JPS61119628A - Cleaning method of organic solvent after extracting metallic ion - Google Patents
Cleaning method of organic solvent after extracting metallic ionInfo
- Publication number
- JPS61119628A JPS61119628A JP59241677A JP24167784A JPS61119628A JP S61119628 A JPS61119628 A JP S61119628A JP 59241677 A JP59241677 A JP 59241677A JP 24167784 A JP24167784 A JP 24167784A JP S61119628 A JPS61119628 A JP S61119628A
- Authority
- JP
- Japan
- Prior art keywords
- cleaning
- organic solvent
- metal ions
- concn
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Extraction Or Liquid Replacement (AREA)
Abstract
Description
本発明は、金属イオンを抽出した有@忍媒の洗浄方法に
係り、特に、鋼板酸洗廃液から鉄化合物や酸を回収する
際に用いるのに好適な、イオン交換型抽出剤と石油系炭
化水素希釈剤とからなる有機溶媒を用いて水溶液中の金
属イオンを抽出する工程での金属イオンを抽出した有機
溶媒の洗浄方法に関する。The present invention relates to a method for cleaning an ion-exchanged extractant from which metal ions have been extracted, and in particular, an ion-exchange type extractant and a petroleum-based carbonization agent suitable for use in recovering iron compounds and acids from steel plate pickling waste liquid. The present invention relates to a method for cleaning an organic solvent from which metal ions have been extracted in a step of extracting metal ions from an aqueous solution using an organic solvent comprising a hydrogen diluent.
近年、鉄鋼業等における鋼板酸洗廃液、めっき廃液、そ
の池の金属表面処理廃液から金属及び酸を回収する方法
として、あるいは、非鉄金属における湿式製錬方法とし
て、有機溶媒を用いた溶媒抽出法が行われている。この
溶媒抽出法によれば、金属を選択的に回収できるので回
収金属化合物の純度の向上が期待でき、従って、魔酸回
収メリットの増大にも繋る。
この溶媒抽出法は、有機溶媒を上記各種廃液とPi&痒
混合させることにより、廃液中に含まれる金属イオンを
選択的に抽出し、その後適当な脱離剤を用いて金属イオ
ンを有機溶媒より脱離(逆抽出)し、酸化物等として回
収する。又、金属イオン説m後の有機溶媒は抽出工程に
戻り、循環再使用するものである。
このWJts抽出法で用いられる有機溶媒は、抽出剤と
希釈剤とからなるが、特に、酸性溶液から金属イオンを
抽出する場合の抽出剤としては、イオン交換型のアルキ
ル燐酸系やカルボン酸系のもの等が用いられる。又、希
釈剤としては、n−パラフィンのような石油系炭化水素
が用いられる。
このような有機溶媒による金属イオンの抽出操作の結果
、金属イオンを抽出した有機相は、液滴状となった溶液
を含むため、この溶液を除去−4べく通常水溶液による
数段の溶媒洗浄工程を通している。この場合、洗浄液と
して水を使用すると有機相が高粘度となるか、又は固相
となるので、これを防止づるため、従来は特開昭58−
131186等で提案されているように、弗酸、il酸
、弗酸と硝酸との混酸、塩酸、及び硫酸等の水溶液で溶
媒洗浄を行っていた。
一部、有ml媒から金属イオンを脱離する方法としては
、特開昭57−42545、特開昭57−73138、
特開昭57−73141.特開昭57−85943等に
、HF1N84 F、NH4HF2の1種又は2種以上
を含有する水溶液からなる弗化物溶液を用いる方法が提
案されており、これらの方法によれば、従来問題であっ
た上記イオン交換型抽出剤のような抽出率の高い有機溶
媒からの金属イオンの脱離を容易にすることができる。In recent years, solvent extraction methods using organic solvents have been used as a method for recovering metals and acids from steel plate pickling waste liquid, plating waste liquid, and metal surface treatment waste liquid in the steel industry, etc., or as a hydrometallurgical method for nonferrous metals. is being carried out. According to this solvent extraction method, since metals can be selectively recovered, it is expected that the purity of the recovered metal compound will be improved, which will also lead to an increase in the merits of recovering magic acid. This solvent extraction method selectively extracts metal ions contained in the waste liquid by mixing an organic solvent with the various waste liquids mentioned above, and then removes the metal ions from the organic solvent using an appropriate desorbing agent. Separated (reverse extraction) and recovered as oxides, etc. Further, the organic solvent after the metal ion theory is returned to the extraction process and is recycled and reused. The organic solvent used in this WJts extraction method consists of an extractant and a diluent. In particular, when extracting metal ions from an acidic solution, the organic solvent used is an ion exchange type alkyl phosphate type or a carboxylic acid type. things etc. are used. Further, as a diluent, a petroleum hydrocarbon such as n-paraffin is used. As a result of such an extraction operation of metal ions with an organic solvent, the organic phase from which the metal ions have been extracted contains a solution in the form of droplets, so in order to remove this solution, a several-stage solvent washing process with an aqueous solution is usually required. I am passing through. In this case, if water is used as the cleaning liquid, the organic phase becomes highly viscous or becomes a solid phase.
As proposed in No. 131186 and the like, solvent cleaning has been performed with aqueous solutions such as hydrofluoric acid, il acid, a mixed acid of hydrofluoric acid and nitric acid, hydrochloric acid, and sulfuric acid. Some methods of desorbing metal ions from a ml medium include JP-A-57-42545, JP-A-57-73138,
Japanese Patent Publication No. 57-73141. A method using a fluoride solution consisting of an aqueous solution containing one or more of HF1N84F and NH4HF2 has been proposed in Japanese Patent Application Laid-open No. 57-85943, etc., and according to these methods, the conventional problems were solved. Desorption of metal ions from an organic solvent with a high extraction rate, such as the above-mentioned ion-exchange type extractant, can be facilitated.
しかしながら、これらの脱離方法を実施する場合、上記
弗化物溶液の濃度・組成を管理するため、溶液の一部を
排出する必要があり、高濃度の弗化物含有廃水が発生す
る。又、脱離工程を経た有機溶媒は抽出工程と同様洗浄
する必要がある。この場合は有機溶媒が金属イオンを多
く含まないので水洗浄で充分であるが、希薄な弗化物含
有廃水が発生する。しかるに、従来これらの廃水は用途
がなく、処理後排出されるだけであるという問題点を有
していた。However, when implementing these desorption methods, it is necessary to discharge a portion of the solution in order to control the concentration and composition of the fluoride solution, resulting in the generation of wastewater containing highly concentrated fluoride. Furthermore, the organic solvent that has undergone the desorption step needs to be washed in the same manner as the extraction step. In this case, since the organic solvent does not contain many metal ions, washing with water is sufficient, but dilute fluoride-containing wastewater is generated. However, in the past, these wastewaters had a problem in that they had no use and were simply discharged after treatment.
【発明の目的1
本発明は、前記従来の局題点を解消プベくなされたもの
で、金属イオンを抽出した有Ill溶媒を、高粘度化や
固化、金属イオンの脱離を起こすことなく洗浄すること
ができ、しかも脱離工程で発生づる弗化物含有廃水を有
効利用することが可能な、金属イオンを抽出した有R溶
媒の洗浄方法を提供りることを目的とする。
【問題点を解決するための手段1
本発明は、イオン交換型抽出剤と石油系炭化水素希釈剤
とからなる有機溶媒を用いて水溶液中の金属イオンを抽
出する工程での金属イオンを抽出した有゛機溶媒の洗浄
方法において、第1図にその要旨を示す如く、抽出操作
の結果金属イオン濃度が高くなった有lII溶媒を高粘
度化あるいは固化しないよう洗浄するに際し、NH4H
F2としての濃度が10〜45g/λの範囲にある水溶
液で洗浄することにより、前記目的を達成したものであ
る。
又、本発明は、イオン交換型抽出剤と石油系炭化水素希
釈剤とからなる有機溶媒を用いて水溶液中の金属イオン
を抽出する工程での金属イオンを抽出した有機溶媒の洗
浄方法において、抽出操作の結果金属イオン濃度が高く
なった有機溶媒を高粘度化あるいは固化しないよう洗浄
するに際し、洗浄用水溶液として、金属イオン脱離工程
で用いられる弗化物系溶液の濃度・組成管理のため一部
排出される高濃度の弗化物含有廃水と、脱離後の有機溶
媒洗浄工程から排出される希薄な弗化物含有廃水とを混
合してNH<HFzとしての濃度が10〜45 g/λ
の範囲に調整したものを用いて洗浄1にとにより、前記
目的を達成したものである。
【作用】
本発明が対象とする有機溶媒は、酸性溶液から金属イオ
ンを抽出できるアルキル燐酸系(代表的なものはジー(
2−エチルヘキシル)燐酸(D2EHPA))ヤ、カル
ボン酸く代表的なものはシェル化学製のバーサチック1
0)等の抽出剤と、希釈剤とからなるものである。前記
希釈剤としては、ローパラフィン(炭素数12〜18の
直鎖状飽和炭化水素)やケロシンを用いることができる
が、これらに限定されるものではない。又、抽出対象と
なる水溶液は前述のような溶液や廃液であって、抽出1
べき金属イオン及び酸又は13i類を含むものである。
本発明者等の種々の研究の結果、抽出操作により金属イ
オン濃度が高くなった有機溶媒を洗浄する洗浄用水溶液
の濃度は、NH4HF2として10〜45u/Aの範囲
にすれば、溶媒洗浄の目的が遼せられることが判明した
。
即ら、NH4HF2濃度が10fJ/J!、未満では、
有渫相と水相との乳化や同化が生じ、二相分離が不可能
となるので好ましくないことが判明した。
又、NH4HF2濃度が45す/βを超えると、有機相
中の金属イオンの水相への移動(即ち脱離)が生じ、好
ましくないことが判明した。
なお、本発明の洗浄操作で用いることのできる弗化物系
溶液は、濃度・組成の管理上、脱離液がNH4HF2を
主成分とする溶液(例えば、特願昭59−62433で
示される、):6.3中イオンに対りる脱離液の場合は
、その濃度管理範囲はNH4HF2が85〜115Mf
、1−IFSO〜10 a/ぶ)であるため、NH4H
F2だけで濃度を記述することができる。
従って、本発明によれば、NH4HF2の激震範囲10
〜45o/nの溶液を用いることにより、有機溶媒の高
粘度化や固化、金属イオンの脱離を生じることなく洗浄
を実施することができる。
なお、NH4HF2としての濃度が10〜45(J/I
、の範囲にある水溶液としては、金属イオンを抽出した
再R溶媒から金属イオンを脱離づる脱離剤の濃度・組成
を管理するために一部排出される弗化物含有廃水(A)
と、脱離工程を経た有機溶媒の水洗浄により排出される
弗化物含有廃水(B)とを混合し濃度調整を行ったもの
を利用することができる。
即ち、有機溶媒からの金属イオンの回収方法として、特
開昭57−42545、特開昭57−73138、特開
昭57−73141、特開昭57−85943WT−1
弗化物系溶液(HF、NH<F、NH4HF2の1種又
は2種以上を含有する水溶液)を用いる方法が提案され
ており、この脱離方法は、前記イオン交換型抽出剤のよ
うな抽出率の高い有機溶媒からの金属イオンの脱離を容
易に行うことができるものである。この脱離方法を実施
する場合、特願昭59−62433号で示されるように
、前記脱離剤としての弗化物溶液の濃度・組成を管理す
るため溶液の一部を排出する必要が生じる。従来、この
廃水は用途がなく、処理後排出されるだけであったが、
本発明にあってはこの廃液を有効に利用りることかでき
る。
又、脱離工程を経た有機溶媒は抽出工程と同様に洗浄す
る必要があり、この場合は有機溶媒が金属イオンを多く
含まないので、水洗浄で充分である。この水洗浄により
希薄な弗化物含有廃水が多量に発生する。本発明にあっ
ては、この希薄な弗化物含有廃水をも金属イオンを抽出
した有機溶媒の洗浄水として利用することができる。Purpose of the Invention 1 The present invention has been made to solve the above-mentioned conventional problems, and it is possible to use a solvent from which metal ions have been extracted without causing high viscosity, solidification, or desorption of metal ions. It is an object of the present invention to provide a method for cleaning an R-containing solvent from which metal ions have been extracted, which can be washed and also allows effective use of fluoride-containing wastewater generated in a desorption step. [Means for solving the problem 1] The present invention extracts metal ions in the process of extracting metal ions from an aqueous solution using an organic solvent consisting of an ion exchange type extractant and a petroleum-based hydrocarbon diluent. In the organic solvent cleaning method, as shown in Figure 1, when cleaning the organic solvent, which has a high metal ion concentration as a result of the extraction operation, in order to prevent it from becoming highly viscous or solidifying, NH4H is used.
The above object was achieved by washing with an aqueous solution having a concentration of F2 in the range of 10 to 45 g/λ. The present invention also provides a method for cleaning an organic solvent from which metal ions have been extracted in a step of extracting metal ions in an aqueous solution using an organic solvent consisting of an ion exchange type extractant and a petroleum-based hydrocarbon diluent. When cleaning organic solvents that have a high metal ion concentration as a result of operations to prevent them from becoming highly viscous or solidifying, a portion of the fluoride solution used in the metal ion desorption process is used as a cleaning aqueous solution to control the concentration and composition. The high-concentration fluoride-containing wastewater that is discharged is mixed with the dilute fluoride-containing wastewater that is discharged from the organic solvent washing process after desorption, and the concentration as NH<HFz is 10 to 45 g/λ.
The above objective was achieved by washing 1 using a product adjusted to the range of . [Function] The organic solvent targeted by the present invention is an alkyl phosphoric acid type (a typical example is di(
2-Ethylhexyl) phosphoric acid (D2EHPA)), a typical carboxylic acid is Versatic 1 manufactured by Shell Chemical Co., Ltd.
It consists of an extractant such as 0) and a diluent. As the diluent, low paraffin (linear saturated hydrocarbon having 12 to 18 carbon atoms) and kerosene can be used, but the diluent is not limited thereto. In addition, the aqueous solution to be extracted is the above-mentioned solution or waste liquid, and extraction 1
It contains metal ions and acids or group 13i. As a result of various studies conducted by the present inventors, it has been found that if the concentration of the cleaning aqueous solution for cleaning the organic solvent whose metal ion concentration has increased due to the extraction operation is within the range of 10 to 45 u/A as NH4HF2, the purpose of solvent cleaning can be achieved. It turned out that this was possible. That is, the NH4HF2 concentration is 10 fJ/J! , less than
It has been found that this is not preferable because emulsification or assimilation occurs between the aqueous phase and the aqueous phase, making it impossible to separate the two phases. Furthermore, it has been found that when the NH4HF2 concentration exceeds 45 S/β, the metal ions in the organic phase migrate to the aqueous phase (ie, are desorbed), which is not preferable. In addition, the fluoride solution that can be used in the cleaning operation of the present invention is a solution in which the desorbing liquid is mainly composed of NH4HF2 (for example, as shown in Japanese Patent Application No. 1983-62433), in order to control the concentration and composition. :6.3 In the case of a desorption solution for medium ions, the concentration control range is 85 to 115 Mf for NH4HF2.
, 1-IFSO~10 a/bu), so NH4H
Concentration can be described using only F2. Therefore, according to the present invention, the violent earthquake range of NH4HF2 is 10
By using a solution of ~45 o/n, cleaning can be carried out without increasing the viscosity or solidification of the organic solvent and without causing desorption of metal ions. In addition, the concentration as NH4HF2 is 10 to 45 (J/I
Examples of aqueous solutions in the range of , include fluoride-containing wastewater (A) that is partially discharged to control the concentration and composition of the desorbing agent that desorbs metal ions from the re-R solvent from which metal ions have been extracted.
and fluoride-containing wastewater (B) discharged by washing the organic solvent with water after the desorption step can be mixed and the concentration can be adjusted. That is, as methods for recovering metal ions from organic solvents, JP-A-57-42545, JP-A-57-73138, JP-A-57-73141, and JP-A-57-85943WT-1 are used.
A method using a fluoride-based solution (an aqueous solution containing one or more of HF, NH<F, and NH4HF2) has been proposed, and this desorption method has a high extraction rate such as the ion-exchange extractant described above. It is possible to easily desorb metal ions from organic solvents with high oxidation. When carrying out this desorption method, as shown in Japanese Patent Application No. 59-62433, it is necessary to discharge a portion of the fluoride solution as the desorption agent in order to control the concentration and composition of the solution. Previously, this wastewater had no use and was simply discharged after treatment.
In the present invention, this waste liquid can be effectively utilized. Further, the organic solvent that has undergone the desorption step needs to be washed in the same manner as the extraction step; in this case, washing with water is sufficient since the organic solvent does not contain many metal ions. This water washing generates a large amount of dilute fluoride-containing wastewater. In the present invention, this dilute fluoride-containing wastewater can also be used as washing water for the organic solvent from which metal ions have been extracted.
以下、本発明の実施例を詳細に説明する。
第1芙施例は、l: 63 +を含む塩M溶液でなる廃
液に対して30v/v%のD2EHPAと70V/V%
のn−パラフィンとからなる有機溶剤を用いてl:63
+抽出を行った後、l:63+抽出した有機FJ9にと
、NH4HF2を5〜5ou、/p金含有る水溶液とを
液温1o、5℃にて有機相と水相との体積比(○/′A
)を1として、分液濶斗内で混合接触させ洗浄したもの
である。有機相と水相との二相分離後、有瀕相、水相中
のF63+を分析しlこところ、第1表に示ず結果が得
られた。
第1表
この第1表に示すように、NH4HF2が7゜5g/′
β以下では、二相分離が著しく困難となり、一部同相を
生じるものもあった。又、NH4HF2が509./′
λでは有機相からのFej+イオンの脱離が認められた
。
第2実施例は、前記M1実施例と同じFe’中を含む塩
酸溶液でなる廃液に対し同様の有機溶媒を用いてl:6
j中抽出を行った後、このF63+抽出を行った有機溶
媒とN H4HF 2を5〜50す/l含有する水溶液
とを液温23,0℃にて、有機相と水相との体積比(0
/A>を1として分液漏斗内で混合接触させ洗浄したも
のである。このようにして行った洗浄操作の結果を、第
2表に示す。
第2表に示1ように、NH4HF2が7.5g/ぶ以下
では二相分離が困難となり、又、45(17ぶ以上では
f: 63 +の1ilpftが認められた。
なお、第2図は第1表及び第2表の結果を、横軸eNH
a HF 2 s度(Q/i、 ) トシ、縦軸ヲFe
3中濃度(g/l)とした、各NH4HF211度にお
ける有機相と水相とのFe 3”8度を示すグラフであ
る。
第 2 表Examples of the present invention will be described in detail below. In the first example, 30v/v% D2EHPA and 70V/V% were added to the waste liquid consisting of a salt M solution containing l: 63 +.
l:63 using an organic solvent consisting of n-paraffin and
+After extraction, l:63+extracted organic FJ9 and 5-5ou of NH4HF2, /p gold-containing aqueous solution were mixed at a liquid temperature of 1o and 5℃ at a volume ratio of organic phase to aqueous phase (○ /'A
) was mixed and contacted in a separating bucket and washed. After the two-phase separation of the organic phase and the aqueous phase, F63+ in the aqueous phase and the aqueous phase was analyzed, and results not shown in Table 1 were obtained. Table 1 As shown in this table, NH4HF2 is 7°5g/'
Below β, two-phase separation becomes extremely difficult, and in some cases, the same phase occurs. Also, NH4HF2 is 509. /′
At λ, desorption of Fej+ ions from the organic phase was observed. In the second example, the same organic solvent was used for the waste liquid consisting of the same Fe'-containing hydrochloric acid solution as in the M1 example.
After performing extraction in J, the organic solvent used in this F63+ extraction and an aqueous solution containing 5 to 50 s/l of N H4HF 2 were mixed at a liquid temperature of 23.0°C, and the volume ratio of the organic phase to the aqueous phase was adjusted. (0
/A> was set to 1, and the mixture was mixed and contacted in a separatory funnel and washed. The results of the washing operation performed in this manner are shown in Table 2. As shown in Table 2 (1), when NH4HF2 is less than 7.5 g/bu, two-phase separation becomes difficult, and when NH4HF2 is less than 7.5 g/bu, f: 63 + 1ilpft was observed. The results in Tables 1 and 2 are plotted on the horizontal axis eNH
a HF 2s degrees (Q/i, ) Toshi, vertical axis wo Fe
3 is a graph showing the Fe 3"8 degree of the organic phase and the aqueous phase at each NH4HF211 degree, with the concentration (g/l) in 3".
以上説明した通り、本発明によれば、有機溶媒の高粘度
化や同化、金属イオンの脱離を起こすことなく、′M機
相と水相との二相分離を容易に行うことができる。又、
弗化物含有廃水を有効に利用することによって、使用す
る水の量を大幅に削減することができ、その結果、処理
すべき廃水の量を約1/′2に減らすことができる等の
優れた効果を有する。As explained above, according to the present invention, two-phase separation between the organic phase and the aqueous phase can be easily carried out without increasing the viscosity or assimilation of the organic solvent and without causing the desorption of metal ions. or,
By effectively using fluoride-containing wastewater, the amount of water used can be significantly reduced, and as a result, the amount of wastewater to be treated can be reduced by approximately 1/2. have an effect.
第1図は、本発明に係る金属イオンを抽出した有機i媒
の洗浄方法が適用された酸ヤ金属の回収設備の流れ図、
第2図は、水溶液のNH4HF2濃度とこの水溶液によ
り洗浄した場合の有機相と水相とのll:’63+濃度
との関係を示す線図である。FIG. 1 is a flowchart of an acid-based metal recovery facility to which the method of cleaning an organic i-medium from which metal ions have been extracted according to the present invention is applied;
FIG. 2 is a diagram showing the relationship between the NH4HF2 concentration of the aqueous solution and the ll:'63+ concentration of the organic phase and the aqueous phase when washed with this aqueous solution.
Claims (2)
らなる有機溶媒を用いて水溶液中の金属イオンを抽出す
る工程での金属イオンを抽出した有機溶媒の洗浄方法に
おいて、抽出操作の結果金属イオン濃度が高くなった有
機溶媒を高粘度化あるいは固化しないよう洗浄するに際
し、NH_4HF_2としての濃度が10〜45g/l
の範囲にある洗浄用水溶液で洗浄することを特徴とする
金属イオンを抽出した有機溶媒の洗浄方法。(1) In a method for cleaning an organic solvent from which metal ions have been extracted in a process of extracting metal ions in an aqueous solution using an organic solvent consisting of an ion-exchange extractant and a petroleum-based hydrocarbon diluent, the results of the extraction operation When cleaning an organic solvent with a high metal ion concentration to prevent it from becoming highly viscous or solidifying, the concentration as NH_4HF_2 is 10 to 45 g/l.
A method for cleaning an organic solvent from which metal ions have been extracted, the method comprising cleaning with an aqueous cleaning solution in the range of .
らなる有機溶媒を用いて水溶液中の金属イオンを抽出す
る工程での金属イオンを抽出した有機溶媒の洗浄方法に
おいて、抽出操作の結果金属イオン濃度が高くなった有
機溶媒を高粘度化あるいは固化しないよう洗浄するに際
し、洗浄用水溶液として、金属イオン脱離工程で用いら
れる弗化物系溶液の濃度・組成管理のため一部排出され
る高濃度の弗化物含有廃水と、脱離後の有機溶媒洗浄工
程から排出される希薄な弗化物含有廃水とを混合してN
H_4HF_2としての濃度が10〜45g/lの範囲
に調整したものを用いて洗浄することを特徴とする金属
イオンを抽出した有機溶媒の洗浄方法。(2) In a method for cleaning an organic solvent from which metal ions have been extracted in a process of extracting metal ions in an aqueous solution using an organic solvent consisting of an ion-exchange type extractant and a petroleum-based hydrocarbon diluent, the results of the extraction operation When cleaning an organic solvent with a high metal ion concentration to prevent it from becoming highly viscous or solidifying, a portion is discharged as a cleaning aqueous solution to control the concentration and composition of the fluoride solution used in the metal ion desorption process. N
A method for cleaning an organic solvent from which metal ions have been extracted, characterized in that cleaning is performed using an organic solvent whose concentration as H_4HF_2 is adjusted to a range of 10 to 45 g/l.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59241677A JPS61119628A (en) | 1984-11-16 | 1984-11-16 | Cleaning method of organic solvent after extracting metallic ion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59241677A JPS61119628A (en) | 1984-11-16 | 1984-11-16 | Cleaning method of organic solvent after extracting metallic ion |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61119628A true JPS61119628A (en) | 1986-06-06 |
JPH0314894B2 JPH0314894B2 (en) | 1991-02-27 |
Family
ID=17077873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59241677A Granted JPS61119628A (en) | 1984-11-16 | 1984-11-16 | Cleaning method of organic solvent after extracting metallic ion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61119628A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0721829A (en) * | 1993-06-29 | 1995-01-24 | Shigeta Seisakusho:Kk | Scraper for candle wax residue |
JP2018188722A (en) * | 2016-11-24 | 2018-11-29 | 住友金属鉱山株式会社 | Method of scandium refinement |
-
1984
- 1984-11-16 JP JP59241677A patent/JPS61119628A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0721829A (en) * | 1993-06-29 | 1995-01-24 | Shigeta Seisakusho:Kk | Scraper for candle wax residue |
JP2018188722A (en) * | 2016-11-24 | 2018-11-29 | 住友金属鉱山株式会社 | Method of scandium refinement |
Also Published As
Publication number | Publication date |
---|---|
JPH0314894B2 (en) | 1991-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | Selective recovery of vanadium and scandium by ion exchange with D201 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud | |
Kulkarni | Recovery of uranium (VI) from acidic wastes using tri-n-octylphosphine oxide and sodium carbonate based liquid membranes | |
WO2008101396A1 (en) | Preprocessing method of an organic extractant and the preprocessed product and the use thereof | |
US3751553A (en) | Process for separating yttrium values from the lanthanides | |
CN108342573B (en) | A method of from extraction and separation tungsten in ammonium tungstate solution containing molybdenum | |
JPS5992914A (en) | Gallium extraction by substituted hydroxyquinoline and organic compound containing sulfate or sulfonate groups | |
CN108950249A (en) | A kind of vanadium aluminum separation method of vanadium-containing shale pickle liquor | |
AU676488B2 (en) | Recovery of metal values from process residues | |
CN110791648B (en) | Method for extracting and recovering germanium from sulfuric acid leaching solution | |
Hirato et al. | Concentration of uranyl sulfate solution by an emulsion-type liquid membrane process | |
CN108728673A (en) | A kind of acid more methods of the impurity containing vanadium in vanadium leachate of purification enrichment | |
KR20050003996A (en) | Method for treating of etching waste acid containing phosphric acid, acetic acid and nitric acid | |
JPS61119628A (en) | Cleaning method of organic solvent after extracting metallic ion | |
US4166098A (en) | Process for treating an acid waste liquid | |
JPH06279883A (en) | Method for separating and recovering lithium | |
CN113209667B (en) | Method for extracting and separating metal oxometallate by ionic liquid/alkali aqueous two-phase system | |
US3640678A (en) | Yttrium purification process | |
EP3271487B1 (en) | Treatment of degraded oxime metal extractants in process organic solutions | |
Tang et al. | Extraction separation of germanium with hydroxamic acid HGS98 | |
JPH01249624A (en) | Treatment of residue containing rare earth element and cobalt | |
JPS60166224A (en) | Method of recovery of gallium from dust of aluminum smelting | |
US4311675A (en) | Maintaining reductive strip efficiency in uranium recovery processes | |
JP3800122B2 (en) | Method for removing impurity metal ions in aqueous solution containing fluoride ions of titanium | |
JPS6111891B2 (en) | ||
CN115477355A (en) | Method for extracting lithium from lithium-containing wastewater by using TBP (tunnel boring machine) |