JPS61120083A - Nuclear reactor - Google Patents

Nuclear reactor

Info

Publication number
JPS61120083A
JPS61120083A JP59240489A JP24048984A JPS61120083A JP S61120083 A JPS61120083 A JP S61120083A JP 59240489 A JP59240489 A JP 59240489A JP 24048984 A JP24048984 A JP 24048984A JP S61120083 A JPS61120083 A JP S61120083A
Authority
JP
Japan
Prior art keywords
core
reactor
nuclear
coolant
core plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59240489A
Other languages
Japanese (ja)
Inventor
一夫 谷本
勝利 清水
英治 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Kansai Electric Power Co Inc
Kyushu Electric Power Co Inc
Japan Atomic Power Co Ltd
Shikoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Hokkaido Electric Power Co Inc
Kansai Electric Power Co Inc
Kyushu Electric Power Co Inc
Japan Atomic Power Co Ltd
Shikoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc, Kansai Electric Power Co Inc, Kyushu Electric Power Co Inc, Japan Atomic Power Co Ltd, Shikoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Hokkaido Electric Power Co Inc
Priority to JP59240489A priority Critical patent/JPS61120083A/en
Publication of JPS61120083A publication Critical patent/JPS61120083A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、原子炉に関し、特に、中性子の損失を最小に
するため炉心を取り囲む中性子反射体を有する原子炉に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to nuclear reactors, and more particularly to nuclear reactors having a neutron reflector surrounding the reactor core to minimize neutron losses.

炉心からの中性子の漏れを少な(するため、従来、炉心
バッフル及び7t−マと呼ば1するその取付板からなる
構造体が炉心の周囲に設けられているが、最近、燃料サ
イクルコストの更なる(因減を目差し、該構造体に代わ
って中性子反射体を採用する動きが目立ってきている。
In order to reduce the leakage of neutrons from the reactor core, a structure consisting of a core baffle and its mounting plate called a 7t-ma has conventionally been provided around the reactor core, but recently it has become necessary to increase the fuel cycle cost. (Aiming to reduce the number of factors, there is a growing movement to adopt neutron reflectors instead of such structures.

該中性子反射体は、囲い板の内側に反射材を含むもので
あって、炉心槽の内面に隣接して多数立設され炉心を取
り囲んでいるが、隣接する中性子反射体の間、及び中性
子反射体と炉心周辺の燃料集合体との開には隙間が存在
するため、冷却材は燃料集合体を貫流するだけでなく、
その一部が上記FA111を流れる。従って、もし万−
隙間を通る流れと燃料集合体を通る流れとの間に臨界的
な圧力差が生ずれば、冷却材のノエット流で燃料棒が損
傷を受ける潜在的な可能性がある。
The neutron reflectors include a reflective material inside the shroud, and are installed in large numbers adjacent to the inner surface of the core tank to surround the reactor core. Because there is a gap between the core and the fuel assemblies around the core, the coolant not only flows through the fuel assemblies;
A part of it flows through the FA 111 mentioned above. Therefore, if 10,000-
If a critical pressure differential develops between the flow through the gap and the flow through the fuel assembly, there is potential for damage to the fuel rods from the noet flow of coolant.

従って、本発明の目的は、中性子反射体を有する原子炉
において、このような燃料棒損傷の潜在的可能性を排除
することにある。
It is therefore an object of the present invention to eliminate the potential for such fuel rod damage in nuclear reactors with neutron reflectors.

この目的から、本発明の原子炉は、中性子反射体の外面
に、該核燃料集合体の長手方向に間隔をおいて配置され
た支持格子部材と同じ高さに、圧損調整用溝を形成した
ことを特徴とするらのである。圧損調整用溝が存在する
ため、中性子反射体間の隙間及1中性子反射体と炉心周
辺の燃料集合体との間の隙間を流れる冷却材の圧損が炉
心を貫流する冷却材の圧損と実質的に同等になり、炉心
半径方向における冷却材の圧力分布が平坦化される。
For this purpose, the nuclear reactor of the present invention is provided with pressure drop adjustment grooves formed on the outer surface of the neutron reflector at the same height as the support grid members arranged at intervals in the longitudinal direction of the nuclear fuel assembly. It is characterized by the following. Because the pressure drop adjustment groove exists, the pressure drop of the coolant flowing through the gap between the neutron reflectors and the gap between the neutron reflector and the fuel assembly around the core is substantially equal to the pressure drop of the coolant flowing through the core. , and the coolant pressure distribution in the radial direction of the core is flattened.

次に、本発明の好適な実施例を添付図面を参照して詳細
に説明する。
Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図は、本発明を実施した原子炉の断面図を示すもの
であり、該原子炉は、はぼ円筒形の容器本体1aと、該
容器本体に図示しないボルトのような適宜の手段で着脱
自在に取り付けられる半球状の上部蓋体5とから構成さ
れる原子炉容51を備えている。
FIG. 1 shows a cross-sectional view of a nuclear reactor in which the present invention is implemented. The nuclear reactor vessel 51 is comprised of a hemispherical upper lid 5 that is detachably attached.

容器本体1a内には炉心槽2が同心に垂下して立設され
ており、該炉心槽2の外周面は容器本体1aと協働して
両者間に冷却材の環状下降領域16を画成する。炉心槽
2の底部には、多数の冷却材流れ孔10a(第3図)が
穿設された下部炉心板10が取着されており、下部炉心
板10は容器本体1aの半球状底部と協働して下部プレ
ナム11を形成する。該下部炉心板10の上には、上部
炉心板9との間に、炉心を構成する複数の核燃料集合体
3(その中の2体のみを第1図に示す)が並んで立設さ
れている。
A core tank 2 is vertically disposed concentrically within the vessel body 1a, and the outer peripheral surface of the core vessel 2 cooperates with the vessel body 1a to define an annular coolant descending region 16 between the two. do. A lower core plate 10 in which a number of coolant flow holes 10a (Fig. 3) are bored is attached to the bottom of the core tank 2, and the lower core plate 10 cooperates with the hemispherical bottom of the vessel body 1a. The lower plenum 11 is formed by forming the lower plenum 11. On the lower core plate 10 and between the upper core plate 9 and the upper core plate 9, a plurality of nuclear fuel assemblies 3 (only two of which are shown in FIG. 1) constituting the reactor core are erected side by side. There is.

燃料集合体3の屓部直上に位置するこの上部炉心板9と
、これを垂下支持する内fii18と、内筒8内を上下
にif、(/る多数のII+御棒集合体案内#J15と
は上部炉心槽遺体を構成する。蔑上部炉心構遺体内の上
部には、冷却材の出口松内プレナム12を画成する制御
棒駆動軸案内構造体14が配設されている。1体5には
制御駆動装置13が装着されており、図示しない駆動軸
に接aされた制御棒集合体は、この制御棒駆動長W11
3によって制御棒集合体案内tvI15を通って上下に
駆動され、上述した炉心の反応度を周知の態様で制御す
る。
This upper core plate 9 located directly above the bottom part of the fuel assembly 3, the inner fii 18 that suspends and supports it, and a large number of II + rod assembly guides #J15 vertically inside the inner cylinder 8. constitutes an upper core tank body.A control rod drive shaft guide structure 14 that defines a coolant outlet Matsunai plenum 12 is disposed in the upper part of the upper core structure body.1 body 5 A control drive device 13 is attached to the control rod assembly 13, and the control rod assembly connected to a drive shaft (not shown) has a control rod drive length W11.
3 is driven up and down through the control rod assembly guide tvI15 to control the reactivity of the core described above in a known manner.

炉心槽2の内面には、炉心を取り囲む位置に多数の半径
方向の中性子反射体4が立設されている。
A large number of radial neutron reflectors 4 are erected on the inner surface of the reactor core barrel 2 at positions surrounding the reactor core.

第1図のA−AMに沿う炉心槽内側断面の1象限を示す
!jS2UjJから明らかなように、各中性子反射体4
はポルト17により炉心[2に取着されており、これ等
の中性子反射体4の内側外壁が燃料集合体3の収納空間
を画定している。中性子反射体4は、第4図に示すよう
に、囲い板18と、その内部に包含される、散δL断面
積が大きく吸収断面積の比較的小さい物質からなる反射
材19とで形成される箱形構造のものである。
Showing one quadrant of the core barrel inner cross section along A-AM in Figure 1! As is clear from jS2UjJ, each neutron reflector 4
are attached to the reactor core [2 by ports 17, and the inner and outer walls of these neutron reflectors 4 define a storage space for the fuel assembly 3. As shown in FIG. 4, the neutron reflector 4 is formed of a shroud 18 and a reflective material 19 contained within the shroud 18 and made of a material having a large scattering δL cross-section and a relatively small absorption cross-section. It has a box-shaped structure.

燃料集合体3は、第3図に示すように、その長手方向に
沿って間隔をおいて配置された複数の支持格子部材22
を備え、当業者周知のように多数の燃料棒21が支持格
子部材22の図示しない開口に受け入れられ支持されて
いる。上述した中性子反射体4の囲い板18の外面には
、第3図及び第5図に示すように、支持格子部材2Zと
はlr同じ高さの位置に圧tlll調整用溝20が設け
られている。実施例においては、各支持格子部材に対応
して断面チャンネル状の2本の溝20が存在するが、原
子炉半径方向の冷却材差圧を希望のように軽減すること
ができれば該溝の本数、形状等は任意でよい。
As shown in FIG. 3, the fuel assembly 3 includes a plurality of support grid members 22 arranged at intervals along its longitudinal direction.
As is well known to those skilled in the art, a number of fuel rods 21 are received and supported in openings (not shown) in the support grid member 22. As shown in FIGS. 3 and 5, a pressure adjustment groove 20 is provided on the outer surface of the shrouding plate 18 of the above-mentioned neutron reflector 4 at the same height as the supporting grid member 2Z. There is. In the embodiment, there are two grooves 20 with a channel-shaped cross section corresponding to each support grid member, but the number of grooves can be changed if the coolant differential pressure in the reactor radial direction can be reduced as desired. , shape, etc. may be arbitrary.

原子炉の運転中、冷却材は容器本体1aの頂部にある入
口/ズル6から原子炉容器1内に流入し、環状の下降領
域16を矢印で示す通りに下方へ流れ、下部プレナム1
1に達する。冷却材は下部プレナム11においてその流
れ方向を上方に変え、下部炉心板10にある冷却材流れ
孔10a(第3図参照)を通って炉心領域に流れ込む。
During operation of the reactor, coolant enters the reactor vessel 1 through the inlet/slip 6 at the top of the vessel body 1a and flows downwardly as indicated by the arrows through the annular descending region 16 and into the lower plenum 1.
Reach 1. The coolant changes its flow direction upward in the lower plenum 11 and flows into the core region through coolant flow holes 10a (see FIG. 3) in the lower core plate 10.

冷却材の大半は炉心の燃料集合体3を上方に貫流し、残
りの−66はバイパス流としてl!jl接中性子反射体
4の間の隙IJ]23(第2図)、中性子反射体4と最
外方の燃料集合体3との間の隙間24を上向きに流れる
。しかる後、燃料集合体3を通って加熱された冷却材は
、上部炉心板9にある冷却材流れ孔9a、制御制御金集
案内1iIl15、出口松内プレナム12等を矢印のよ
うに経由して出口/ズル7から、例えば、図示しない外
部の蒸気発生器に一次冷却材として供給される。
Most of the coolant flows upward through the fuel assembly 3 of the core, and the remaining -66 flows as a bypass flow l! It flows upward through the gap IJ] 23 between the tangential neutron reflectors 4 (FIG. 2) and the gap 24 between the neutron reflectors 4 and the outermost fuel assembly 3. Thereafter, the coolant heated through the fuel assembly 3 passes through the coolant flow hole 9a in the upper core plate 9, the control control collection guide 1iIl15, the outlet Matsunai plenum 12, etc. as shown by the arrow. From the outlet/spool 7, it is supplied, for example, to an external steam generator (not shown) as a primary coolant.

炉心領域においで、燃料集合体を通る冷却材の流れは、
燃料棒21の摩擦抵抗及び支持格子部材22での圧損に
より、その圧力が降下する。一方、中性子反射体4によ
って画成される隙間23.24を通る流れは、囲い板1
8の外面での摩擦抵抗及び溝2σでの圧損により圧力降
下する。その際、溝20は支持格子部材22と同じ高さ
位置に設けられているので、溝20を通過するときの冷
却材の拡大縮小流による圧損を支持格子部材Z2での冷
却材の圧損と同程度にすることができる。
In the core region, the flow of coolant through the fuel assemblies is
The pressure drops due to the frictional resistance of the fuel rods 21 and the pressure loss at the support grid member 22. On the other hand, the flow through the gaps 23 and 24 defined by the neutron reflector 4 is
Pressure drops due to frictional resistance on the outer surface of groove 8 and pressure loss at groove 2σ. At this time, since the grooves 20 are provided at the same height position as the support grid member 22, the pressure loss due to the expansion and contraction flow of the coolant when passing through the grooves 20 is the same as the pressure loss of the coolant at the support grid member Z2. It can be done to a certain extent.

以上のように、本発明によれば、中性子反射体の外面に
、核燃料集合体の長手方向に間隔をおいて配W1された
支持格子部材と同じ高さに、圧損調整用溝を形成したの
で、燃料集合体及び中性子反射体に沿って上昇する冷却
材の流れに炉心半径方向の差圧が発生することを防止で
き、差圧による冷却材のノエット流で燃料棒が損傷する
ような潜在的懸念をなくし、原子炉を一層信頼性のある
らにすることができる。
As described above, according to the present invention, pressure loss adjustment grooves are formed on the outer surface of the neutron reflector at the same height as the support grid members disposed at intervals W1 in the longitudinal direction of the nuclear fuel assembly. This prevents the generation of pressure differentials in the radial direction of the core in the upward flow of coolant along the fuel assemblies and neutron reflectors, reducing the potential for damage to fuel rods due to noet flow of coolant due to differential pressure. This can eliminate concerns and make nuclear reactors more reliable.

【図面の簡単な説明】[Brief explanation of the drawing]

tI&1図は、本発明を実施した原子炉の断面図、第2
図は、第1図のA−A線における炉心槽内側断面の1象
限を示す断面図、第3図は、中性子反射体にある圧損r
I411ji泪溝と燃料集合体の支持格子部材との位置
的関係を示す部分断面図、第4図は、第3図のB−B線
断面、第5図は、第3図のC部拡大図である。 1・・一原子f容器、1&・・・容器本体、2・・・炉
心槽、3・・・燃料集合体、4・・・中性子反射体、5
・・・上部蓋体、8・・・内筒、9・・・上部炉心板、
9a・・・冷却材流れ孔、10・・・下部炉心板、10
m・・・冷却材流れ孔、11・・・下部プレナム、12
・・・出口松内プレナム、13・・制御棒駆動装置、1
4・・・制御棒駆動軸案内構造体、15・・・制御棒集
合体案内部、16・・・環状下降領域、17・・・ボル
ト、18・・・回い板、19・・・反射材、20・・・
圧損調整用溝、21・・・核燃料集合体、22・・・燃
料棒。 鬼1図 党3図 第4図 馬5区 Y1頁の続き り発 明 者  清 水   勝 利  東京都千代田
区大手町式会社内 り発 明 者  吉 川   英 治  神戸市兵庫区
和田崎町社神戸造船所内
Figure tI & 1 is a cross-sectional view of the nuclear reactor in which the present invention is implemented,
The figure is a cross-sectional view showing one quadrant of the inside cross section of the core barrel taken along line A-A in Figure 1, and Figure 3 is a pressure loss r in the neutron reflector.
A partial cross-sectional view showing the positional relationship between the I411ji groove and the support grid member of the fuel assembly, FIG. 4 is a cross section taken along line B-B in FIG. 3, and FIG. 5 is an enlarged view of section C in FIG. 3. It is. 1... Single atomic f container, 1 &... Container body, 2... Core tank, 3... Fuel assembly, 4... Neutron reflector, 5
... Upper lid body, 8 ... Inner cylinder, 9 ... Upper core plate,
9a... Coolant flow hole, 10... Lower core plate, 10
m... Coolant flow hole, 11... Lower plenum, 12
...Exit Matsunai plenum, 13...Control rod drive device, 1
4... Control rod drive shaft guide structure, 15... Control rod assembly guide section, 16... Annular descending region, 17... Bolt, 18... Turning plate, 19... Reflection Material, 20...
Pressure drop adjustment groove, 21...Nuclear fuel assembly, 22...Fuel rod. Continuing from page 1, 1, 3, 4, horse 5, ward Y1 Inventor: Katsutoshi Shimizu Otemachi-style company, Chiyoda-ku, Tokyo Inventor: Eiji Yoshikawa Wadazaki-chosha, Hyogo-ku, Kobe City Kobe Inside the shipyard

Claims (1)

【特許請求の範囲】 着脱自在の上部蓋体を備えた原子炉容器、 該容器の本体内に垂下支持され、該本体と協働して冷却
材の環状下降領域を画定する炉心槽、該炉心槽の底部に
架設され、多数の冷却材流れ孔が穿設された下部炉心板
、 該下部炉心板の上に並んで立設され、炉心を構成する複
数の核燃料集合体、 該核燃料集合体の頭部直上に位置する上部炉心板と、こ
れを垂下支持する内筒と、多数の制御棒集合体案内筒と
を含む上部炉心構造体、 該上部炉心構造体内の上部に位置し、冷却材の出口転向
プレナムを画成する制御棒駆動軸案内構造体、 該炉心槽の内面に隣接して立設され、前記炉心を取り囲
む多数の中性子反射体、 を有する原子炉において、 該中性子反射体の外面に、該核燃料集合体の多数の核燃
料棒を受け入れて支持する開口を有すると共に、該核燃
料集合体の長手方向に間隔をおいて配置された支持格子
部材と同じ高さに、圧損調整用溝を形成したことを特徴
とする原子炉。
[Scope of Claims] A nuclear reactor vessel having a removable upper lid, a reactor barrel suspended within a body of the vessel and cooperating with the body to define an annular descending area for coolant, and a reactor core. a lower core plate installed at the bottom of the tank and having a large number of coolant flow holes; a plurality of nuclear fuel assemblies standing in line on the lower core plate to constitute the core; An upper core structure including an upper core plate located directly above the head, an inner cylinder that suspends and supports the upper core plate, and a number of control rod assembly guide cylinders; A nuclear reactor having: a control rod drive shaft guide structure defining an exit turning plenum; a large number of neutron reflectors standing adjacent to an inner surface of the reactor core barrel and surrounding the reactor core, comprising: an outer surface of the neutron reflector; has an opening for receiving and supporting a large number of nuclear fuel rods of the nuclear fuel assembly, and has a pressure drop adjusting groove at the same height as the support grid members arranged at intervals in the longitudinal direction of the nuclear fuel assembly. A nuclear reactor characterized by the formation of
JP59240489A 1984-11-16 1984-11-16 Nuclear reactor Pending JPS61120083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59240489A JPS61120083A (en) 1984-11-16 1984-11-16 Nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59240489A JPS61120083A (en) 1984-11-16 1984-11-16 Nuclear reactor

Publications (1)

Publication Number Publication Date
JPS61120083A true JPS61120083A (en) 1986-06-07

Family

ID=17060270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59240489A Pending JPS61120083A (en) 1984-11-16 1984-11-16 Nuclear reactor

Country Status (1)

Country Link
JP (1) JPS61120083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058330A (en) * 2015-09-18 2017-03-23 株式会社東芝 Core shroud and nuclear reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058330A (en) * 2015-09-18 2017-03-23 株式会社東芝 Core shroud and nuclear reactor

Similar Documents

Publication Publication Date Title
US4231843A (en) Guide tube flow diffuser
EP1548749A2 (en) Nuclear reactor fuel assemblies
US4759904A (en) Pressurized water reactor having improved calandria assembly
IT8322456A1 (en) SPACER FOR NUCLEAR FUEL ASSEMBLY
JPH07198884A (en) Spacer
US4857264A (en) Frictionally loaded top end supports for cantilever-mounted rod guides of a pressurized water reactor
US4863678A (en) Rod cluster having improved vane configuration
US3549493A (en) Fast sodium-cooled reactor core structure
KR910007921B1 (en) A coolant flow mixer grid for a nuclear reactor fuel assembly
JPH03137597A (en) Control-rod guide-support structure
US4876061A (en) Resiliently loaded lateral supports for cantilever-mounted rod guides of a pressurized water reactor
US4707331A (en) Top end support for water displacement rod guides of pressurized water reactor
KR970004417B1 (en) Bwr fuel assembly mini-bundle
US4654185A (en) Deep beam reactor vessel head and nuclear reactor including same
JPS61120083A (en) Nuclear reactor
JPH0438317B2 (en)
US5255300A (en) Fuel assembly for boiling water reactors
JP3626844B2 (en) Radial neutron reflector for nuclear reactors
JPS61149894A (en) Coolant mixing structure in nuclear reactor downcomer section
CS271457B2 (en) Liquid-cooled atomic reactor especially boiling reactor
JPH0682588A (en) Vertical guiding apparatus for control rod aggregate of nuclear reactor
JPH03591B2 (en)
EP0266591B1 (en) Resiliently loaded lateral supports for cantilever-mounted rod guides of a pressurized water reactor
JPH0413678B2 (en)
JPH0512799Y2 (en)