JPS6112019B2 - - Google Patents

Info

Publication number
JPS6112019B2
JPS6112019B2 JP57035827A JP3582782A JPS6112019B2 JP S6112019 B2 JPS6112019 B2 JP S6112019B2 JP 57035827 A JP57035827 A JP 57035827A JP 3582782 A JP3582782 A JP 3582782A JP S6112019 B2 JPS6112019 B2 JP S6112019B2
Authority
JP
Japan
Prior art keywords
flux density
coercive force
magnetic flux
semi
oersted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57035827A
Other languages
Japanese (ja)
Other versions
JPS58153758A (en
Inventor
Kaoru Katsumata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP57035827A priority Critical patent/JPS58153758A/en
Publication of JPS58153758A publication Critical patent/JPS58153758A/en
Publication of JPS6112019B2 publication Critical patent/JPS6112019B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は重量比率で銅(Cu)は3〜25%、モ
リブデン(Mo)は0.5〜5%、炭素(C)は0.09〜0.8
%、残部を鉄(Fe)によつて構成され、歩磁力
30〜100エルステツド、残留磁束密度12〜18キロ
ガウスを有する半硬質磁性材料である。 高い磁性特性を持ち、精密な加工精度を要する
半硬質磁性材料が電磁的に動作する自己保持スイ
ツチなどに使用されている。従来この種の半硬質
磁性材料として炭素鋼やFe−Co−V系合金など
が実用化されている。しかし炭素鋼は安価である
が、所望の磁気特性を得るために材料の焼き入れ
操作が必要で、焼き入れ後の冷却が不均一になる
と材料が変形し、精密な寸法を要する機器に使用
するためには、作業に困難を伴い、製品の歩留も
よくない欠点がある。またFe−Co−V系の合金
はコバルト(Co)が主成分であるので材料が高
価であり、高度な加工技術も必要であり、作業性
などで困難な欠点をもつている。これら従来の材
料の欠点を除くため本願出願人の特許第481491号
(特公昭41−7930号)明細書に示されるような
Cu3〜25%残りをFeにより構成するFe−Cu合金
に冷間加工を施し、優れた半硬質磁性材料が得ら
れている。この種のFe−Cu合金材料は安価で、
切削、打抜などの機械的加工に優れ、また熱処理
を必要とせず冷間加工が容易な利点がある。しか
しこのFe−Cu合金のようにCuの成分が3〜25%
組成のものでは保磁力が18〜40〔エルステツド〕
にすぎず、大きな保磁力を要すものに対しては用
途が制限される欠点を持つている。 本発明の目的は従来のかかる欠点を除き、加工
性を損なうことなく、適当な残留磁束密度を持
ち、保磁力を増大させる半硬質磁性材料を提供す
るにある。 本発明は重量比率においてCu3〜25%、Mo0.5
〜5%、C0.09〜0.8%で残りをFeまたは少量の
不純物の組成からなるFe−Cu−Mo−C合金であ
り、冷間加工を施すことによつて保磁力30〜100
〔エルステツド〕、残留磁束密度12〜18〔キロガウ
ス〕の半硬質磁性材料が得られる。 以下に本発明の半硬質磁性材料の製作過程の実
施例を述べる。まず、Fe、Cu、Mo、およびCの
原材料を真空中あるいは大気中にて加熱溶解し、
重量比率でCu3〜25%、Mo0.5〜5%、C0.09〜
0.8%を含む鋼塊を800℃、ないし1000℃の温度に
て熱間鍛造する。さらに熱間圧延によつて直径
9.5mmの線材とする。このようにして熱間圧延さ
れた線材を温度600〜900℃で焼鈍し、さらに冷間
加工率が90%になるまで冷間線引を行なう。いま
このようにして加工された合金の各組成材料の比
率を変えた10個の資料について、最大磁化力100
〔エルステツド〕における最大磁束密度B100〔ガ
ウス〕、磁束密度Br〔ガウス〕、保磁力Hc〔エル
ステツド〕、ならびにBrとB100との比率〔%〕を
求めると下記第1表にその値を示す。
In the present invention, the weight ratio of copper (Cu) is 3 to 25%, molybdenum (Mo) is 0.5 to 5%, and carbon (C) is 0.09 to 0.8%.
%, the remainder is composed of iron (Fe), and the walking magnetic force
It is a semi-hard magnetic material with a residual magnetic flux density of 30 to 100 oersted and a residual magnetic flux density of 12 to 18 kilogauss. Semi-hard magnetic materials that have high magnetic properties and require precise processing accuracy are used in electromagnetically operated self-holding switches and other devices. Conventionally, carbon steel and Fe-Co-V alloys have been put into practical use as semi-hard magnetic materials of this type. However, although carbon steel is inexpensive, it requires a hardening operation to obtain the desired magnetic properties, and uneven cooling after hardening causes the material to deform, making it difficult to use in equipment that requires precise dimensions. However, the process is difficult and the product yield is poor. In addition, Fe--Co--V alloys have cobalt (Co) as their main component, so they are expensive materials and require advanced processing techniques, making them difficult to work with. In order to eliminate the drawbacks of these conventional materials, the present applicant's patent No. 481491 (Japanese Patent Publication No. 41-7930)
An excellent semi-hard magnetic material has been obtained by cold working an Fe-Cu alloy consisting of 3 to 25% Cu and the remainder Fe. This kind of Fe-Cu alloy material is cheap;
It is excellent in mechanical processing such as cutting and punching, and has the advantage of being easy to cold-work without requiring heat treatment. However, like this Fe-Cu alloy, the Cu content is 3 to 25%.
The composition has a coercive force of 18 to 40 [Oersted]
However, it has the disadvantage that its use is limited for things that require a large coercive force. An object of the present invention is to provide a semi-hard magnetic material which eliminates such drawbacks of the conventional materials, has an appropriate residual magnetic flux density, and increases coercive force without impairing workability. The present invention has a weight ratio of Cu3 to 25% and Mo0.5.
It is an Fe-Cu-Mo-C alloy consisting of ~5% C, 0.09~0.8% C, and the rest Fe or a small amount of impurities, and it has a coercive force of 30~100 by cold working.
A semi-hard magnetic material with a residual magnetic flux density of 12 to 18 kilogauss is obtained. Examples of the manufacturing process of the semi-hard magnetic material of the present invention will be described below. First, Fe, Cu, Mo, and C raw materials are heated and melted in vacuum or in the air.
Weight ratio: Cu3~25%, Mo0.5~5%, C0.09~
A steel ingot containing 0.8% is hot forged at a temperature of 800℃ to 1000℃. Furthermore, by hot rolling, the diameter
Use 9.5mm wire. The wire rod thus hot rolled is annealed at a temperature of 600 to 900°C, and further cold drawn until the cold working rate reaches 90%. Now, for the 10 materials processed in this way with different ratios of each composition material, the maximum magnetizing force was 100
The maximum magnetic flux density B 100 [Gauss], magnetic flux density Br [Gauss], coercive force Hc [Oersted], and ratio [%] of Br and B 100 in [Oersted] are calculated and the values are shown in Table 1 below. .

【表】 また本発明の他の実施例として、重量比率で
Cuを10%、Moを1〜5%、Cを0〜0.8%、残部
をFeとしたときの合金を前記の実施例と同様に
して造る。この合金をMoの重量比率%をパラメ
ータとし、Cの重量比率〔%〕に対して残留磁束
密度Br〔キロガウス〕、および保磁力Hc〔エルス
テツド〕との関係を測定した結果を第1図に示
す。この図において重量比率でMo1%における特
性曲線1、3%における特性曲線2および5%に
おける特性曲線3を示す。この図よりMoが多く
なれば残留磁束密度Brは低下し、保磁力Hcは大
きくなる。またCが多くなれば残留磁速密度Br
は低下し、保磁力Hcは大きくなる。したがつて
重量比率でMo1〜5%、C0.8%以下では、残留磁
束密度Brは12〔キロガウス〕以上となるが、保
磁力Hcは30〔エルステツド〕以下となる。した
がつて保磁力Hcがさらに30〔エルステツド〕以
上であるためにはMoは3%以上、またはMoが1
%でも、Cが0.4%以上の重量比率を含有するこ
とが必要である。すなわち高価なMo原料の使用
量を減少させてもCの量を多くさせることによつ
て所要の保磁力Hcが30〜100〔エルステツド〕、
残留磁密度12〜18〔キロガウス〕の安価な半硬質
磁性材料が得られる。 したがつてCu3〜25%、残りFeの合金にMo、
Cを添加することによつて磁気特性は向上する
が、さらにMoを0.5〜5%、Cを0.09〜0.8%とし
たときはMoが0.5%以下およびCが0.09%未満で
は保磁力Hcの顕著な増加は認められない。また
一方材料の加工の点ではMoが5%を超えるか、
またはCが0.8%を超えると冷間加工は極めて困
難となる。したがつて本発明の合金の組成範囲
は、重量比率で、Cuが3〜25%、Moが0.5〜5
%、Cが0.1〜0.8%、残りをFeまたは少量の不純
物の組成とすることにより磁気特性のよい材料が
得られる。 以上に述べたようにFe−Cu合金にMoとCとを
加えることにより最大磁束密度B100および磁束密
度Brが充分な値を保ち、しかも加工性を損なう
ことなく、保磁力Hcを大きくするのに著しく効
果がある。一方焼入れなどの熱処理の必要もな
く、たとえば炭素鋼、Fe−Co−V系合金などの
ように、冷却から生ずる変形はなく精密な寸法の
加工成形ができる。また高価なMoを含まないた
め原材料費が安価で、電磁リレーなどの構成部材
として極めてすぐれた半硬質磁性材料が得られ
る。
[Table] In addition, as another example of the present invention, in terms of weight ratio
An alloy containing 10% Cu, 1-5% Mo, 0-0.8% C, and the balance Fe is prepared in the same manner as in the previous example. Figure 1 shows the results of measuring the relationship between the residual magnetic flux density Br [kilogauss] and the coercive force Hc [oersted] with respect to the weight percentage of C [%] in this alloy using the Mo weight percentage % as a parameter. . In this figure, characteristic curve 1 at 1% Mo, characteristic curve 2 at 3% Mo, and characteristic curve 3 at 5% Mo are shown in this figure. From this figure, as Mo increases, the residual magnetic flux density Br decreases and the coercive force Hc increases. Also, as C increases, the residual magnetic velocity density Br
decreases, and the coercive force Hc increases. Therefore, when the weight ratio is Mo 1 to 5% and C 0.8% or less, the residual magnetic flux density Br is 12 [Kigauss] or more, but the coercive force Hc is 30 [Oersted] or less. Therefore, in order for the coercive force Hc to be 30 [Oersted] or more, Mo must be 3% or more, or Mo must be 1
%, it is necessary to contain C at a weight ratio of 0.4% or more. In other words, even if the amount of expensive Mo raw material used is reduced, the required coercive force Hc can be increased from 30 to 100 [Oersted] by increasing the amount of C.
An inexpensive semi-hard magnetic material with a residual magnetic density of 12 to 18 kilogauss can be obtained. Therefore, Cu is 3 to 25%, and Mo is added to the remaining Fe alloy.
Magnetic properties are improved by adding C, but when Mo is 0.5 to 5% and C is 0.09 to 0.8%, when Mo is less than 0.5% and C is less than 0.09%, the coercive force Hc becomes significant. No significant increase was observed. On the other hand, in terms of material processing, whether Mo exceeds 5% or not,
Alternatively, if C exceeds 0.8%, cold working becomes extremely difficult. Therefore, the composition range of the alloy of the present invention is 3 to 25% Cu and 0.5 to 5% Mo by weight.
%, C is 0.1 to 0.8%, and the remainder is Fe or a small amount of impurities, thereby obtaining a material with good magnetic properties. As mentioned above, by adding Mo and C to the Fe-Cu alloy, the maximum magnetic flux density B 100 and magnetic flux density Br can be maintained at sufficient values, and the coercive force Hc can be increased without impairing workability. is significantly effective. On the other hand, there is no need for heat treatment such as quenching, and unlike carbon steel, Fe-Co-V alloys, etc., there is no deformation caused by cooling and it is possible to process and mold to precise dimensions. In addition, since it does not contain expensive Mo, raw material costs are low, and a semi-hard magnetic material that is excellent as a component of electromagnetic relays and the like can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例によるモリブデン
(Mo)の含有量をパラメータとした炭素(C)の重量
比率の変化に対する残留磁束密度(Br)および
保磁力(Hc)の関係を示す特性曲線図である。
FIG. 1 is a characteristic curve diagram showing the relationship between residual magnetic flux density (Br) and coercive force (Hc) with respect to changes in the weight ratio of carbon (C) with molybdenum (Mo) content as a parameter according to an embodiment of the present invention. It is.

Claims (1)

【特許請求の範囲】 1 重量比率にて銅3%より25%の間、モリブデ
ン0.5%より5%の間、炭素0.09%より0.8%の間
で、残余は鉄よりなる組成で構成され、且つ保持
力30ないし100〔エルステツド〕残留磁束密度12
ないし18〔キロガウス〕の磁気特性を有すること
を特徴とする半硬質磁性材料。
[Scope of Claims] 1 The composition is composed of a weight ratio of between 3% and 25% copper, between 0.5% and 5% molybdenum, between 0.09% and 0.8% carbon, and the remainder consisting of iron; Holding force 30 to 100 [Oersted] Residual magnetic flux density 12
A semi-hard magnetic material characterized by having magnetic properties of 1 to 18 kilogauss.
JP57035827A 1982-03-09 1982-03-09 Semi-hard magnetic material Granted JPS58153758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57035827A JPS58153758A (en) 1982-03-09 1982-03-09 Semi-hard magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57035827A JPS58153758A (en) 1982-03-09 1982-03-09 Semi-hard magnetic material

Publications (2)

Publication Number Publication Date
JPS58153758A JPS58153758A (en) 1983-09-12
JPS6112019B2 true JPS6112019B2 (en) 1986-04-05

Family

ID=12452783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57035827A Granted JPS58153758A (en) 1982-03-09 1982-03-09 Semi-hard magnetic material

Country Status (1)

Country Link
JP (1) JPS58153758A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1031999A4 (en) * 1998-09-10 2003-06-04 Hitachi Metals Ltd Production method for semirigid magnetic material and semirigid material and magnetic marker using it

Also Published As

Publication number Publication date
JPS58153758A (en) 1983-09-12

Similar Documents

Publication Publication Date Title
CN106119719B (en) Ultra low cobalt Fe-Co magnetic alloy
US4536229A (en) Fe-Ni-Mo magnet alloys and devices
US4059462A (en) Niobium-iron rectangular hysteresis magnetic alloy
US4695333A (en) Iron-chromium-base spinodal decomposition-type magnetic (hard or semi-hard) alloy
US3148092A (en) Process for producing sheets of magnetic materials
US4311537A (en) Low-cobalt Fe-Cr-Co permanent magnet alloy processing
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JPS6112019B2 (en)
JP2760013B2 (en) Method for producing high permeability magnetic material
US4082579A (en) Rectangular hysteresis magnetic alloy
JPS6312936B2 (en)
US3166408A (en) Magnetic alloys
JPH02213421A (en) Production of soft-magnetic steel stock
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
EP0024686A2 (en) Article comprising a magnetic component consisting essentially of an alloy comprising Fe, Cr and Co
US3301720A (en) Treatment of material for hysteresis application
JPS586777B2 (en) Semi-hard magnetic material and its manufacturing method
US4002506A (en) Semi-hard magnetic glass sealable alloy system of cobalt-nickel-titanium-iron
JPH0470390B2 (en)
Masumoto et al. Magnetic Properties of High Permeability Alloys Hardperm in the Ni–Fe–Nb System
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPS63111602A (en) High performance rare earth cast magnet
JPH06264195A (en) Fe-co series magnetic alloy
JPS63119204A (en) High-performance rare earth magnet