JPS61119359A - Continuous casting method of magnesium or ally thereof - Google Patents

Continuous casting method of magnesium or ally thereof

Info

Publication number
JPS61119359A
JPS61119359A JP23933484A JP23933484A JPS61119359A JP S61119359 A JPS61119359 A JP S61119359A JP 23933484 A JP23933484 A JP 23933484A JP 23933484 A JP23933484 A JP 23933484A JP S61119359 A JPS61119359 A JP S61119359A
Authority
JP
Japan
Prior art keywords
mold
molten metal
casting
gas
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23933484A
Other languages
Japanese (ja)
Other versions
JPH057100B2 (en
Inventor
Shigeru Yanagimoto
茂 柳本
Shigeo Takahashi
高橋 繁夫
Ryoichi Kondo
近藤 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aluminum Industries KK
Original Assignee
Showa Aluminum Industries KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Industries KK filed Critical Showa Aluminum Industries KK
Priority to JP23933484A priority Critical patent/JPS61119359A/en
Publication of JPS61119359A publication Critical patent/JPS61119359A/en
Publication of JPH057100B2 publication Critical patent/JPH057100B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/07Lubricating the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0401Moulds provided with a feed head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/049Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for direct chill casting, e.g. electromagnetic casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To improve the quality of an ingot by providing an overhang part to the bottom surface of a molten metal receiving vessel and introducing a gas contg. sulfur hexafluoride to right under said part then applying a gaseous pressure to the outside circumferential surface of the melt of Mg or the alloy thereof. CONSTITUTION:The molten metal receiving vessel 2 made of refractories is disposed to the upper part of a casting mold 1 and the overhang part 9 forming a spacing 8 between said vessel and the mold 1 is provided. The spacing 8 communicates with an annular flow passage 7 and is connected via pipes 6, 6', 6'' to a gas supply source. A liquid lubricating oil supply port is further installed to the inside of the mold 1 and a cavity in which a cooling medium 4 flows is provided. The gas contg. sulfur hexafluoride is introduced into the part 9 and casting is executed while the gaseous pressure is applied to the outside circumferential surface of the calmner or cylindrical molten Mg alloy in the stage when the molten metal starts solidifying. The ingot having a smooth casting surface and less inverse segregation layer is formed by the above- mentioned method and therefore the quality thereof is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鍛造、押出、圧延などの塑性加工用素材であ
るマグネシウムやマグネシウム合金などの鋳塊又は、リ
メルト用ビレットを鋳造するための連続鋳造法に関する
Detailed Description of the Invention (Field of Industrial Application) The present invention is a continuous method for casting ingots such as magnesium and magnesium alloys, which are materials for plastic working such as forging, extrusion, and rolling, or billets for remelting. Regarding casting methods.

(従来の技術) マグネシウムやマグネシウム合金(以下単にマグネシウ
ム合金という)などの塑性加工用素材でちる鋳塊やリメ
ル用ビレットは、グービルを鋳造法、空冷鋳鉄鋳型(ブ
ックモールド)、連続鋳造法などによっで製造されてい
る。
(Conventional technology) Ingots and billets for rimmel made of plastic working materials such as magnesium and magnesium alloys (hereinafter simply referred to as magnesium alloys) are produced using gouville casting methods, air-cooled cast iron molds (book molds), continuous casting methods, etc. It is manufactured by.

グービル型鋳造法は、小型の鋳塊を小規模に製造するに
は優れているが、大型の鋳塊を大量に製造する場合は、
連続鋳造法によって製造するのが効率的である。
The Gouville casting method is excellent for producing small ingots on a small scale, but when producing large quantities of large ingots,
It is efficient to manufacture by continuous casting method.

連続鋳造法は、第7図に示すように、水冷された銅又は
アルミニウム合金製鋳型に溶湯を注入し、鋳型内で溶湯
の熱を奪うことにより溶湯の外殻を凝固させ、凝固と共
に底部のダミーブロックを油圧シリンダなどで下方に引
下げ連続的に溶湯を注入凝固させてゆく方法である。形
成された鋳塊は下方に向って一定長さに達すると鋳造は
中断され、そして鋳塊は上方へ引き出される。また凝固
が完了した鋳塊をビンチロールで引下げ、降下と同期し
て鋸を移動させ、降下の途中である長さごとに切断し取
出すことにより、完全に連続して注湯し、鋳塊を製造す
ることもできる。
As shown in Figure 7, in the continuous casting method, molten metal is poured into a water-cooled copper or aluminum alloy mold, and the outer shell of the molten metal is solidified by removing heat from the molten metal within the mold. In this method, a dummy block is pulled down using a hydraulic cylinder or the like, and molten metal is continuously injected and solidified. When the formed ingot reaches a certain length downward, casting is stopped and the ingot is pulled upward. In addition, the solidified ingot is pulled down with a vinyl roll, and the saw is moved in synchronization with the descent, cutting it into lengths and taking it out during the descent, so that the ingot is poured completely continuously and the ingot is It can also be manufactured.

湯溜より鋳型への溶湯の供給は、パルプ操作により調整
される。このような鋳造法の欠点は、湯面の動揺あるい
は変動により鋳造過程において外殻表面に溶湯が浸入し
てくる発汗現象が多く発生し、また冷接現象(Co1d
 5hut )も生じ易いために、鋳肌が悪くなること
にある。また、表面層への合金成分の逆偏析が大きいた
めに、塑性加工に際して表面剤シを多く行って逆偏析層
を除去する必要がある。
The supply of molten metal from the sump to the mold is controlled by a pulp operation. The disadvantages of this casting method are that the molten metal permeates into the outer shell surface during the casting process due to fluctuations or fluctuations in the molten metal surface, which often causes sweating, and the cold welding phenomenon (Co1d).
5hut) is also likely to occur, resulting in poor casting surface. Furthermore, since the reverse segregation of alloy components to the surface layer is large, it is necessary to remove the reverse segregation layer by applying a large amount of surface agent during plastic working.

近年における非鉄金属の連続鋳造法の大きな進歩は、鋳
型の上部に断熱耐火物製の溶湯受槽を設けて、金属の凝
固層の上に高い静水圧の溶湯を保持するようにしたいわ
ゆるホットトップ鋳造法と言われる鋳造法にある。この
鋳造法は溶湯受槽内に溶湯表面が存在するようになって
いるため、従来の鋳造のように鋳型内の溶湯表面高さを
厳密に調節する必要がなく作業人員の省力化が期待でき
る。また酸化膜の混入が少ないなどの長所があるが、金
属溶湯が酸化され易い性質をもつマグネシウム合金の鋳
造に関し、同法は未だ完成した技術とは言い難く、特に
鋳肌に関しては、加工用鋳塊としては不充分であり、鋳
肌改善の改良が望まれている。
A major advance in continuous casting of nonferrous metals in recent years is so-called hot-top casting, in which a molten metal receiving tank made of an insulating refractory is installed above the mold to hold the molten metal under high hydrostatic pressure above the solidified layer of metal. It is in the casting method called the method. In this casting method, the molten metal surface exists in the molten metal receiving tank, so unlike traditional casting, there is no need to strictly adjust the height of the molten metal surface in the mold, and labor savings can be expected. . Although it has advantages such as less contamination of oxide film, this method is still far from a perfect technology for casting magnesium alloys whose molten metal tends to be easily oxidized. It is insufficient as a lump, and improvements in improving the casting surface are desired.

(発明が解決しようとする問題点) マグネシウム合金の鋳塊製造法としての既存の連続鋳造
法は、鋳塊の品質の面、即ち、鋳肌が悪いこと、表面層
への合金成分の逆偏析が大きいなどの問題点が多く、又
、マグネシウムが非常に酸化され易い為、安全面でも、
多くの配慮が必要であシ鋳造操作も繁雑となっている。
(Problems to be Solved by the Invention) The existing continuous casting method for manufacturing magnesium alloy ingots has problems in terms of the quality of the ingot, such as poor casting surface and reverse segregation of alloy components in the surface layer. There are many problems such as large oxidation, and since magnesium is very easily oxidized, there are safety issues.
Many considerations are required and the casting operation is also complicated.

そこで、本発明者らは、工程が簡単で、鋳造された鋳塊
の品質のすぐれた、マグネシウム合金の連続鋳造法の開
発をすすめ、本発明を完成した。
Therefore, the present inventors have developed a continuous casting method for magnesium alloys that is simple in process and provides excellent quality of the cast ingot, and has completed the present invention.

よって本発明は、マグネシウム合金溶湯より、連続鋳造
法によって、すぐれた品質をもつ鋳塊を効率よく得るこ
とを目的とする。
Therefore, an object of the present invention is to efficiently obtain an ingot of excellent quality from a molten magnesium alloy by a continuous casting method.

(問題点を解決するための手段及び作用)本発明は耐火
物製金属溶湯受槽が、強制冷却鋳型の上部に設けられ、
該溶湯受槽の内周下端面が、該鋳型の内周面よシ内側に
張出してオーバーハング部を形成している溶湯受槽付き
強制冷却鋳型を用い前記溶湯受槽に鋳造すべきマグネシ
ウムまたはその合金の金属溶湯を溜め、内周面に潤滑界
面を形成させた前記鋳型内に近接して、前記金属溶湯な
柱状もしくは筒状に保持し、そして鋳型内を通過する冷
却剤によって該柱状体、もしくは筒状体を冷却する工程
を含むマグネシウムまたはその合金の連続鋳造法であっ
て、前記オーバーハング部直下に6フッ化硫黄を含む気
体を導入し、前記柱状もしくは筒状のマグネシウムまた
はその合金の溶湯の外周面に気体圧を印加して鋳造する
ことを特徴とするマグネシウムまたはその合金の連続鋳
造法を要旨とする。
(Means and effects for solving the problems) The present invention provides a refractory metal molten metal receiving tank provided above a forced cooling mold,
Magnesium or its alloy to be cast in the molten metal receiving tank is used using a forced cooling mold with a molten metal receiving tank in which the lower end surface of the inner periphery of the molten metal receiving tank extends inward from the inner peripheral surface of the mold to form an overhang part. The molten metal is held in a columnar or cylindrical shape in close proximity to the mold in which a molten metal is stored and a lubricating interface is formed on the inner peripheral surface, and the columnar or cylindrical body is cooled by a coolant passing through the mold. A continuous casting method for magnesium or its alloy, which includes a step of cooling a shaped body, in which a gas containing sulfur hexafluoride is introduced directly under the overhang, and the columnar or cylindrical molten magnesium or its alloy is continuously cast. The gist is a continuous casting method for magnesium or its alloy, which is characterized by casting by applying gas pressure to the outer peripheral surface.

マグネシウム合金溶湯は銅、アルミニウム等に比べ酸化
され易いので溶湯面を非酸化性雰囲気で覆う必要がある
。この目的のために従来SOガスが用いられてきたが、
人体への作用あるいは設備などの構造物の金属材料の腐
食作用が激しいなどの欠点がある。一方、本発明におい
て使用する六7ツ化硫黄ガスは、これらの欠点がなく酸
化防止に有効であり、マグネシウム合金の金属溶湯外周
面に印加する気体として、好適である。
Since molten magnesium alloy is more easily oxidized than copper, aluminum, etc., it is necessary to cover the surface of the molten metal with a non-oxidizing atmosphere. Conventionally, SO gas has been used for this purpose, but
There are disadvantages such as severe effects on the human body and severe corrosive effects on the metal materials of structures such as equipment. On the other hand, the sulfur hexatide gas used in the present invention does not have these drawbacks and is effective in preventing oxidation, and is suitable as a gas to be applied to the outer circumferential surface of a molten magnesium alloy metal.

本発明の適用対象なる鋳塊の形状は主として、押出或は
引抜成型用素材となる円柱状鋳塊、圧延板材成型用素材
となる角柱状鋳塊、管中中押出物品の素材となる肉厚の
筒状中空鋳塊もしくは、リメルト用ビレットである。
The shapes of ingots to which the present invention is applied are mainly cylindrical ingots that are used as materials for extrusion or pultrusion molding, prismatic ingots that are used as materials for forming rolled plate materials, and wall thickness that are used as materials for extruded products in pipes. It is a cylindrical hollow ingot or a billet for remelting.

本発明はダイレクトチル法と称される連続鋳造法の改良
に関するものであって、この方法では溶湯は鋳型の中に
近接して柱状もしくは筒萩に保持されている。この際鋳
型の中に保持された柱状体もしくは筒状体は、強制冷却
された鋳型の内面に接触して溶湯外周面は急冷され、薄
い凝固外殻が形成され、ついで凝固外殻が厚くなるとと
もに凝固収縮し、それによって、凝固外殻が鋳型周面か
ら離れ、また凝固は鋳型の入口に近い部分から開始する
と考えられている。
The present invention relates to an improvement in a continuous casting method called the direct chill method, in which the molten metal is held close to the mold in a columnar or cylindrical shape. At this time, the columnar or cylindrical body held in the mold comes into contact with the forcedly cooled inner surface of the mold, and the outer peripheral surface of the molten metal is rapidly cooled, forming a thin solidified outer shell, which then becomes thicker. It is believed that the solidified shell is separated from the peripheral surface of the mold, and that solidification begins near the entrance of the mold.

本発明によるとオーパーツ・ング部直下の外周面に六フ
ッ化硫黄を含む気体の気体圧が印加される。
According to the present invention, the gas pressure of a gas containing sulfur hexafluoride is applied to the outer circumferential surface directly below the overhang portion.

例えば、気体はオーバーハングを形成しているマグネシ
ウム合金の溶湯受槽の下端面に平行に且つ鋳造の軸方向
に垂直方向に導入される。すなわち、気体は溶湯受槽と
鋳型の境界面の1ケ所もしくは複数個所から導入され次
に全境界面に分配され、そして全境界面から柱状体もし
くは筒状体の外周面に到達する。すなわちこの場合、マ
グネシウム合金の柱状体もしくは筒状体の外周面に直面
に導入される気体分流も、斜めに導入される分流もある
が、差支えない。もっとも全ての気体を外周面に対し実
質的に直角に導入してもよい。気体の導入は鋳造が行わ
れている全期間に亘って且つ全外周について行われる。
For example, the gas is introduced parallel to the lower end surface of the magnesium alloy molten metal receiving tank forming an overhang and perpendicular to the axial direction of the casting. That is, the gas is introduced from one or more locations on the interface between the molten metal receiving tank and the mold, is then distributed over all the interfaces, and reaches the outer peripheral surface of the columnar or cylindrical body from all the interfaces. That is, in this case, there is no problem whether the gas branch flow is introduced facing the outer circumferential surface of the magnesium alloy columnar or cylindrical body, or the gas branch flow is introduced obliquely. However, all the gas may be introduced substantially perpendicular to the outer circumferential surface. The gas is introduced during the entire casting period and around the entire circumference.

導入された気体が所定領域の外周面に且つ所定方向にお
いて到着するならば、気体の途中の流路は問わない。し
かし実際的には前記境界面を気体が通過することが得策
である。
As long as the introduced gas arrives at the outer peripheral surface of the predetermined area and in a predetermined direction, the flow path of the gas does not matter. However, in practice it is advisable for the gas to pass through the interface.

本発明においては鋳型内面に潤滑界面を形成して鋳造が
行われる。
In the present invention, casting is performed by forming a lubricating interface on the inner surface of the mold.

潤滑界面の形成方法としては公知の下記のいづれかの方
法が採用される。
As a method for forming a lubricating interface, one of the following known methods is employed.

(1)液状潤滑油をオーパーツ・ング部より下方の位置
より、鋳型内面に向って連続的に浸出させる。
(1) Liquid lubricating oil is continuously leached from a position below the Opart ring toward the inner surface of the mold.

(2)鋳造開始に先立って予め鋳型内面に潤滑剤を塗布
する。
(2) Before starting casting, apply lubricant to the inner surface of the mold.

(3)黒鉛のごとく、金属溶湯に対する接触角が大きく
、また金属凝固皮殻に対して自己潤滑性を有する材質に
よって製作された鋳型を使用する。
(3) Use a mold made of a material such as graphite, which has a large contact angle with the molten metal and has self-lubricating properties with respect to the solidified metal shell.

鋳型内面における上記のごとき潤滑界面の形成は、本願
発明の特徴的作用効果であるところの平滑な良好鋳肌を
得るための必須構成要件の1つである。上記(1)及び
(2)はアルミニウム、又は銅等の熱伝導性の良い金属
から製作された鋳型に適用される。
Formation of the above-mentioned lubricating interface on the inner surface of the mold is one of the essential components for obtaining a smooth and good casting surface, which is a characteristic effect of the present invention. The above (1) and (2) are applied to a mold made of a metal with good thermal conductivity such as aluminum or copper.

本発明の実施に供せられる鋳造装置は、耐火物製金属溶
湯受槽が強制冷却鋳型の上部に設けられ且つ該溶湯受槽
の内周下端面が該鋳型の内周面よp内側に張出してオー
バーハング部を形成している溶湯受槽付き強制冷却鋳型
を含むマグネシウム合金の連続鋳造装置であって前記鋳
型と溶湯受槽の接合部が気密に接触している外側領域及
び鋳型と溶湯受槽の間にスリットが形成され且つ前記外
側領域により取囲まれた内側領域からなり、前記スリッ
トはその間隙が前記金属溶湯が侵入しないように定めら
れ且つ六フフ化硫黄を含む気体供給源に連通しているこ
とを特徴とするものである。
In the casting apparatus used for carrying out the present invention, a refractory metal molten metal receiving tank is provided above a forced cooling mold, and the inner peripheral lower end surface of the molten metal receiving tank protrudes inward from the inner peripheral surface of the mold. An apparatus for continuous casting of magnesium alloys, comprising a forced cooling mold with a molten metal receiver forming a hang part, an outer region where the joint between the mold and the molten metal receiver is in airtight contact, and a slit between the mold and the molten metal receiver. an inner region formed therein and surrounded by the outer region, the slit being defined such that the molten metal does not enter therein and communicating with a gas source containing sulfur hexafluoride; This is a characteristic feature.

次に、本発明に係る方法を図面に基づいて説明する。Next, the method according to the present invention will be explained based on the drawings.

本発明の方法 第1図は本発明に係る方法を実施する鋳型、溶湯受槽及
び鋳塊を示す縦断面図である。マグネシウム合金の溶湯
は、図示されていない溶湯保持炉より、溶湯受槽に供給
される。溶湯受槽の溶湯面は、六フッ化硫黄を含む気体
でおおい酸化を防止する。(図示せず。)金属又は黒鉛
などの材料からなる鋳型1は、鋳塊17の輪郭を規定す
る適当なる形状、例えば円柱状鋳塊の場合は円形、横断
面を有し、鋳塊17が形成される空間を取囲んでいる。
Method of the Invention FIG. 1 is a longitudinal sectional view showing a mold, a molten metal receiving tank, and an ingot for carrying out the method of the invention. Molten magnesium alloy is supplied to the molten metal receiving tank from a molten metal holding furnace (not shown). The surface of the molten metal in the molten metal receiving tank is covered with a gas containing sulfur hexafluoride to prevent oxidation. (Not shown) The mold 1 made of a material such as metal or graphite has a suitable shape defining the outline of the ingot 17, for example, a circular shape in the case of a cylindrical ingot, or a cross section, so that the ingot 17 It surrounds the space that is formed.

鋳型1は柱状金属16.17を強制冷却するための冷却
媒体、例えば水、4が流れる空胴部を有する。図示され
ていない冷却媒体供給源から冷却媒体を空胴部に供給す
る管3が鋳型1に接続されている。鋳型1の内周面の一
部から溶湯16の熱が吸収され、斜線で示された如く溶
湯は凝固を開始する。このように鋳型によって一次的に
冷却された金属を二次的に冷却するため罠、冷却媒体は
噴出口5から鋳塊17に向かって噴出される。
The mold 1 has a cavity through which a cooling medium, for example water, 4 flows for forced cooling of the metal columns 16,17. Connected to the mold 1 is a pipe 3 that supplies a cooling medium to the cavity from a cooling medium supply source (not shown). The heat of the molten metal 16 is absorbed from a part of the inner peripheral surface of the mold 1, and the molten metal starts solidifying as shown by diagonal lines. In order to secondarily cool the metal that has been primarily cooled by the mold in this way, the trap and cooling medium is ejected from the spout 5 toward the ingot 17.

噴出口5は鋳型1の下端コーナ一部に等間隔に設けられ
た孔、又は全周にスリット状に設けられている。なお−
次冷却と二次冷却の媒体は共通である必要はないが通常
は冷水が用いられる。
The spout ports 5 are holes provided at equal intervals in a part of the lower end corner of the mold 1, or are provided in the form of slits around the entire circumference. Note-
The medium for the secondary cooling and the secondary cooling need not be the same, but usually cold water is used.

鋳型1の上端面に、マリナイ) (Marinite 
)又はファイバーフラックス(Fiberflax )
などの商品名で周知である断熱耐火物からなる溶融金属
受槽2がビル)15によって鋳型1に固定されている。
Marinite (Marinite) is applied to the upper end surface of mold 1.
) or fiber flux
A molten metal receiving tank 2 made of a heat-insulating refractory material well known under the trade name of .

溶湯受槽2は鋳型lと同軸状に配置されており且つ鋳型
1の内周面と実質的に平行な内周面を有する。溶湯受槽
2は周知の如く溶融金属を溜め、注湯量の変動によって
凝固開始面が変動するのを防止している。
The molten metal receiving tank 2 is arranged coaxially with the mold 1 and has an inner peripheral surface substantially parallel to the inner peripheral surface of the mold 1. As is well known, the molten metal receiving tank 2 stores molten metal and prevents the solidification start surface from changing due to fluctuations in the amount of poured metal.

凝固した鋳塊17は図示されていない底板を成る一定の
速度(すなわち鋳造速度)で降下させることによって鋳
型1から下方に連続的に引抜かれる。
The solidified ingot 17 is continuously drawn downward from the mold 1 by lowering a bottom plate (not shown) at a constant speed (ie, casting speed).

次に、第2図ないし4図に基づいて、本発明に係る気体
導入に用いられる鋳型の構造を説明する。
Next, the structure of the mold used for introducing gas according to the present invention will be explained based on FIGS. 2 to 4.

鋳型1の外周面から直径方向に120°の角度を置いて
3本の管6 、6’ 、 6’が分岐しておシ、図示さ
れていない気体供給源と導通されている。この気体供給
管6.6’、6”は鋳型1の上部全周に伸びている環状
流路7と導通している。したがって、気体は鋳型の上部
全周に対して均等に分配される。
Three pipes 6, 6', 6' branch out from the outer peripheral surface of the mold 1 at an angle of 120° in the diametrical direction and are communicated with a gas supply source (not shown). This gas supply pipe 6.6', 6'' communicates with an annular channel 7 extending around the entire upper circumference of the mold 1. The gas is therefore evenly distributed over the entire upper circumference of the mold.

供給管は1本であっても2〜3本の場合と同一の結果か
えられることが実験によって確かめられた。
It has been confirmed through experiments that even with one supply pipe, the same results can be obtained as with two or three supply pipes.

鋳型1の外側上面1aは溶湯受槽2の下面と密着するよ
うな平坦面となっており、その一部に鋳型の全周を伸び
る溝12が形成されている。この溝12には図示されて
いない、耐熱性ゴム質等の・ンッキング材が詰められ、
流路7を流れる気体が外部に漏れるのを防止する。
The outer upper surface 1a of the mold 1 is a flat surface that comes into close contact with the lower surface of the molten metal receiving tank 2, and a groove 12 extending around the entire circumference of the mold is formed in a part of the outer surface 1a. This groove 12 is filled with a packing material (not shown) such as heat-resistant rubber.
This prevents the gas flowing through the flow path 7 from leaking to the outside.

鋳型1の内側上面1bは外側面1aより僅か低くなって
おシ、溶湯受槽2の下面との間に非常に小さく間隙8が
形成されている。この間隙8は流路7と導通し且つ鋳型
内周面の全面において開口している。溶湯受槽2の下面
の内側端部は鋳型1の内周面を覆うように水平に張出し
ておシ、このため内周面全体にオーバーハング部9が形
成されている。したがって間隙8から気体はオーバーハ
ング部直下に導入される。
The inner upper surface 1b of the mold 1 is slightly lower than the outer surface 1a, and a very small gap 8 is formed between it and the lower surface of the molten metal receiving tank 2. This gap 8 communicates with the flow path 7 and is open over the entire inner peripheral surface of the mold. The inner end of the lower surface of the molten metal receiving tank 2 extends horizontally so as to cover the inner peripheral surface of the mold 1, so that an overhang portion 9 is formed over the entire inner peripheral surface. Therefore, gas is introduced from the gap 8 directly below the overhang portion.

鋳型の一次冷却作用によって凝固した金属と鋳型内周面
の間に液状潤滑油を供給する手段が、鋳型1の内部に設
けられている。すなわち、図示されない液状潤滑油供給
源と導通した2本の供給管(図示せず)が潤滑油人口1
4に固定される。潤滑油人口14は鋳型lの内部を直径
方向に伸びる通路13と導通している。さらにこの通路
13は鋳型1の内部を円周方向に伸びている液状潤滑油
供給管状通路10と導通している。この供給通路10か
ら多数の液状潤滑油微細供給口11が分岐し、鋳型内周
面に開口している。供給ロエ1は鋳型内部に向かって放
射状に伸び且つ鋳造方向とは反対方向に傾斜している。
A means for supplying liquid lubricating oil between the metal solidified by the primary cooling action of the mold and the inner peripheral surface of the mold is provided inside the mold 1. In other words, two supply pipes (not shown) connected to a liquid lubricant supply source (not shown) have a lubricant population of 1.
It is fixed at 4. The lubricating oil port 14 communicates with a passage 13 extending diametrically inside the mold l. Furthermore, this passage 13 communicates with a liquid lubricant supply tubular passage 10 extending circumferentially inside the mold 1 . A large number of liquid lubricant fine supply ports 11 branch from this supply passage 10 and open to the inner peripheral surface of the mold. The supply rows 1 extend radially into the mold and are inclined in a direction opposite to the casting direction.

供給口11は水平に又は引抜方向に傾斜して伸びるもの
であってもよく、鋳型内の所要の高さから潤滑剤が流下
するように傾斜が定められる。一体の鋳型の中に通路1
0や供給口11を加工することはほとんど不可能である
ために、通路10などが規定されるように予め加工され
た二つの部材な溶接などによシ固着する方法が得策であ
ることは容易に理解されよう。以上の如き構造によると
入口14から供給された液状潤滑油は供給口11から浸
出し、オーバーハング部9の下方から鋳型内周面に常時
供給される。
The supply port 11 may extend horizontally or obliquely in the drawing direction, the inclination being defined so that the lubricant flows down from the required height within the mold. Passage 1 in one mold
Since it is almost impossible to process the passage 10 and the supply port 11, it is easy to understand that it is a good idea to use two members that have been pre-processed so that the passage 10 etc. are defined and then fix them together by welding or the like. be understood. According to the structure described above, the liquid lubricating oil supplied from the inlet 14 leaks out from the supply port 11 and is constantly supplied to the inner circumferential surface of the mold from below the overhang portion 9.

さらに、第1図ないし第4図の装置によると、オーバー
ハング直下の柱状金属の外周面を横切るように気体が導
入され、且つ鋳型内面に潤滑剤が供給された状態で鋳造
が行われる。
Further, according to the apparatus shown in FIGS. 1 to 4, casting is performed in a state in which gas is introduced across the outer peripheral surface of the columnar metal directly under the overhang, and lubricant is supplied to the inner surface of the mold.

(実施例) 本発明に係る方法を、気体導入条件・潤滑油供給の条件
等を変化させて実験を実施した。
(Example) Experiments were conducted using the method according to the present invention by changing gas introduction conditions, lubricating oil supply conditions, etc.

マグネシウム合金AZ31を第1図ないし第5図に示す
連続鋳造装置によって、直径62酎の円柱インゴットに
鋳造し友。
Magnesium alloy AZ31 was cast into a cylindrical ingot with a diameter of 62 mm using the continuous casting apparatus shown in Figures 1 to 5.

受槽自溶湯温度は680℃、冷却水温度は20℃、冷却
水供給量は20 t/rr+tnとし、鋳造速度150
閣/minで鋳造した。
The temperature of the self-molten metal in the receiving tank is 680℃, the cooling water temperature is 20℃, the cooling water supply amount is 20t/rr+tn, and the casting speed is 150℃.
Minted at Kaku/min.

気体導入条件 5 kg/ cm2の圧力を有する六フッ化硫黄ゴンベ
な気体源として、ニードルパルプ及び浮子式流量計を経
由して、気体を供給管6.6’、6“から導入した。鋳
造期間中0.2ないし4.0 A/minの間の特定の
量に調節した気体流を、オーバー・・ング部9の直下に
向って導入して試験を行った。
Gas introduction conditions A sulfur hexafluoride gas source with a pressure of 5 kg/cm2 was introduced through the supply pipes 6.6' and 6'' via needle pulp and a float type flow meter.Casting period The test was conducted by introducing a gas flow regulated at a specific rate between 0.2 and 4.0 A/min directly below the over-ring section 9.

潤滑油としては、ヒマシ油を使用し、そのヘッド圧は、
各気体流に対応する気体正値より+20門上位に調整し
た。
Castor oil is used as the lubricant, and the head pressure is
Adjustment was made to +20 gates above the positive gas value corresponding to each gas flow.

気体流量が少いと、参考写真第1図のごとく得られたイ
ンゴットの表面は、焼付肌になった。
When the gas flow rate was low, the surface of the obtained ingot had a burnt surface as shown in the reference photo in Figure 1.

良好な鋳肌を得るための適当な気体の流量は、0.5〜
3.0 t/minの範囲であり、この上限を越える流
量においては、溶湯受槽の溶湯面から気泡の吹出しが見
られた。なお、参考写真第2図の如く、非常に平滑で良
好な鋳肌の得られる最適流量は、1.0〜2. Ot/
minの範囲である。導入気体の気体圧(オーバーハン
グ直下の柱状もしくは筒状の金属溶湯の外周面に印加さ
れる気体圧と実質的に等しい)の適正値は溶湯受槽内に
溜められる金属溶湯の静水圧相当値の近傍であり、その
上限は金属溶湯の静水圧に依存して気体が受槽内の溶湯
中を浮上することのない圧力によって定められ、またそ
の下限は金属と鋳型内面との接触面積が実質的に減少さ
せうる圧力によって定められる。結局、導入気体はオー
バーハング部直下に溶湯の静水圧近傍の気体圧を有する
弾力的空間を形成し、過剰分は鋳型内面と溶湯の薄い凝
固殻の接触界面の微細な間隙から下方に向って流出する
The appropriate gas flow rate to obtain a good casting surface is 0.5~
The flow rate was in the range of 3.0 t/min, and at flow rates exceeding this upper limit, bubbles were observed blowing out from the molten metal surface of the molten metal receiving tank. As shown in the reference photo in Figure 2, the optimum flow rate for obtaining a very smooth and good casting surface is 1.0 to 2. Ot/
The range is min. The appropriate value for the gas pressure of the introduced gas (substantially equal to the gas pressure applied to the outer peripheral surface of the columnar or cylindrical molten metal directly under the overhang) is the value equivalent to the hydrostatic pressure of the molten metal stored in the molten metal receiving tank. The upper limit is determined by the hydrostatic pressure of the molten metal at which gas does not float through the molten metal in the receiving tank, and the lower limit is determined by the pressure at which the contact area between the metal and the inner surface of the mold is substantially determined by the pressure that can be reduced. Eventually, the introduced gas forms an elastic space with a gas pressure close to the hydrostatic pressure of the molten metal just below the overhang, and the excess gas flows downward through the fine gap at the contact interface between the inner surface of the mold and the thin solidified shell of the molten metal. leak.

潤滑油使用条件 連続給油を行うための潤滑油の最低ヘッド圧力は、気体
導入量が適正範囲に選択されているならば、オーパーツ
・ング部直下に印加されている気体圧板上の圧力が必要
であるが通常はこの気体圧より10〜50簡上位の給油
へノド圧で安定した給油が行われる。この範囲において
は良好な鋳肌が得られる。潤滑油供給圧が、この下限よ
り低下すれば、気体が油供給口11に入り込み油を押し
戻すので、油の連続供給が妨げられ、良好の鋳肌が得ら
れない。
Conditions for using lubricating oil: The minimum head pressure of lubricating oil for continuous lubrication is the pressure on the gas pressure plate that is applied directly below the Opart ring, if the amount of gas introduced is selected within the appropriate range. However, normally, stable oil supply is performed at a gutter pressure of 10 to 50 degrees higher than this gas pressure. In this range, a good casting surface can be obtained. If the lubricating oil supply pressure falls below this lower limit, gas enters the oil supply port 11 and pushes back the oil, which prevents continuous oil supply and makes it impossible to obtain a good casting surface.

次に、油ヘッド圧H0が上昇し使用油量が増加しても鋳
肌への影響は認められない。したがって油使用量を節減
する観点からは、油供給の断続を起こさない限り油ヘッ
ド圧が低い方が好ましいO 尚、潤滑油の種類としては、粘度の高いもの程鋳肌には
好結果をもたらすが、油の流出を考慮すれば、5〜40
ポアズの粘度が、工業上適切であシ、ヒマシ油、菜種油
、サラダオイルなどが好適である。
Next, even if the oil head pressure H0 increases and the amount of oil used increases, no effect on the casting surface is observed. Therefore, from the perspective of reducing oil usage, it is preferable to have a low oil head pressure as long as it does not cause interruptions in oil supply.As for the type of lubricating oil, the higher the viscosity, the better the casting surface will be. However, if oil spills are taken into consideration, the number is 5 to 40.
Preferred are those having an industrially appropriate poise viscosity, such as castor oil, rapeseed oil, and salad oil.

導入気体の作用 オーバーハング部に導入された気体がどのように作用し
ているかを調べるために、(a)気体加圧下及(b)気
体加圧なしの状態での鋳塊の凝固領域を観察した。鋳造
中に、ヘングー内の溶湯中にトレーサーを投入しそれと
同時に鋳造機の下型テーブルの降下を停止した。その後
凝固した鋳塊を軸を含む面で切断し、カセインーダ溶液
にてエツチングした。それによると、気体加圧が効かな
いもの(第6図a)にはヘッダー直下から凝固殻5oの
成長が認められたが、気体加圧が効いたもの(第6図b
)には凝固殻の成長は認められなかった。
Effect of introduced gas In order to investigate how the gas introduced into the overhang is acting, we observed the solidification region of the ingot under (a) gas pressure and (b) no gas pressure. did. During casting, a tracer was injected into the molten metal in the hengoo, and at the same time, the lower die table of the casting machine was stopped from descending. Thereafter, the solidified ingot was cut along the plane including the shaft and etched with a casein-da solution. According to this, a solidified shell 5o was observed to grow from directly under the header in the case where gas pressurization was not effective (Fig. 6 a), but in the case where gas pressurization was effective (Fig. 6 b).
), no solidified shell growth was observed.

この実験よシ溶湯は第5図の如く、凝固しているものと
考えられる。すなわち、印加された気体圧によって溶湯
はオーバーハング部9の直下領域から排除される。溶湯
は鋳型1の最上端よりはかなり降下した位置で鋳型内周
面と接触を開始し直ちに薄い凝固殻を形成し、そしてそ
こから分離して行く。マグネシウム合金溶湯が鋳型内周
面と接している鋳造方向の長さはかなり短かく、したが
って−次冷却の効果は少なくなっている。第5図の如き
、凝固過程が実現されている事が本発明の効果をもたら
す一つの原因と考えられる。他の原因は、溶湯レベルが
受槽内で変動したり、また受槽内への流入の流路の乱れ
たりすることによる影響が、オーパーツ・ング直下に存
在する気体によって緩和され、鋳型内で凝固する溶湯に
直接及ばず、したがって一定条件で凝固が進行する。こ
のようなプロセスが本発明の効果をもたらす重要な原図
と考えられる。
In this experiment, the molten metal is thought to have solidified as shown in Figure 5. That is, the molten metal is removed from the area directly below the overhang portion 9 by the applied gas pressure. The molten metal starts contacting the inner peripheral surface of the mold at a position considerably lower than the top end of the mold 1, immediately forms a thin solidified shell, and then separates from there. The length of the molten magnesium alloy in the casting direction in contact with the inner circumferential surface of the mold is quite short, and therefore the effect of secondary cooling is reduced. The realization of the solidification process as shown in FIG. 5 is considered to be one of the reasons for the effects of the present invention. Another reason is that the effects of fluctuations in the molten metal level in the receiving tank and disturbances in the flow path of the inflow into the receiving tank are alleviated by the gas that exists directly under the mold. It does not reach the molten metal that solidifies directly, so solidification progresses under certain conditions. Such a process is considered to be an important basis for bringing about the effects of the present invention.

鋳塊中の合金成分の逆偏析 連続鋳造によって形成される鋳塊の良否は鋳肌のほか、
鋳塊中の合金成分の逆偏析の大小によって評価される。
Reverse segregation of alloy components in the ingot The quality of the ingot formed by continuous casting is determined by the casting surface and other factors.
It is evaluated by the magnitude of reverse segregation of alloy components in the ingot.

マグネシウム合金AZ31を本発明の方法と、第7図に
示す従来の連続鋳造方法とによって鋳造し、それぞれ直
径62順の円柱インゴットを得た。その鋳塊の表面直下
の偏析層並びに鋳塊内部の逆偏板層を比較して、第1表
の結果2得た。
Magnesium alloy AZ31 was cast by the method of the present invention and the conventional continuous casting method shown in FIG. 7 to obtain cylindrical ingots each having a diameter of 62 mm. The segregation layer immediately below the surface of the ingot and the reverse polarization layer inside the ingot were compared, and results 2 in Table 1 were obtained.

第  1  表 表面直下の偏析層の厚さ 逆側板層の厚さ従来法   
 200μm以上  2閣本発明の方法      5
0μm以下    0.1団(発明の効果) マグネシウム合金を六フッ化硫黄を含む気体加圧のホッ
トトップ鋳造法により連続鋳造して平滑な鋳肌、逆側板
層の少ないすぐれた鋳塊かえられた0 従って、皮削りを省略し、或いは、極めて少量の皮削り
により、押出し、圧延などの塑性加工が可能になり、又
、押出工程を経ず、切断后そのまま鍛造用素材として使
用も可能となった。
1st Thickness of the segregation layer just below the surface Thickness of the opposite side plate layer Conventional method
200 μm or more Method of the present invention 5
0 μm or less Group 0.1 (Effects of the invention) An excellent ingot with a smooth casting surface and few reverse side plate layers was obtained by continuously casting magnesium alloy using a hot-top casting method that pressurized gas containing sulfur hexafluoride. 0 Therefore, plastic processing such as extrusion and rolling can be performed by omitting skin scraping or by removing a very small amount of skin, and it is also possible to use the material as a forging material after cutting without going through the extrusion process. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る鋳造装置の一具体例を示す縦断面
図、第2図は第1図の装置の鋳型の平面図、第3図は第
2図のAB断面図、第4図は第2図のCD断面図、第5
図は、冷却機構を説明する為の第1図の部分拡大図、第
6図は(a)気体加圧下(b)気体加圧なしの状態での
鋳塊の凝固領域を示す鋳塊断面のスケッチ図、第7図は
、従来の連続鋳造法を示す説明図である。 1・・・鋳型、2・・・耐火物製溶湯受槽、3・・冷却
媒体供給孔、4・・・冷却媒体、6・・・六フッ化硫黄
気体の供給口、8・・・間隙、9・・・オーバーハング
部、10・・・潤滑油供給管状口、11・・・潤滑油侵
出口、16・・・マグネシウム合金の金属溶湯、17・
・・マグネシウム合金の鋳塊、20・・・バルブ、21
・・マグネシウム合金溶湯移送管、22・・・ノズル、
24・・・分配カップ。 特許出願人 昭和軽金属株式会社 代理人弁理士 菊  地  精  − 第1図 第3図 第4図 l:s型 2:耐火殉徒容湯受楕 /7゛マグネシウム8金の鏑i胤 第6図 (α)(b) I6:マグネシウム合金の金属溶湯 17:マグネシウム合金の鋳塊 50ニア7ネンウム合金凝固殻
FIG. 1 is a vertical sectional view showing a specific example of a casting apparatus according to the present invention, FIG. 2 is a plan view of a mold of the apparatus shown in FIG. 1, FIG. 3 is a sectional view AB of FIG. 2, and FIG. is the CD sectional view of Figure 2, and
The figure is a partially enlarged view of Fig. 1 to explain the cooling mechanism, and Fig. 6 is a cross-sectional view of the ingot showing the solidification area of the ingot (a) under gas pressure (b) without gas pressurization. The sketch diagram and FIG. 7 are explanatory views showing the conventional continuous casting method. DESCRIPTION OF SYMBOLS 1...Mold, 2...Refractory molten metal receiving tank, 3...Cooling medium supply hole, 4...Cooling medium, 6...Sulfur hexafluoride gas supply port, 8...Gap, 9... Overhang part, 10... Lubricating oil supply tubular port, 11... Lubricating oil inlet, 16... Molten metal of magnesium alloy, 17.
...Magnesium alloy ingot, 20...Valve, 21
... Magnesium alloy molten metal transfer pipe, 22... Nozzle,
24...Distribution cup. Patent Applicant Showa Light Metal Co., Ltd. Patent Attorney Sei Kikuchi - Figure 1 Figure 3 Figure 4 l: S type 2: Fireproof sacrificial bath ellipse / 7゛ Magnesium 8-karat gold kaburi tane Figure 6 (α) (b) I6: Magnesium alloy molten metal 17: Magnesium alloy ingot 50 near 7 nenium alloy solidified shell

Claims (1)

【特許請求の範囲】[Claims] 耐火物製金属溶湯受槽が、強制冷却鋳型の上部に設けら
れ、該溶湯受槽の内周下端面が、該鋳型の内周面より内
側に張出してオーバーハング部を形成している溶湯受槽
付き強制冷却鋳型を用い前記溶湯受槽に鋳造すべきマグ
ネシウムまたはその合金の金属溶湯を溜め、内周面に潤
滑界面を形成させた前記鋳型内に近接して、前記金属溶
湯を柱状もしくは筒状に保持し、そして鋳型内を通過す
る冷却剤によって該柱状体、もしくは筒状体を冷却する
工程を含むマグネシウムまたはその合金の連続鋳造法で
あって、前記オーバーハング部直下に6フッ化硫黄を含
む気体を導入し、前記柱状もしくは筒状のマグネシウム
またはその合金の溶湯の外周面に気体圧を印加して鋳造
することを特徴とするマグネシウムまたはその合金の連
続鋳造法。
A refractory metal molten metal receiving tank is provided on the upper part of the forced cooling mold, and the inner peripheral lower end surface of the molten metal receiving tank extends inward from the inner peripheral surface of the mold to form an overhang part. A cooling mold is used to store a molten metal of magnesium or its alloy to be cast in the molten metal receiving tank, and the molten metal is held in a columnar or cylindrical shape close to the mold, which has a lubricated interface formed on its inner peripheral surface. , and a continuous casting method for magnesium or its alloy, which includes a step of cooling the columnar or cylindrical body with a coolant passing through the mold, and in which a gas containing sulfur hexafluoride is placed directly under the overhang. 1. A method for continuous casting of magnesium or alloy thereof, characterized in that the columnar or cylindrical molten magnesium or alloy thereof is introduced and cast by applying gas pressure to the outer peripheral surface of the columnar or cylindrical molten magnesium or alloy thereof.
JP23933484A 1984-11-15 1984-11-15 Continuous casting method of magnesium or ally thereof Granted JPS61119359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23933484A JPS61119359A (en) 1984-11-15 1984-11-15 Continuous casting method of magnesium or ally thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23933484A JPS61119359A (en) 1984-11-15 1984-11-15 Continuous casting method of magnesium or ally thereof

Publications (2)

Publication Number Publication Date
JPS61119359A true JPS61119359A (en) 1986-06-06
JPH057100B2 JPH057100B2 (en) 1993-01-28

Family

ID=17043182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23933484A Granted JPS61119359A (en) 1984-11-15 1984-11-15 Continuous casting method of magnesium or ally thereof

Country Status (1)

Country Link
JP (1) JPS61119359A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2667002A1 (en) * 1990-09-21 1992-03-27 Norsk Hydro As Method and apparatus for casting reactive metals in a mould with a hot upper part
EP1034056A1 (en) * 1997-10-21 2000-09-13 Wagstaff Inc. Casting of molten metal in an open ended mold cavity
WO2005007320A1 (en) * 2003-07-16 2005-01-27 Sumitomo Metal Industries, Ltd. Continuous casting method for magneisum alloy
KR100679313B1 (en) * 2004-12-23 2007-02-06 재단법인 포항산업과학연구원 Apparatus for continuous casting of Magnesium billet or slab using high frequency electromagnetic field
KR100721874B1 (en) 2004-12-23 2007-05-28 재단법인 포항산업과학연구원 Apparatus for continuous casting of Magnesium billet or slab using low frequency electromagnetic field
JP2008525197A (en) * 2004-12-23 2008-07-17 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Magnesium billet or slab continuous casting apparatus using electromagnetic field and manufacturing method
JP2010137255A (en) * 2008-12-11 2010-06-24 Kumamoto Univ Casting device and casting method, and method for manufacturing magnesium alloy billet
JP2011194445A (en) * 2010-03-19 2011-10-06 Sankyo Material Inc Continuous casting method and continuous casting apparatus for magnesium alloy, and magnesium alloy billet
CN109894586A (en) * 2019-04-15 2019-06-18 中国科学院金属研究所 A kind of preparation method of low surface segregation layer thickness aluminium alloy continuous casting ingot

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2667002A1 (en) * 1990-09-21 1992-03-27 Norsk Hydro As Method and apparatus for casting reactive metals in a mould with a hot upper part
EP1034056A1 (en) * 1997-10-21 2000-09-13 Wagstaff Inc. Casting of molten metal in an open ended mold cavity
EP1034056A4 (en) * 1997-10-21 2005-05-18 Alcan Int Ltd Casting of molten metal in an open ended mold cavity
EP1867411A3 (en) * 1997-10-21 2008-08-13 Novelis, Inc. Casting of molten metal in an open ended mold cavity
WO2005007320A1 (en) * 2003-07-16 2005-01-27 Sumitomo Metal Industries, Ltd. Continuous casting method for magneisum alloy
KR100679313B1 (en) * 2004-12-23 2007-02-06 재단법인 포항산업과학연구원 Apparatus for continuous casting of Magnesium billet or slab using high frequency electromagnetic field
KR100721874B1 (en) 2004-12-23 2007-05-28 재단법인 포항산업과학연구원 Apparatus for continuous casting of Magnesium billet or slab using low frequency electromagnetic field
JP2008525197A (en) * 2004-12-23 2008-07-17 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Magnesium billet or slab continuous casting apparatus using electromagnetic field and manufacturing method
JP2010137255A (en) * 2008-12-11 2010-06-24 Kumamoto Univ Casting device and casting method, and method for manufacturing magnesium alloy billet
JP2011194445A (en) * 2010-03-19 2011-10-06 Sankyo Material Inc Continuous casting method and continuous casting apparatus for magnesium alloy, and magnesium alloy billet
CN109894586A (en) * 2019-04-15 2019-06-18 中国科学院金属研究所 A kind of preparation method of low surface segregation layer thickness aluminium alloy continuous casting ingot

Also Published As

Publication number Publication date
JPH057100B2 (en) 1993-01-28

Similar Documents

Publication Publication Date Title
US4157728A (en) Process for direct chill casting of metals
US3381741A (en) Method and apparatus for continuous casting of ingots
JP5091185B2 (en) Continuous casting equipment
US8561670B2 (en) Process and apparatus for direct chill casting
US2983972A (en) Metal casting system
US2527545A (en) Apparatus for continuous castings
US5052469A (en) Method for continuous casting of a hollow metallic ingot and apparatus therefor
JPS61119359A (en) Continuous casting method of magnesium or ally thereof
US4653571A (en) Method for horizontal continuous casting of a metal, where the lower mold/cast metal contact point is horizontally displaced
US4875519A (en) Method of manufacturing hollow billet and apparatus therefor
JPS63104751A (en) Method and apparatus of horizontal continuous casting for metal
CA1324478C (en) Method for continuous casting a hollow metallic ingot and apparatus therefor
JPH09220645A (en) Method for lubricating wall of metallic mold for continuous casting and mold therefor
JPS6133735A (en) Method and device for continuous casting of metal
JP4248085B2 (en) Hollow billet casting core and method for hot top continuous casting of hollow billet using the core
US3797555A (en) Method for continuous casting of metal strips
JP4757602B2 (en) Continuous casting apparatus, continuous casting method, and aluminum alloy casting rod
US3245126A (en) Introducing hydrogen gas to the meniscus for continuously casting steel
JPH0832356B2 (en) Horizontal continuous casting method and apparatus for metal
JPH0263647A (en) Method for continuously casting metal
US3916985A (en) Apparatus for continuous casting of metal strips
JP5021199B2 (en) Horizontal continuous casting apparatus, horizontal continuous casting method, and aluminum alloy casting rod
JPS6039142Y2 (en) Horizontal continuous casting equipment
US20050000679A1 (en) Horizontal direct chill casting apparatus and method
JPS63154244A (en) Continuous casting apparatus for metal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term