効
果に木質的な相違は無く、したがって当然、本発明に包
含されるものである。
An embodiment of the present invention has been described above for the case of dry etching, but even if the following changes occur, there is no difference in the effect of the present invention in terms of wood quality, and therefore, they are naturally included in the present invention. It is something.

(1)放電電極に印加する電力が高周波の場合、低周波
の場合、直流の場合 (2)上記電力を印加する電極が下部電極の場合、上部
電極の場合 (3)下部電極が第1図のごと(真空装置の一部を構成
している場合、真空!Jfの内部に独立した電極として
構成された場合 合、活性ガスの場合、両者の混合ガスの場合(5)プラ
ズマによる処理日的がドライエツチングの場合、スパッ
タリングの場合、気相成長の場を された場合、上面電極の下面から供給される場合、下部
電極の上面かつ被処理物質の下方の周縁部から供給され
る場合 (7)上下電極が温度制御される場合、制御されない場
合 (8)  被処理物質が温度制御される場合、されない
場合 〔発明の効果〕 本発明は、以上説明したように、試料内の処理速度の不
均一さを改善できるので、試料内の処理の均一性を向上
できるという効果がある。
(1) When the power applied to the discharge electrode is high frequency, low frequency, or direct current (2) When the electrode to which the above power is applied is the lower electrode or upper electrode (3) When the lower electrode is (If it forms part of a vacuum device, if it is configured as an independent electrode inside a vacuum!Jf, if it is an active gas, or if it is a mixture of both gases. (5) Plasma treatment schedule In the case of dry etching, in the case of sputtering, in the case of vapor phase growth, in the case of supply from the lower surface of the upper electrode, and in the case of supply from the upper surface of the lower electrode and the lower peripheral edge of the material to be processed (7 ) When the upper and lower electrodes are temperature-controlled and when they are not (8) When the temperature of the substance to be treated is controlled and when it is not [Effects of the Invention] As explained above, the present invention solves the Since the uniformity can be improved, there is an effect that the uniformity of processing within the sample can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を実施したドライエツチング装置の一
例を示す真空容器部の縦断面図、第2因。 第3図は、第1図での磁石要素とプラズマの状態を示す
概念図である。 10・・−・・上部電極、11・・−・・下部電極、6
曲・・真空容器、17・・・・・・磁石要素、ム・・・
・・・回転揺動手段、40・・・・・・半導体装置
FIG. 1 is a vertical cross-sectional view of a vacuum container section showing an example of a dry etching apparatus embodying the present invention, the second factor. FIG. 3 is a conceptual diagram showing the state of the magnet element and plasma in FIG. 1. 10... Upper electrode, 11... Lower electrode, 6
Song: Vacuum container, 17...Magnetic element, Mu...
...Rotating swing means, 40...Semiconductor device

Claims (1)

【特許請求の範囲】[Claims] 1、真空下のガスを電界と磁界との作用のもとでプラズ
マ化させ、該プラズマ中のイオン或は活性種によって試
料を処理する方法において、前記試料の処理中に前記電
界の方向と前記磁界の磁力線の方向との相関関係を試料
内の処理速度に応じて変化させることを特徴とするプラ
ズマ処理方法。
1. In a method in which a gas under vacuum is turned into plasma under the action of an electric field and a magnetic field, and a sample is treated with ions or active species in the plasma, the direction of the electric field and the A plasma processing method characterized by changing the correlation between a magnetic field and the direction of magnetic lines of force according to the processing speed within a sample.
JP24063284A 1984-11-16 1984-11-16 Method of treating with plasma Pending JPS61120422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24063284A JPS61120422A (en) 1984-11-16 1984-11-16 Method of treating with plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24063284A JPS61120422A (en) 1984-11-16 1984-11-16 Method of treating with plasma

Publications (1)

Publication Number Publication Date
JPS61120422A true JPS61120422A (en) 1986-06-07

Family

ID=17062383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24063284A Pending JPS61120422A (en) 1984-11-16 1984-11-16 Method of treating with plasma

Country Status (1)

Country Link
JP (1) JPS61120422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376211A (en) * 1990-09-29 1994-12-27 Tokyo Electron Limited Magnetron plasma processing apparatus and processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376211A (en) * 1990-09-29 1994-12-27 Tokyo Electron Limited Magnetron plasma processing apparatus and processing method

Similar Documents

Publication Publication Date Title
JP2004111432A (en) Apparatus and method for plasma processing
JPS63174321A (en) Apparatus and method for ion etching and chemical vapor phase deposition
TWI604758B (en) Plasma processing device
JPS5841658B2 (en) dry etching equipment
JP2002184766A (en) Apparatus and method for plasma processing
JPS61120422A (en) Method of treating with plasma
JPH02312231A (en) Dryetching device
JPH06120169A (en) Plasma generating apparatus
JP2002110565A (en) Plasma processor, method therefor, and manufacturing method of semiconductor device
JPS63102321A (en) Semiconductor manufacture equipment
JP3492933B2 (en) Etching method for crystalline lens
JP2652547B2 (en) Plasma processing method
JPH05291155A (en) Plasma processor
JPH02237117A (en) Semiconductor treatment apparatus
JPS60218826A (en) Formation of thin film
JPS61194726A (en) Plasma processing unit
JP4105866B2 (en) Plasma processing apparatus and method for cleaning plasma processing apparatus
JP3686563B2 (en) Semiconductor device manufacturing method and plasma processing apparatus
JP2002170783A (en) Plasma doping method and device thereof
JP2620553B2 (en) Plasma processing equipment
JPH0621009A (en) Plasma processor
JP2004165644A (en) Apparatus and method for plasma processing
JPS63292625A (en) Controlling method for plasma
JPH0312924A (en) Plasma treatment device
JPH01130528A (en) Plasma treating apparatus