JPS61119697A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS61119697A
JPS61119697A JP24112684A JP24112684A JPS61119697A JP S61119697 A JPS61119697 A JP S61119697A JP 24112684 A JP24112684 A JP 24112684A JP 24112684 A JP24112684 A JP 24112684A JP S61119697 A JPS61119697 A JP S61119697A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
copper
alloy
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24112684A
Other languages
Japanese (ja)
Inventor
Yu Fukuda
祐 福田
Yasunori Kaneko
金子 康典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24112684A priority Critical patent/JPS61119697A/en
Publication of JPS61119697A publication Critical patent/JPS61119697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To improve durability and to prevent the decrease of thermal efficiency by plating heat transmitting members made of copper of a heat exchanger with an alloy of Bi-Sb and coating the latent heat recovering part of said members with an org. resin thereby preventing the corrosion by a waste combustion gas. CONSTITUTION:The heat exchanger 3 of the constitution united with the main heat exchange part A consisting of the heat transmitting members made of copper which are endothermic fins 4 and water tubs 5 and the heat exchange part B for recovering latent heat in the lower part of a burner 1 and a combustion chamber 2 is disposed in a gas water heater provided with said burner 1 and the plating layer consisting of the alloy such as Bi-Sb or Bi-Sb-Sn is formed on the surfaces of the above-mentioned heat transmitting members made of copper. The coating layer consisting of the org. resin binder is further formed on the above-mentioned plating layer of the heat exchange part for recovering the latent heat. The above-mentioned Bi-Sb alloy is composed of 4-14wt% Sb and the balance Bi and any of an epoxy resin, polyamide resin, melamine resin or acrylic resin is preferably used for the above-mentioned resin binder.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はガス給湯機などの燃焼装置に使用される高効率
の熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a highly efficient heat exchanger used in combustion devices such as gas water heaters.

従来の技術 最近、ガス給湯機などの燃焼装置において、省エネルギ
ーの観点から高性能化指向が強くなり熱効率の向上を図
るため、燃焼排ガス中の水蒸気を積極的に凝縮させ水蒸
気潜熱を回収する機能を付加した熱交換器の開発が活発
に行なわれている。
Conventional technology Recently, there has been a strong trend toward higher performance in combustion equipment such as gas water heaters from the perspective of energy conservation, and in order to improve thermal efficiency, a function that actively condenses water vapor in the combustion exhaust gas and recovers the latent heat of water vapor has been introduced. The development of additional heat exchangers is actively underway.

燃焼排ガス中には多量の窒素酸化物、炭酸ガス、水蒸気
と微量のイオウ酸化物などが含まれており、前述のよう
に潜熱を回収するため水蒸気を凝縮させると前述の燃焼
ガス成分が溶解し、pHが3前後の腐食性の強い酸性凝
縮水が多量に生成する。
Combustion exhaust gas contains large amounts of nitrogen oxides, carbon dioxide gas, water vapor, and small amounts of sulfur oxides, and as mentioned above, when the water vapor is condensed to recover latent heat, the combustion gas components mentioned above dissolve. , a large amount of highly corrosive acidic condensed water with a pH of around 3 is produced.

従来より、この種の熱交換器表面には鉛を主成分とする
、例えば鉛−スズ合金のメッキが施されるのが一般的で
あった。
Conventionally, the surface of this type of heat exchanger has generally been plated with lead-based alloy, for example, a lead-tin alloy.

発明が解決しようとする問題点 この鉛−スズの合金メッキを潜熱回収機能を付加した熱
交換器に適用した場合、鉛自身が前述の酸性凝縮水に対
する抵抗がないため極めて短期間で腐食するとともに、
熱交換器素材である銅をも腐食させ、熱交換器の性能を
低下させたり、孔がおいて水洩れなどの原因となり、耐
久性、信頼性を著しく損なうという問題があった。
Problems to be Solved by the Invention When this lead-tin alloy plating is applied to a heat exchanger with a latent heat recovery function, it will corrode in an extremely short period of time as the lead itself has no resistance to the acidic condensed water mentioned above. ,
This has the problem of corroding the copper that is the material of the heat exchanger, reducing the performance of the heat exchanger, and creating holes that can cause water leaks, significantly impairing durability and reliability.

また、前記酸性凝縮水は機器より排水されるが下水道の
排水基準に、鉛がlppm以下、銅が3ppm以下と定
められており、前述の腐食が発生すると酸性凝縮水中に
多量の鉛、銅が溶解するため前記排水基準を満足できな
いという問題があった。
In addition, the acidic condensed water is discharged from the equipment, but the drainage standards for sewerage systems stipulate that lead is 1 ppm or less and copper is 3 ppm or less.If the aforementioned corrosion occurs, a large amount of lead and copper will be released in the acidic condensed water. There was a problem that the above-mentioned drainage standards could not be satisfied because of the dissolution.

一方、顕熱を熱交換する部分においては高温下での水蒸
気酸化や燃焼を停止した際の冷却時に一部結露現象が起
きることによる腐食が発生し、吸熱フィン間に腐食生成
物が堆積し、排ガスの流れが阻害され不完全燃焼を起こ
したり、熱伝導が悪くなるために熱効率を低下させたり
などの問題があった。
On the other hand, in the parts that exchange sensible heat, corrosion occurs due to steam oxidation at high temperatures and partial dew condensation during cooling when combustion is stopped, and corrosion products accumulate between the heat-absorbing fins. There were problems such as the flow of exhaust gas being obstructed, resulting in incomplete combustion, and poor heat conduction, resulting in a decrease in thermal efficiency.

本発明はかかる従来の問題を解消するもので熱交換器の
燃焼排ガスが溶解した酸性凝縮水による腐食や高温酸化
による腐食を防止することにより熱交換器の耐久性の向
上を図るとともに、不完全燃焼や熱効率の低下を防止し
、燃焼装置としての信頼性の向上を図ることを目的とす
る。
The present invention solves such conventional problems, and improves the durability of the heat exchanger by preventing corrosion caused by acidic condensed water in which the combustion exhaust gas of the heat exchanger is dissolved and corrosion caused by high-temperature oxidation. The purpose is to prevent deterioration in combustion and thermal efficiency and improve reliability as a combustion device.

問題点を解決するための手段 本発明は、バーナと燃焼室の下部に配置され、吸熱フィ
ンと水管の銅製伝熱部材よりなる主熱交換部と潜熱回収
用熱交換部の銅製伝熱部材表面にビスマス−アンチモン
、ビスマス−アンチモン−スズのいずれか1種の合金に
よるメッキ層と潜熱回収用熱交換部の前記メッキ層上に
有機樹脂バインダーによるコーティング層を形成したも
のである。
Means for Solving the Problems The present invention provides a main heat exchange section and a latent heat recovery heat exchange section which are disposed at the lower part of the burner and the combustion chamber and are made of copper heat transfer members of heat absorption fins and water tubes. A plating layer made of an alloy of bismuth-antimony or bismuth-antimony-tin, and a coating layer made of an organic resin binder are formed on the plating layer of the heat exchange section for latent heat recovery.

作用 この構成によって、燃焼中に潜熱回収用熱交換部におい
て多量の酸性凝縮水が生成しても銅製伝熱部材に形成し
ているメッキ層とコーティング層が腐食因子の侵入を防
ぐとともに耐食性に優れているので前記銅製伝熱部材の
腐食を著しく抑制する。また、主熱交換部においては前
記銅製伝熱部材に形成しているメッキ層が優れた耐熱性
と耐食性を有するので高温酸化や燃焼停止時に生ずる結
露現象による腐食を防止できる。
Effect: With this configuration, even if a large amount of acidic condensed water is generated in the heat exchange section for latent heat recovery during combustion, the plating layer and coating layer formed on the copper heat transfer member prevent the invasion of corrosive factors and have excellent corrosion resistance. Therefore, corrosion of the copper heat transfer member is significantly suppressed. Further, in the main heat exchange section, the plating layer formed on the copper heat transfer member has excellent heat resistance and corrosion resistance, so that corrosion due to high temperature oxidation and dew condensation phenomenon that occurs when combustion is stopped can be prevented.

実施例の説明 以下、本発明の一実施例について第1図、第2図により
説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明の熱交換器を塔載した燃焼装置の断面図
であり、1はバーナ、2は燃焼室、3は熱交換器、4は
吸熱フィン、5は水管である。熱交換器3は燃焼室2の
下部に配置され、主熱交換部Aと潜熱回収用熱交換部B
が一体化された構成となっている。第2図は実施例を示
す熱交換器の要部断面図であり、同図aは主熱交換部A
、同図すは潜熱回収用熱交換部Bの構成を示す。6は吸
熱フィン、水管を構成する銅製伝熱部材、7はビスマス
−アンチモンもしくはビスマス−アンチモン−スズの合
金よりなるメッキ層、8はポリアミドイミド樹脂、エポ
キシ樹脂、メラミン・アクリル樹脂などの有機系バイン
ダーよりなるコーティング層である。
FIG. 1 is a sectional view of a combustion apparatus equipped with a heat exchanger according to the present invention, in which 1 is a burner, 2 is a combustion chamber, 3 is a heat exchanger, 4 is an endothermic fin, and 5 is a water tube. The heat exchanger 3 is arranged at the lower part of the combustion chamber 2, and includes a main heat exchange section A and a latent heat recovery heat exchange section B.
It has an integrated structure. FIG. 2 is a sectional view of the main parts of a heat exchanger showing an embodiment, and a in the same figure is a main heat exchange part A.
, the same figure shows the configuration of the heat exchange section B for latent heat recovery. 6 is a heat-absorbing fin, a copper heat transfer member constituting a water tube, 7 is a plating layer made of bismuth-antimony or bismuth-antimony-tin alloy, and 8 is an organic binder such as polyamide-imide resin, epoxy resin, melamine/acrylic resin, etc. It is a coating layer consisting of.

前記メッキ層7は主熱交換部Aと潜熱回収用熱交換部B
の両方に形成され前記コーティング層8は潜熱回収用熱
交換部Bのメッキ層7の表面に形成される。
The plating layer 7 has a main heat exchange section A and a latent heat recovery heat exchange section B.
The coating layer 8 is formed on the surface of the plating layer 7 of the heat exchange section B for latent heat recovery.

メッキ層7の形成手段としては複雑な形状でも均一な膜
厚が得られるように前述の合金を溶融し、これに銅製伝
熱部材を浸漬し引き上げる方法すなわち溶融メッキ法が
適用される。
As a means of forming the plating layer 7, a method is applied in which the above-mentioned alloy is melted, a copper heat transfer member is immersed in the melt, and the copper heat transfer member is pulled up, that is, a hot-dip plating method so that a uniform film thickness can be obtained even in a complicated shape.

また、溶融メッキの処理温度は高温になると本発明の熱
交換器のように形状の複雑なものは熱変形を起こすので
400°C以下でなければならず、さらに、熱交換器を
溶融合金浴に浸漬すると前記合金が冷却されるので溶誘
メッキに適用する合金の融点はメッキ処理温度よりも5
0〜100℃低くする必要がある。
In addition, the processing temperature for hot-dip plating must be 400°C or less, since a complex-shaped heat exchanger such as the heat exchanger of the present invention will be thermally deformed at high temperatures. When immersed in water, the alloy is cooled, so the melting point of the alloy used for hot dip plating is 55% lower than the plating temperature.
It is necessary to lower the temperature by 0 to 100°C.

一方、本実施例の熱交換器は最も高い箇所で約270°
C温度になるため、メッキ層7の耐熱性はそれ以上でな
ければならない。したがって、メッキ層7の耐久拙をメ
ッキ処理温度の関係から、本実施例に適用される合金の
融点は290〜350°Cの範囲であることが要求され
、これを満足する合金としてはビスマス−アンチモンの
二元合金が拳げられ、その組成範囲はアンチモン4重量
%〜14重量%とビスマス残部であることが望ましい。
On the other hand, the heat exchanger of this example has an angle of approximately 270 degrees at its highest point.
Since the temperature is C, the heat resistance of the plating layer 7 must be higher than that. Therefore, considering the durability of the plating layer 7 due to the plating temperature, the melting point of the alloy used in this example is required to be in the range of 290 to 350°C, and the alloy that satisfies this requirement is bismuth- Preferably, a binary alloy of antimony is produced, with a composition range of 4% to 14% by weight antimony and the balance bismuth.

また、銅との濡れ性をより良好にするため、前記ビスマ
ス−アンチモン合金にスズを1〜4重量%添加した三元
合金も適用される。
Further, in order to improve the wettability with copper, a ternary alloy in which 1 to 4% by weight of tin is added to the bismuth-antimony alloy is also used.

一方、コーティング層8は耐酸性およびピンホールの発
生が極めて少ないことが要求される。これを満足するも
のとして分子構造が複雑で緻密な有機系樹脂バインダー
が拳げられ、特に、エポキシ樹脂、ポリアミドイミド樹
脂、メラミン、アクリル樹脂が良好である。また、コー
ティング層8はこれら有機系樹脂バインダーに溶剤を加
えて適当な粘度に調整した後、スプレー法、浸漬法のい
ずれかにより塗布し、加熱硬化により形成される。
On the other hand, the coating layer 8 is required to have acid resistance and to have extremely few pinholes. Organic resin binders with complex and dense molecular structures are used to satisfy this requirement, and epoxy resins, polyamideimide resins, melamine, and acrylic resins are particularly good. Further, the coating layer 8 is formed by adding a solvent to these organic resin binders to adjust the viscosity to an appropriate level, applying the coating by either a spray method or a dipping method, and then curing by heating.

この構成において、第1図に示す燃焼装置を用いて燃焼
させた際、主熱交換部Aにおいてはバーナ1からの燃焼
熱により加熱され最も高い箇所で270°Cの高温にな
り、しかも高温下で水蒸気、燃焼排ガスによるアタック
を受けるとともに燃焼を停止した際には、冷却されるこ
とにより、吸熱フィン4と水管5の接触部にわずかであ
るが酸性の凝縮水が生成する。しかし、吸熱フィン4や
水管5を構成する銅製伝熱部材6に耐熱性、耐食性に優
れたビスマス−アンチモンもしくはビスマス−アンチモ
ン−スズ合金のメッキ層7を形成しているので熱による
劣化を防止できるとともに高温酸化や結露現象による腐
食を防止することができ、吸熱フィン4と水管5への腐
食生成物の堆積を著しく抑制することができる。
In this configuration, when combustion is performed using the combustion apparatus shown in Fig. 1, the main heat exchange section A is heated by the combustion heat from the burner 1 and reaches a high temperature of 270°C at the highest point. When the engine is attacked by water vapor and combustion exhaust gas and combustion is stopped, a small amount of acidic condensed water is generated at the contact area between the endothermic fins 4 and the water pipes 5 due to cooling. However, since a plating layer 7 of bismuth-antimony or bismuth-antimony-tin alloy, which has excellent heat resistance and corrosion resistance, is formed on the copper heat transfer member 6 that constitutes the heat absorption fins 4 and water pipes 5, deterioration due to heat can be prevented. At the same time, corrosion caused by high-temperature oxidation and dew condensation can be prevented, and the accumulation of corrosion products on the heat-absorbing fins 4 and the water pipes 5 can be significantly suppressed.

一方、潜熱回収用熱交換部Bは熱交換器の設計上、燃焼
中は常に露点以下となり水蒸気が凝縮しこれに燃焼排ガ
スが溶融し、pHが3程度の酸性凝縮水が多量に生成す
る環境となるが潜熱回収用熱交換部Bの銅製伝熱部材6
の表面には耐食性に優れている合金のメッキ層7と有機
系樹脂バインダー上りなるコーティング層8の2層を設
けている。このコーティング層8に適用される有機系樹
脂バインダーはエポキシ樹脂、ポリアミド樹脂、メラミ
ン・アクリル樹脂は耐酸性に優れているとともに、これ
ら樹脂の硬化後の分子構造が複雑で密であるため、コー
ティング層8のピンホールが極めて少なく前記酸性凝縮
水の成分である硝酸イオンや水などの腐食因子の侵入を
抑制することができる。
On the other hand, due to the design of the heat exchanger, the heat exchange section B for latent heat recovery is an environment where the temperature is always below the dew point during combustion, where water vapor condenses, combustion exhaust gas melts into it, and a large amount of acidic condensed water with a pH of about 3 is generated. However, the copper heat transfer member 6 of the heat exchange part B for latent heat recovery
Two layers are provided on the surface: a plating layer 7 made of an alloy having excellent corrosion resistance and a coating layer 8 made of an organic resin binder. The organic resin binders applied to this coating layer 8 include epoxy resins, polyamide resins, and melamine/acrylic resins, which have excellent acid resistance and have complex and dense molecular structures after curing. There are very few pinholes in No. 8, and it is possible to suppress the intrusion of corrosive factors such as nitrate ions and water, which are components of the acidic condensed water.

さらに、コーティング層8の下には耐食性に優れている
ビスマス−アンチモン、もしくはビスマス−アンチモン
−スズ合金によるメッキ層7を設けているのでコーティ
ング層8にわずかに存在するピンホールを介して前記腐
食因子が侵入しても銅製伝熱部材6の腐食は防止され、
酸性凝縮水中への銅の溶出はなくなる。
Furthermore, since a plating layer 7 made of bismuth-antimony or bismuth-antimony-tin alloy, which has excellent corrosion resistance, is provided below the coating layer 8, the corrosion factors Corrosion of the copper heat transfer member 6 is prevented even if
Copper will no longer be leached into acidic condensate water.

以とのように、銅製伝熱部材6の表面にメッキ層7およ
びコーチイブ層8を形成することにより、優れた耐食性
と耐熱性を実現することができるので銅製伝熱部材6へ
の腐食生成物の堆積がなくなり、不完全燃焼、熱効率の
低下、周囲の汚染を防止することができるとともに酸性
凝縮水中へ銅イオンが溶出しないので下水道へ排出して
も銅イオンの下水道排水基準値を充分満足するこζがで
き、熱交換器としての耐久性、信頼性を著しく向上させ
ることができる。
As described below, by forming the plating layer 7 and the coachib layer 8 on the surface of the copper heat transfer member 6, excellent corrosion resistance and heat resistance can be achieved, so that corrosion products on the copper heat transfer member 6 are prevented. This eliminates the accumulation of copper ions, prevents incomplete combustion, decreases in thermal efficiency, and contaminates the surrounding area.In addition, copper ions do not elute into acidic condensed water, so even if discharged to the sewer, the copper ion wastewater standard value is fully satisfied. This allows the durability and reliability of the heat exchanger to be significantly improved.

次に本発明の具体的効果を表わす実験結果を説明する。Next, experimental results showing specific effects of the present invention will be explained.

実験例1 伝熱部材として寸法30X30X0.4 zmの銅板を
用い、この銅板を次の順序で前処理を実施した。
Experimental Example 1 A copper plate with dimensions of 30 x 30 x 0.4 zm was used as a heat transfer member, and this copper plate was pretreated in the following order.

溶剤脱脂−70’C1o%硫酸15分浸漬−水洗→常温
10%塩酸浸漬→水洗→乾燥 次に、この銅板を塩化アンモニウム、塩化亜鉛、塩酸、
水を主成分とするフラックス中に浸漬し、140°Cで
乾燥後、第1表に記載の合金による溶融メッキ処理を施
した。
Solvent degreasing - Immersion in 70'C1o% sulfuric acid for 15 minutes - Washing with water → Immersion in 10% hydrochloric acid at room temperature → Washing with water → Drying Next, this copper plate was treated with ammonium chloride, zinc chloride, hydrochloric acid,
After being immersed in a flux containing water as a main component and dried at 140°C, it was subjected to hot-dip plating using the alloys listed in Table 1.

(吠1ヶら) 第1表 メッキ層の合金組成 なお、溶融メッキ処理温度は400″Cで、あり、メッ
キ後の膜厚はすべて10−20μmであった。
(From No. 1) Table 1: Alloy composition of plating layer The hot-dip plating temperature was 400''C, and the film thickness after plating was 10-20 μm.

実験例2 実験例1で作製した試料隆3を用い、このメッキ層上に
第2表で記載の各有機系樹脂バインダーを各々適性溶剤
で適当な粘度に調整した後、浸漬により塗布し、加熱硬
化させコーティング層8を形成した。
Experimental Example 2 Using the sample ridge 3 prepared in Experimental Example 1, each organic resin binder listed in Table 2 was adjusted to an appropriate viscosity with an appropriate solvent on the plated layer, and then applied by dipping and heated. It was cured to form a coating layer 8.

第2表 コーティング層の樹脂種類 なお、このコーティング層の膜厚はすべて10〜20μ
mであった。
Table 2 Types of resin in coating layer The thickness of all coating layers is 10 to 20 μm.
It was m.

以上のように作製したテストピースについて、硝酸11
00pp (pH=2.7〜2゜9 )の溶液を用い6
0’Cで100時間の浸漬による腐食試験を実施し、腐
食減量で耐食性を評価した。なお、耐食性比較のため、
従来の鉛メッキを施したものについても同様に試験を実
施した。
Regarding the test piece prepared as above, nitric acid 11
6 using a solution of 00pp (pH=2.7~2°9)
A corrosion test was conducted by immersion at 0'C for 100 hours, and corrosion resistance was evaluated based on corrosion weight loss. For comparison of corrosion resistance,
A similar test was conducted on a conventional lead-plated one.

その結果を第3表に示す。The results are shown in Table 3.

(ptTケリ 第3表 硝酸水溶液による耐食性評価 (mg) 第3表で明らかなように銅板にメッキ層7およびコーテ
ィング層8を設けた試料N[17〜9は良好な耐食性を
示すことが確認された。また、メッキ層7のみ設けた試
料集1〜6についても従来の鉛メッキと比較すると良好
な耐食性を示すことから、主熱交換部Aでの耐食性は充
分期待できる。
(ptT table 3 Corrosion resistance evaluation using nitric acid aqueous solution (mg)) As is clear from Table 3, samples N [17 to 9, in which plating layer 7 and coating layer 8 were provided on the copper plate, were confirmed to exhibit good corrosion resistance. In addition, sample collections 1 to 6 in which only the plating layer 7 was provided also showed good corrosion resistance when compared with conventional lead plating, so that corrosion resistance in the main heat exchange section A can be expected to be sufficient.

また、前記腐食試験後の試験液について銅イオンを原子
吸光光度計により分析したところ試料隘1〜9すべで銅
イオンは検出されなかった。
Further, when the test liquid after the corrosion test was analyzed for copper ions using an atomic absorption spectrophotometer, no copper ions were detected in all of sample holes 1 to 9.

実験例3 次に第1図に示す燃焼装置と熱交換器を用い、1分間燃
焼、1分間消火の繰返し耐久試験を5万サイクル実施し
た。この熱交換器は全体にビスマス(90重量部)−ア
ンチモン(1o it量部) 合金によるメッキ層7と
潜熱回収用熱交換部Bのメッキ層7上にメラミンOアク
リル樹脂によ、るコーティング層8を設けた構成として
いる。その結果、メッキ層7に腐食生成物が認められた
ものの不完全燃焼を起こしたり、熱効率の低下はなく、
さらに排出される凝縮水中には銅イオンが検出されず下
水道排水基準を満足していることが確認された。
Experimental Example 3 Next, using the combustion apparatus and heat exchanger shown in FIG. 1, a 50,000-cycle durability test was conducted in which the combustion device was burned for 1 minute and extinguished for 1 minute. This heat exchanger has a coating layer 7 made of a bismuth (90 parts by weight)-antimony (1 part by weight) alloy and a coating layer made of melamine O acrylic resin on the plating layer 7 of the heat exchange section B for latent heat recovery. 8. As a result, although corrosion products were observed in the plating layer 7, there was no incomplete combustion or a decrease in thermal efficiency.
Furthermore, no copper ions were detected in the condensed water discharged, confirming that it satisfies sewerage drainage standards.

発明の効果 以上のように本発明の熱交換器によれば次の効果を得る
ことができる。
Effects of the Invention As described above, the heat exchanger of the present invention provides the following effects.

(1)伝熱部材の腐食を著しく抑制できるので吸熱フィ
ン間に腐食生成物の堆積がなくなり、燃焼排ガスの流れ
が阻害されないため不完全燃焼の発生を防止することが
できる。
(1) Corrosion of the heat transfer member can be significantly suppressed, so there is no accumulation of corrosion products between the heat absorbing fins, and the flow of combustion exhaust gas is not inhibited, so incomplete combustion can be prevented.

(2)伝熱部材の腐食による孔あきや脱落がなくなり、
熱交換器として耐久性が大幅に向上し、燃焼装置として
の信頼性が向上する。
(2) No more holes or falling off due to corrosion of heat transfer members.
Its durability as a heat exchanger is greatly improved, and its reliability as a combustion device is improved.

(3腐食を著しく防止できるので初期の優れた熱効率を
長期にわたり維持することができる。
(3) Since corrosion can be significantly prevented, the initial excellent thermal efficiency can be maintained over a long period of time.

に)酸性凝縮水を下水道へ排出しても銅イオンが含まれ
ないため、下水道の排水基準値を満足することができる
(b) Even if acidic condensed water is discharged to the sewer, it does not contain copper ions, so it can meet the sewer drainage standards.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される燃焼装置を示す断面図、第
2図a、bは本発明の一実施例の熱交換器を示す要部断
面図である。 3・・・・・・熱交換器、4・・・・・・吸熱フィン、
5・・・・・・水管、6・・・・・・銅製伝熱部材、7
・・・・・・メッキ層、8−・・・・・コーティング層
、A・・・・・・主熱交換部、B・・・・・・潜熱回収
用熱交換部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 1 is a sectional view showing a combustion apparatus to which the present invention is applied, and FIGS. 2a and 2b are sectional views of essential parts of a heat exchanger according to an embodiment of the present invention. 3... Heat exchanger, 4... Endothermic fin,
5... Water pipe, 6... Copper heat transfer member, 7
...... Plating layer, 8-... Coating layer, A... Main heat exchange section, B... Heat exchange section for latent heat recovery. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (3)

【特許請求の範囲】[Claims] (1)バーナと燃焼室の下部に配置され、吸熱フィンと
水管の銅製伝熱部材よりなる主熱交換部と潜熱回収用熱
交換部を一体化した構成とし、前記主熱交換部と潜熱回
収用熱交換部の銅製伝熱部材表面に、ビスマス−アンチ
モン、ビスマス−アンチモン−スズのいずれか1種の合
金によるメッキ層と、潜熱回収用熱交換部の前記メッキ
層上に有機系樹脂バインダーによるコーティング層を形
成した熱交換器。
(1) The main heat exchange section and the latent heat recovery heat exchange section are arranged in the lower part of the burner and the combustion chamber, and are made of copper heat transfer members such as heat absorption fins and water tubes. A plating layer made of an alloy of bismuth-antimony or bismuth-antimony-tin is formed on the surface of the copper heat transfer member of the heat exchanger for latent heat recovery, and an organic resin binder is formed on the plating layer of the heat exchanger for latent heat recovery. A heat exchanger with a coating layer.
(2)ビスマス−アンチモンの合金メッキが、アンチモ
ン4重量%〜14重量%とビスマス残部の組成である特
許請求の範囲第1項記載の熱交換器。
(2) The heat exchanger according to claim 1, wherein the bismuth-antimony alloy plating has a composition of 4% to 14% by weight of antimony and the remainder bismuth.
(3)有機樹脂バインダーのコーティング層が、エポキ
シ樹脂、ポリアミドイミド樹脂、メラミン、アクリル樹
脂のいずれか1種よりなる特許請求の範囲第1項記載の
熱交換器。
(3) The heat exchanger according to claim 1, wherein the organic resin binder coating layer is made of any one of epoxy resin, polyamideimide resin, melamine, and acrylic resin.
JP24112684A 1984-11-15 1984-11-15 Heat exchanger Pending JPS61119697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24112684A JPS61119697A (en) 1984-11-15 1984-11-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24112684A JPS61119697A (en) 1984-11-15 1984-11-15 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS61119697A true JPS61119697A (en) 1986-06-06

Family

ID=17069668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24112684A Pending JPS61119697A (en) 1984-11-15 1984-11-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS61119697A (en)

Similar Documents

Publication Publication Date Title
US6790481B2 (en) Corrosion-resistant heat exchanger
JPH0448546B2 (en)
JP2004053167A (en) Conduit for fluid channel and heat exchanger comprising the same
JPS61119697A (en) Heat exchanger
JPS6115044A (en) Heat exchanger
JPS60245787A (en) Heat exchanger
JPS60164168A (en) Heat exchanger
JPS6057152A (en) Heat exchanger
JPH04184098A (en) Heat exchanger
JPH04190097A (en) Heat exchanger
JPS60194296A (en) Material for heat exchanger, which is prominent in anticorrosion
JPS60240956A (en) Heat exchanger
JPS59229200A (en) Heat exchanger
JPH04306494A (en) Heat exchanger
JPS60213757A (en) Heat exchanger
JPS5969695A (en) Heat exchanger for heating water
JPS60164167A (en) Heat exchanger
JPS6020049A (en) Heat exchanger
JPS60153973A (en) Preparation of heat exchanger for heating water
JPH06323779A (en) Heating device
JPS622670B2 (en)
JPH11153360A (en) Heat exchanger for recovering latent heat
JP2000274831A (en) Heat exchanger
JPS59200153A (en) Heat exchanger
JPH02101396A (en) Heat exchanger