JPS60245787A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS60245787A
JPS60245787A JP59101043A JP10104384A JPS60245787A JP S60245787 A JPS60245787 A JP S60245787A JP 59101043 A JP59101043 A JP 59101043A JP 10104384 A JP10104384 A JP 10104384A JP S60245787 A JPS60245787 A JP S60245787A
Authority
JP
Japan
Prior art keywords
heat
plating layer
heat exchanger
heat exchange
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59101043A
Other languages
Japanese (ja)
Inventor
Yu Fukuda
祐 福田
Yasunori Kaneko
金子 康典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59101043A priority Critical patent/JPS60245787A/en
Publication of JPS60245787A publication Critical patent/JPS60245787A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only

Abstract

PURPOSE:To improve durability and reliability of a heat exchanger to be used for a combustion device for hot water supply or heating by uniting a main heat exchange part and a heat exchange part for recovering latent heat to one body and forming a plating layer on the surface of a copper heat transmitting member. CONSTITUTION:The heat exchanger 3 consisting of the main heat exchange part A and the heat exchange part B for absorbing latent heat in one body is disposed below a combustion chamber 2. The copper heat transmitting member 6 constitutes heat absorbing fins 4 and a water tube 5. The plating layer consisting essentially of Ni is formed on both of the parts A and B and further the plating layer 8 consisting essentially of Sn is formed on the plating layer 7 of the part B. The compsn. of the layer 7 consists of an alloy of Ni and P, for which electroless plating is applied. The compsn. of the plating layer 8 consists of an alloy of >=1 kinds from the group of Bi, Al and Mg and Sn, for which hot dipping is applied. The corrosion of the heat exchanger is prevented by the above-mentioned constitution, by which the durability and reliability thereof are improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は給湯あるいは暖房用の燃焼装置に使用される熱
交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat exchanger used in a combustion device for hot water supply or space heating.

従来例の構成とその問題点 最近、給湯あるいは暖房を行なう燃焼装置において、省
エネルギーの観点から高性能化の指向が強くなり熱効率
の向上を図るため燃焼排ガス中の水蒸気を積極的に凝縮
させ、潜熱を回収する機能を付加した熱交換器の開発が
活発に行なわれており、一部実用化されているものもあ
る。
Conventional configurations and their problems Recently, there has been a strong trend toward higher performance from the perspective of energy conservation in combustion equipment for hot water supply or space heating. The development of heat exchangers with the added function of recovering heat is actively underway, and some of them have already been put into practical use.

燃焼排ガス中には多量の窒素酸化物、炭酸ガス、水蒸気
と微量のイオウ酸化物などが含まれており、前述のよう
に潜熱を回収するため水蒸気を凝縮させると燃焼排ガス
が溶解したPH=2〜4の酸性の結露水が多量に生成す
る。従来より、熱交換器の表面処理材としては鉛を主成
分とした鉛−スズの合金を溶融メッキ処理したものが一
般的であった。しかし、この鉛−スズの合金メッキを潜
熱回収機能を付加した熱交換器に適用した場合、鉛自身
が前述の酸性結露水に対する抵抗がないため極めて短期
間で腐食するとともに、熱交換器素材である銅をも腐食
させ、熱交換器の性能を低下させたり、穴がおいて水洩
れなどの原因となり、耐久性、信頼性を著しく損・なう
という問題があった。
The combustion exhaust gas contains large amounts of nitrogen oxides, carbon dioxide gas, water vapor, and trace amounts of sulfur oxides, and as mentioned above, when the steam is condensed to recover latent heat, the combustion exhaust gas dissolves at a pH of 2. A large amount of acidic condensed water of ~4 is generated. Conventionally, the surface treatment material for heat exchangers has generally been a hot-dip plated lead-tin alloy containing lead as a main component. However, when this lead-tin alloy plating is applied to a heat exchanger with a latent heat recovery function, it corrodes in an extremely short period of time because the lead itself has no resistance to the acidic condensation water mentioned above, and the heat exchanger material There have been problems in that it corrodes some copper, lowering the performance of heat exchangers, or creating holes that can cause water leaks, resulting in a significant loss of durability and reliability.

また、前記酸性結露水は機器より排水されるが下水道の
排水基準に鉛がlppmす、下、銅が3ppm 以下と
定められており、前述の腐食が発生ずると酸性結露水中
に多量の鉛、銅が溶解するため前記排水基準を満足てき
ないという問題があった。
In addition, the acidic condensation water is drained from the equipment, but the drainage standards for sewerage systems stipulate that the lead content is 1 ppm, and the copper content is 3 ppm or less.If the above-mentioned corrosion occurs, a large amount of lead, There was a problem that the above-mentioned wastewater standards could not be satisfied because the copper was dissolved.

一方、顕熱を熱交換する部分においては高温下での水蒸
気酸化や燃焼を停止した際の冷却時に一部結露現象が起
きることによる腐食か発生し、吸熱フィン間に腐食生成
物か堆積し、排カスの流れが阻害され不完全燃焼を起こ
したり、熱伝導か悪くなるために熱効率を低下させたり
なとの問題かあった。
On the other hand, in the parts that exchange sensible heat, corrosion occurs due to steam oxidation at high temperatures and partial dew condensation during cooling when combustion is stopped, and corrosion products accumulate between the heat-absorbing fins. There were problems such as the flow of waste gas being obstructed, resulting in incomplete combustion, and poor heat conduction, resulting in a decrease in thermal efficiency.

発明の目的 本発明はかかる従来の問題を解消するもので熱交換器の
燃焼排カスが溶解した酸性結露水による腐食や高温酸化
による腐食を防止することにより熱交換器の耐久性の向
上を図るとともに、不完全燃焼や熱効率の低下を防止し
、燃焼装置としての信頼性の向上を図ることを目的とす
る。
Purpose of the Invention The present invention solves such conventional problems, and aims to improve the durability of the heat exchanger by preventing corrosion caused by acidic condensation water in which combustion waste of the heat exchanger is dissolved and corrosion caused by high-temperature oxidation. At the same time, the purpose is to prevent incomplete combustion and a decrease in thermal efficiency, and to improve the reliability of the combustion device.

発明の構成 この目的を達成するために本発明はバーナと燃焼室の下
部に配置され、吸熱フィンと水管の銅製伝熱部材よりな
る主熱交換部と潜熱回収用熱交換部を一体化した構成と
し、前記主熱交換部と潜熱回収用熱交換部の銅製伝熱部
材表面にニッケルを主成分とするメッキ層と、前記潜熱
回収用熱交換部の前記メッキ層」−にスズを主成分とす
るメッキ層とを形成したものである。
Structure of the Invention In order to achieve this object, the present invention has a structure in which a main heat exchange part and a latent heat recovery heat exchange part are integrated, which are disposed below the burner and the combustion chamber and are made of copper heat transfer members such as heat absorption fins and water tubes. and a plating layer containing nickel as a main component on the surface of the copper heat transfer member of the main heat exchange section and the heat exchange section for latent heat recovery, and a plating layer containing tin as the main component of the plating layer of the heat exchange section for latent heat recovery. A plating layer is formed.

この構成によって、燃焼中に潜熱回収用熱交換部におい
て多量の酸性結露水が生成しても銅製伝熱部材に形成し
た2層のメッキ層が耐食性に優れているため腐食を著し
く抑制することができ、また、主熱交換部においては前
記銅製伝熱部材に形成した1層のメッキ層が耐熱性、耐
食性に優れているため、高温酸化や燃焼停止時に生する
結露現象による腐食を防止できる。
With this configuration, even if a large amount of acidic condensation water is generated in the heat exchanger for latent heat recovery during combustion, corrosion can be significantly suppressed because the two plating layers formed on the copper heat transfer member have excellent corrosion resistance. In addition, in the main heat exchange section, the single plating layer formed on the copper heat transfer member has excellent heat resistance and corrosion resistance, so corrosion due to high temperature oxidation and dew condensation phenomenon that occurs when combustion is stopped can be prevented.

実施例の説明 以下、本発明の一実施例について第1図、第2図により
説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明の熱交換器を塔載した燃焼装置の断面図
であり、1はバーナ、2は燃焼室、3は熱交換器、4は
吸熱フィン、5は水管である。熱交換器3は燃焼室2の
下部に配置され、主熱交換部Aと潜熱回収用熱交換部B
が一体化された構成となっている。第2図は本発明を示
す熱交換器の要部断面図であり、(a)は主熱交換部A
、(blは潜熱回収用熱交換部Bの構成を示す。6は吸
熱フィン、水管を構成する銅製伝熱部材、7はニッケル
を主成分とするメッキ層、8はスズを主成分とするメッ
キ層である。ニッケルを主成分とするメッキ層7は主熱
交換部Aと潜熱回収用熱交換部Bの両方に形成され、ス
ズを主成分とするメッキ層8は潜熱回収用熱交換部Bの
メッキ層7の上に形成される。
FIG. 1 is a sectional view of a combustion apparatus equipped with a heat exchanger according to the present invention, in which 1 is a burner, 2 is a combustion chamber, 3 is a heat exchanger, 4 is an endothermic fin, and 5 is a water tube. The heat exchanger 3 is arranged at the lower part of the combustion chamber 2, and includes a main heat exchange section A and a latent heat recovery heat exchange section B.
It has an integrated structure. FIG. 2 is a sectional view of a main part of a heat exchanger showing the present invention, and (a) is a main heat exchange section A.
, (bl indicates the configuration of the heat exchange part B for latent heat recovery. 6 is a heat absorption fin, a copper heat transfer member that constitutes a water tube, 7 is a plating layer mainly composed of nickel, and 8 is a plating layer mainly composed of tin. The plating layer 7 mainly composed of nickel is formed on both the main heat exchange section A and the heat exchange section B for latent heat recovery, and the plating layer 8 mainly composed of tin is formed on the heat exchange section B for latent heat recovery. is formed on the plating layer 7 of.

前記メッキ層7の組成はニッケルとリンの合金よりなり
、その形成手段は複雑な形状でも均一な膜厚が得られる
ように無電解(化学的置換)メッキが適用される。一方
、前記メッキ層8の組成はビスマス、アルミニウム、マ
グネシウムの群から選択された1種以上とスズとの合金
よりなり、その形成手段は、前記合金の融点が300 
’C以下であるので溶融メッキが適用される。
The composition of the plating layer 7 is an alloy of nickel and phosphorus, and electroless (chemical substitution) plating is used to form it so that a uniform film thickness can be obtained even in a complex shape. On the other hand, the composition of the plating layer 8 is an alloy of one or more selected from the group of bismuth, aluminum, and magnesium and tin, and the forming means is such that the melting point of the alloy is 300
'C or less, hot-dip plating is applied.

この構成において、第1図に示す燃焼装置を用いて燃焼
させた際、主熱交換部Aにおいてはバーナからの燃焼熱
により加熱され250〜300°Cの高温になり、しか
も高温下で水蒸気、燃焼排ガスによるアタックを受ける
とともに、燃焼を停止した際には冷却されることにより
、吸熱フィン4と水管5の接触部にわずかであるが酸性
の結露水が生成する。しかし、吸熱フィン4や水管5を
構成する銅製伝熱部材6に耐熱性、耐食性に優れたニッ
ケルを主成分とするメッキ層7を形成しているので、熱
による劣化を防止できるとともに高温酸化や結露現象に
よる腐食を防止することができ、腐食生成物の堆積を著
しく抑制することができる。
In this configuration, when combustion is performed using the combustion apparatus shown in FIG. In addition to being attacked by combustion exhaust gas, when combustion is stopped, the fuel is cooled, and a small amount of acidic dew condensation water is generated at the contact area between the heat absorbing fins 4 and the water pipes 5. However, since the copper heat transfer member 6 that constitutes the heat absorbing fins 4 and the water tubes 5 is coated with a plating layer 7 mainly composed of nickel, which has excellent heat resistance and corrosion resistance, it is possible to prevent deterioration due to heat and prevent high temperature oxidation. Corrosion due to dew condensation can be prevented, and accumulation of corrosion products can be significantly suppressed.

一方、潜熱回収用熱交換部Bは熱交換器の設計上、燃焼
中は常に露点以下となり水蒸気が凝縮し、これに燃焼排
ガスが溶解し、pHが3程度の酸性結露水が多量に生成
する環境となるが潜熱回収用熱交換部Bには銅製伝熱部
材6に耐食性に優れているニッケルを主成分とするメッ
キ層7とスズを主成分とするメッキ層8の2層のメッキ
層を形成しているため、銅製伝熱部材6の腐食を著しく
防止することができる。特に、スズを主成分とするメッ
キ層8は前記酸性結露水の主成分である硝酸、炭酸に対
する抵抗力が強く腐食量が極めて少ない。
On the other hand, due to the design of the heat exchanger for latent heat recovery heat exchange section B, the temperature is always below the dew point during combustion, and the water vapor condenses, and the combustion exhaust gas is dissolved in this, producing a large amount of acidic condensed water with a pH of about 3. In the heat exchange part B for latent heat recovery, the copper heat transfer member 6 is coated with two plating layers: a plating layer 7 mainly composed of nickel, which has excellent corrosion resistance, and a plating layer 8 mainly composed of tin. Therefore, corrosion of the copper heat transfer member 6 can be significantly prevented. In particular, the plating layer 8 whose main component is tin is highly resistant to nitric acid and carbonic acid, which are the main components of the acidic condensation water, and the amount of corrosion is extremely small.

しかもメッキ層8のピンホールを介して腐食因子が侵入
してもメッキ層8の下にはニッケルを主成分とするメッ
キ層7を形成しているため、銅製伝熱部材6への腐食因
子の侵入はほとんど阻止することができ、さらに、メッ
キ層7,8の成分か銅よりも電位的に卑であるので各メ
ッキ層が慣性陽極的作用を有し、銅製伝熱部材6から銅
イオンとして酸性結露水中へ溶出することもなく下水道
の排水基準である3ppm 以下の値を充分満足するこ
とができる。
Moreover, even if corrosion factors enter through the pinholes in the plating layer 8, since the plating layer 7 whose main component is nickel is formed below the plating layer 8, the corrosion factors will not enter the copper heat transfer member 6. Invasion can be almost completely prevented, and furthermore, since the components of the plating layers 7 and 8 are more base in potential than copper, each plating layer has an inertial anode effect, and copper ions are removed from the copper heat transfer member 6. It does not dissolve into acidic condensation water and satisfies the sewer drainage standard of 3 ppm or less.

7及び8を形成することにより、優れた耐食性、耐熱性
を実現できるので銅製伝熱部材6への腐食生成物の堆積
がなくなり、不完全燃焼、熱効率の低下、周囲の汚染を
防止することかできるとともに熱交換器としての耐久性
、信頼性を著しく向上させることができる。
By forming 7 and 8, excellent corrosion resistance and heat resistance can be achieved, which eliminates the accumulation of corrosion products on the copper heat transfer member 6, preventing incomplete combustion, reduction in thermal efficiency, and contamination of the surrounding area. At the same time, the durability and reliability of the heat exchanger can be significantly improved.

次に本発明の具体的効果を表わす実験結果を説明する。Next, experimental results showing specific effects of the present invention will be explained.

実験例1 伝熱部材として寸法が75 X 75 Xo、4mmの
銅板を用い、第1表記載の合金によるメッキ層を形成し
、テストピースを作成した。
Experimental Example 1 A copper plate with dimensions of 75 x 75 Xo and 4 mm was used as a heat transfer member, a plating layer of the alloy listed in Table 1 was formed, and a test piece was created.

(1表1 表 白) 第1表 各メッキ層の合金の種類 なお、ニッケルとリンの合金よりなるメッキ層7は無電
解メッキにより、膜厚3〜51tmとなるように形成し
、試料2〜5のメッキ層8は前記メッキ層7の上に溶融
メッキにより、膜厚1o〜20μmとなるように形成し
た。また、比較のため前記銅板に従来の鉛99wt%−
スズ1wt%の溶融メッキを施したものも作成した。
(Table 1 Table 1 White) Table 1 Types of alloys in each plating layer The plating layer 7 made of an alloy of nickel and phosphorus was formed by electroless plating to a thickness of 3 to 51 tm, and The plating layer 8 of No. 5 was formed on the plating layer 7 by hot-dip plating to a thickness of 10 to 20 μm. Also, for comparison, the copper plate was made of conventional 99wt% lead.
A sample coated with hot-dip plating containing 1 wt% tin was also produced.

以上のように作成したテストピースについて、酸性結露
水での浸漬による腐食試験を実施した。
A corrosion test was conducted on the test piece prepared as described above by immersion in acidic dew water.

酸性結露水は第1図に示す燃焼装置を燃焼させた際に生
成する結露水を採取したものを用い、6゜°Cでioo
時間浸漬後の腐食減量で耐食性を評価した。その結果を
第2表に記す。
The acidic condensed water was collected from the condensed water generated during combustion in the combustion device shown in Figure 1, and was heated to iodine at 6°C.
Corrosion resistance was evaluated by corrosion loss after immersion for a time. The results are shown in Table 2.

第2表 酸性結露水による耐食性評価 *鉛−スズ合金のメッキ 第2表で明らかなように、本発明の銅製伝熱部材表面に
メッキ層7,8を形成した試料1′!:12〜5のテス
トピースは良好な耐食性を示すことが確認された。また
、ニッケル、リン合金によるメッキ層7のみ形成したも
のについても比較的良好な耐食性を示し、潜熱回収用熱
交換部Bよりも腐食環境の弱い主熱交換部Aへの適用は
充分可能といえる。
Table 2 Corrosion resistance evaluation using acidic condensation water *Plating of lead-tin alloy As is clear from Table 2, sample 1' in which plating layers 7 and 8 were formed on the surface of the copper heat transfer member of the present invention! : It was confirmed that test pieces of 12 to 5 exhibited good corrosion resistance. Furthermore, the plated layer 7 made of nickel and phosphorus alloy only has relatively good corrosion resistance, and can be applied to the main heat exchange section A, which has a weaker corrosive environment than the latent heat recovery heat exchange section B. .

また、腐食試験後の酸性結露水について、銅イオンを原
子吸光光度計を用いて分析したが、試料No、1〜5と
もに銅イオンは検出されていない。
In addition, copper ions were analyzed using an atomic absorption spectrophotometer in the acidic dew water after the corrosion test, but no copper ions were detected in any of samples Nos. 1 to 5.

実験例2 次に、実験例1で述べた試料No、1をメッキ層7、試
料隘2〜5をメッキ層8として、第1図、第2図で示す
燃焼装置と熱交換器を用い、1分間燃焼、1分間消火の
繰返し試験を5万サイクル実施した結果、いずれもメッ
キ層7及び8にわずかに腐食生成物か認められたものの
、不完全燃焼を起こしたり、熱効率の低下はなく、さら
に、酸性結露水中には銅イオンが認められず下水道排水
基準を満足していることが確認された。
Experimental Example 2 Next, using the combustion device and heat exchanger shown in FIGS. 1 and 2, using sample No. 1 described in Experimental Example 1 as the plating layer 7 and sample holes 2 to 5 as the plating layer 8, As a result of conducting 50,000 cycles of repeated tests of burning for 1 minute and extinguishing for 1 minute, slight corrosion products were observed in plating layers 7 and 8, but there was no incomplete combustion or decrease in thermal efficiency. Furthermore, no copper ions were found in the acidic condensation water, confirming that it satisfies sewerage drainage standards.

耐食性という観点では主熱交換部Aにもメッキ層8を形
成することで一層の耐食性向上を図ることができるか、
メッキ層8のスズを主成分とする合金は融点が300°
C以下と低いため、温度的に主熱交換部Aへの適用はで
きない。一方、ニッケルを主成分とするメッキ層7は融
点が約900″Cと非常に高(耐熱性に優れ、かつ水蒸
気酸化に対しても優れた抵抗力を示すことから、主熱交
換部Aにはニッケルを主成分とするメッキ層のみを形成
する方か構成上最善である。
From the perspective of corrosion resistance, is it possible to further improve corrosion resistance by forming the plating layer 8 also on the main heat exchange part A?
The alloy mainly composed of tin in plating layer 8 has a melting point of 300°.
Since the temperature is low, below C, it cannot be applied to the main heat exchange section A in terms of temperature. On the other hand, the plating layer 7 mainly composed of nickel has a very high melting point of about 900"C (it has excellent heat resistance and also shows excellent resistance to steam oxidation, so it is used in the main heat exchange section A. It is best to form only a plating layer mainly composed of nickel.

発明の効果 以上のように本発明の熱交換器によれば次の効果を得る
ことができる。
Effects of the Invention As described above, the heat exchanger of the present invention provides the following effects.

(1)伝熱部材の腐食を著しく抑制できるので吸熱フィ
ン間に腐食生成物の堆積がなくなり、燃焼排カスの流れ
が阻害されないため不完全燃焼の発生を防止することが
できる。
(1) Corrosion of the heat transfer member can be significantly suppressed, so there is no accumulation of corrosion products between the heat absorbing fins, and the flow of combustion waste is not inhibited, so incomplete combustion can be prevented.

(2)伝熱部材の腐食による穴あきや脱落がなくなり、
熱交換器としての耐久性が大幅に向上し、燃焼装置とし
ての信頼性が向上する。
(2) No more holes or falling off due to corrosion of heat transfer members.
The durability as a heat exchanger is greatly improved, and the reliability as a combustion device is improved.

(3)銅製伝熱部材の表面には合金によるメッキ層を形
成しているため、銅の優れた熱伝導性をあまり損なうこ
とがなく、かつ、腐食の発生を著しく抑制できるので、
初期の優れた熱効率を長期にわたり維持することができ
る。
(3) Since an alloy plating layer is formed on the surface of the copper heat transfer member, the excellent thermal conductivity of copper is not significantly impaired, and the occurrence of corrosion can be significantly suppressed.
The initial excellent thermal efficiency can be maintained over a long period of time.

(4)酸性結露水を排水しても銅イオンが含まれないた
め、下水道の排水基準値を満足することができる。
(4) Even if the acidic condensation water is drained, it does not contain copper ions, so it can meet sewer drainage standards.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される燃焼装置を示す断面図、第
2図(a) 、 (b)は本発明の一実施例の熱交換器
を示す要部断面図である。 3°° ・熱交換器、4・・・・・・吸熱フィン、5・
・・・・水管、6・・・・・・銅製伝熱部材、7・・・
;・メッキ層、8・・・メッキ層、A・・・・主熱交換
部、B・・・・潜熱回収用熱交換部。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第2図
FIG. 1 is a sectional view showing a combustion device to which the present invention is applied, and FIGS. 2(a) and 2(b) are sectional views showing essential parts of a heat exchanger according to an embodiment of the present invention. 3°° ・Heat exchanger, 4... Endothermic fin, 5.
...Water pipe, 6...Copper heat transfer member, 7...
Plated layer, 8... Plated layer, A... Main heat exchange section, B... Heat exchange section for latent heat recovery. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)バーナと燃焼室の下部に配置され、吸熱フィンと
水管の銅製伝熱部材よりなる主熱交換部と、潜熱回収用
熱交換部を一体化した構成とし、前記主熱交換部と潜熱
回収用熱交換部の銅製伝熱部材表面にニッケルを生成分
とするメッキ層と、前記潜熱回収用熱交換部の前記メッ
キ層上に、スズを主成分とするメッキ層とを形成した熱
交換器。
(1) A main heat exchange section is arranged below the burner and the combustion chamber, and is composed of copper heat transfer members such as heat absorption fins and water tubes, and a heat exchange section for latent heat recovery is integrated, and the main heat exchange section and the latent heat A heat exchanger in which a plating layer containing nickel as a product is formed on the surface of a copper heat transfer member of a heat exchanger for recovering latent heat, and a plating layer containing tin as a main component on the plating layer of the heat exchanger for latent heat recovery. vessel.
(2) ニッケルを主成分とするメッキ層がニッケルと
リンの合金である特許請求の範囲第1項記載の熱交換器
(2) The heat exchanger according to claim 1, wherein the plating layer containing nickel as a main component is an alloy of nickel and phosphorus.
(3) スズを主成分とするメッキ層がビスマス、アル
ミニウム、マグネシウムの群から選択された1種以上と
スズの合金である特許請求の範囲第1項記載の熱交換器
(3) The heat exchanger according to claim 1, wherein the plating layer containing tin as a main component is an alloy of tin and one or more selected from the group of bismuth, aluminum, and magnesium.
JP59101043A 1984-05-18 1984-05-18 Heat exchanger Pending JPS60245787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59101043A JPS60245787A (en) 1984-05-18 1984-05-18 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59101043A JPS60245787A (en) 1984-05-18 1984-05-18 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS60245787A true JPS60245787A (en) 1985-12-05

Family

ID=14290109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59101043A Pending JPS60245787A (en) 1984-05-18 1984-05-18 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS60245787A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167586A (en) * 1993-12-13 1995-07-04 Rinnai Corp Heat exchanger
WO1998017841A1 (en) * 1996-10-21 1998-04-30 Carrier Corporation Advanced galvanic corrosion protection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167586A (en) * 1993-12-13 1995-07-04 Rinnai Corp Heat exchanger
WO1998017841A1 (en) * 1996-10-21 1998-04-30 Carrier Corporation Advanced galvanic corrosion protection

Similar Documents

Publication Publication Date Title
JPS61186164A (en) Production of aluminum heat exchanger
JP2017044468A (en) Brazable component and heat exchanger comprising the same
JP3867632B2 (en) Conduit for fluid flow path and heat exchanger provided with the conduit
JP2000292010A (en) Heat-exchange device
JPS60245787A (en) Heat exchanger
JPS6115044A (en) Heat exchanger
KR0132742B1 (en) Heat exchanger apparatus
JPH04306494A (en) Heat exchanger
JPS60164167A (en) Heat exchanger
JPS61119697A (en) Heat exchanger
JPS59229200A (en) Heat exchanger
JP2004233011A (en) Method for manufacturing heat exchanger made of aluminum for fuel cell
JPS59200153A (en) Heat exchanger
JPH04190097A (en) Heat exchanger
JPS6057152A (en) Heat exchanger
JPS60240956A (en) Heat exchanger
JPS58123097A (en) Heat exchanger for water heater
JP2648311B2 (en) Smoke tube heat recovery heat exchanger
JPS60164168A (en) Heat exchanger
CA1168225A (en) Heat pipe
JP2000274831A (en) Heat exchanger
JPS60194296A (en) Material for heat exchanger, which is prominent in anticorrosion
JPH02101396A (en) Heat exchanger
Zahri Mechanical and Microstructure Analysis of Copper to Copper Foam Brazing Using Copper-Tin Nickel-Phosphorus Amorphous Filler Alloys
JPS6038555A (en) Heat exchanger