JPH057100B2 - - Google Patents

Info

Publication number
JPH057100B2
JPH057100B2 JP23933484A JP23933484A JPH057100B2 JP H057100 B2 JPH057100 B2 JP H057100B2 JP 23933484 A JP23933484 A JP 23933484A JP 23933484 A JP23933484 A JP 23933484A JP H057100 B2 JPH057100 B2 JP H057100B2
Authority
JP
Japan
Prior art keywords
mold
molten metal
gas
receiving tank
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23933484A
Other languages
Japanese (ja)
Other versions
JPS61119359A (en
Inventor
Shigeru Yanagimoto
Shigeo Takahashi
Ryoichi Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP23933484A priority Critical patent/JPS61119359A/en
Publication of JPS61119359A publication Critical patent/JPS61119359A/en
Publication of JPH057100B2 publication Critical patent/JPH057100B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/07Lubricating the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0401Moulds provided with a feed head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/049Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for direct chill casting, e.g. electromagnetic casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、鍛造、押出、圧延などの塑性加工用
素材であるマグネシウムやマグネシウム合金など
の鋳塊又は、リメルト用ビレツトを鋳造するため
の連続鋳造法に関する。 (従来の技術) マグネシウムやマグネシウム合金(以下単にマ
グネシウム合金という)などの塑性加工用素材で
ある鋳塊やリメルト用ビレツトは、ダービル型鋳
造法、空冷鋳鉄鋳型(ブツクモールド)、連続鋳
造法などによつて製造されている。 ダービル型鋳造法は、小型の鋳塊を小規模に製
造するには優れているが、大型の鋳塊を大量に製
造する場合は、連続鋳造法によつて製造するのが
効率的である。 連続鋳造法は、第7図に示すように、水冷され
た銅又はアルミニウム合金製鋳型に溶湯を注入
し、鋳型内で溶湯の熱を奪うことにより溶湯の外
殻を凝固させ、凝固と共に底部のダミーブロツク
を油圧シリンダなどで下方に引下げ連続的に溶湯
を注入凝固させてゆく方法である。形成された鋳
塊は下方に向つて一定長さに達すると鋳造は中断
され、そして鋳塊は上方へ引き出される。また凝
固が完了した鋳塊をピンチロールで引下げ、降下
と同期して鋸を移動させ、降下の途中である長さ
ごとに切断し取出すことにより、完全に連続して
注湯し、鋳塊を製造することもできる。 湯溜より鋳型への溶湯の供給は、バルブ操作に
より調整される。このような鋳造法の欠点は、湯
面の動揺あるいは変動により鋳造過程において外
殻表面に溶湯が浸入してくる発汗現象が多く発生
し、また冷接現象(Cold Shut)も生じ易いため
に、鋳肌が悪くなることにある。また、表面層へ
の合金成分の逆偏析が大きいために、塑性加工に
際して表面削りを多く行つて逆偏析層を除去する
必要がある。 近年における非鉄金属の連続鋳造法の大きな進
歩は、鋳型の上部に断熱耐火物製の溶湯受槽を設
けて、金属の凝固層の上に高い静水圧の溶湯を保
持するようにしたいわゆるホツトトツプ鋳造法と
言われる鋳造法にある。この鋳造法は溶湯受槽内
に溶湯表面が存在するようになつているため、従
来の鋳造のように鋳型内の溶湯表面高さを厳密に
調節する必要がなく作業人員の省力化が期待でき
る。また酸化膜の混入が少ないなどの長所がある
が、金属溶湯が酸化され易い性質をもつマグネシ
ウム合金の鋳造に関し、同法は未だ完成した技術
とは言い難く、特に鋳肌に関しては、加工用鋳塊
としては不充分であり、鋳肌改善の改良が望まれ
ている。 (発明が解決しようとする問題点) マグネシウム合金の鋳塊製造法としての既存の
連続鋳造法は、鋳塊の品質の面、即ち、鋳肌が悪
いこと、表面層への合金成分の逆偏析が大きいな
どの問題点が多く、又、マグネシウムが非常に酸
化され易い為、安全面でも、多くの配慮が必要で
あり鋳造操作も繁雑となつている。 そこで、本発明者らは、工程が簡単で、鋳造さ
れた鋳塊の品質のすぐれた、マグネシウム合金の
連続鋳造法の開発をすすめ、本発明を完成した。 よつて本発明は、マグネシウム合金溶湯より、
連続鋳造法によつて、すぐれた品質をもつ鋳塊を
効率よく得ることを目的とする。 (問題点を解決するための手段及び作用) 本発明は耐火物製金属溶湯受槽が、強制冷却鋳
型の上部に設けられ、該溶湯受槽の内周下端面
が、該鋳型の内周面より内側に張出してオーバー
ハング部を形成している溶湯受槽付き強制冷却鋳
型を用い前記溶湯受槽に鋳造すべきマグネシウム
またはその合金の金属溶湯を溜め、内周面に潤滑
界面を形成させた前記鋳型内に近接して、前記金
属溶湯を柱状もしくは筒状に保持し、そして鋳型
内を通過する冷却剤によつて該柱状体、もしくは
筒状体を冷却する工程を含むマグネシウムまたは
その合金の連続鋳造法であつて、前記オーバーハ
ング部直下に6フツ化硫黄を含む気体を導入し、
前記柱状もしくは筒状のマグネシウムまたはその
合金の溶湯の外周面に気体圧を印加して鋳造する
ことを特徴とするマグネシウムまたはその合金の
連続鋳造法を要旨とする。 マグネシウム合金溶湯は銅、アルミニウム等に
比べ酸化され易いので溶湯面を非酸化性雰囲気で
覆う必要がある。この目的のために従来SO2ガス
が用いられてきたが、人体への作用あるいは設備
などの構造物の金属材料の腐食作用が激しいなど
の欠点がある。一抱、本発明において使用する六
フツ化硫黄ガスは、これらの欠点がなく酸化防止
に有効であり、マグネシウム合金の金属溶湯外周
面に印加する気体として、好適である。 本発明の適用対象なる鋳塊の形状は主として、
押出或は引抜成型用素材となる円柱状鋳塊、圧延
板材成型用素材となる角柱状鋳塊、管中空押出物
品の素材となる肉厚の筒状中空鋳塊もしくは、リ
メルト用ビレツトである。 本発明はダイレクトチル法と称される連続鋳造
法の改良に関するものであつて、この方法では溶
湯は鋳型の中に近接して柱状もしくは筒状に保持
されている。この際鋳型の中に保持された柱状体
もしくは筒状体は、強制冷却された鋳型の内面に
接触して溶湯外周面は急冷され、薄い凝固外殻が
形成され、ついで凝固外殻が厚くなるとともに凝
固収縮し、それによつて、凝固外殻が鋳型周面か
ら離れ、また凝固は鋳型の入口に近い部分から開
始すると考えられている。 本発明によるとオーバーハング部直下の外周面
に六フツ化硫黄を含む気体の気体圧が印加され
る。例えば、気体はオーバーハングを形成してい
るマグネシウム合金の溶湯受槽の下端面に平行に
且つ鋳造の軸方向に垂直方向に導入される。すな
わち、気体は溶湯受槽と鋳型の境界面の1ケ所も
しくは複数個所から導入され次に全境界面に分配
され、そして全境界面から柱状体もしくは筒状体
の外周面に到達する。すなわちこの場合、マグネ
シウム合金の柱状体もしくは筒状体の外周面に直
面に導入される気体分流も、斜めに導入される分
流もあるが、差支えない。もつとも全ての気体を
外周面に対し実質的に直角に導入してもよい。気
体の導入は鋳造が行われている全期間に亘つて且
つ全外周について行われる。導入された気体が所
定領域の外周面に且つ所定方向において到着する
ならば、気体の途中の流路は問わない。しかし実
際的には前記境界面を気体が通過することが得策
である。 本発明においては鋳型内面に潤滑界面を形成し
て鋳造が行われる。 潤滑界面の形成方法としては公知の下記のいづ
れかの方法が採用される。 (1) 液状潤滑油をオーバーハング部より下方の位
置より、鋳型内面に向つて連続的に浸出させ
る。 (2) 鋳造開始に先立つて予め鋳型内面に潤滑剤を
塗布する。 (3) 黒鉛のごとく、金属溶湯に対する接触角が大
きく、また金属凝固皮殻に対して自己潤滑性を
有する材質によつて製作された鋳型を使用す
る。 鋳型内面における上記のごとき潤滑界面の形成
は、本願発明の特徴的作用効果であるところの平
滑な良好鋳肌を得るための必須構成要件の1つで
ある。上記(1)及び(2)はアルミニウム、又は銅等の
熱伝導性の良い金属から製作された鋳型に適用さ
れる。 本発明の実施に供せられる鋳造装置は、耐火物
製金属溶湯受槽が強制冷却鋳型の上部に設けられ
且つ該溶湯受槽の内周下端面が該鋳型の内周面よ
り内側に張出してオーバーハング部を形成してい
る溶湯受槽付き強制冷却鋳型を含むマグネシウム
合金の連続鋳造装置であつて前記鋳型と溶湯受槽
の接合部が気密に接触している外側領域及び鋳型
と溶湯受槽の間にスリツトが形成され且つ前記外
側領域により取囲まれた内側領域からなり、前記
スリツトはその間〓が前記金属溶湯が侵入しない
ように定められ且つ六フツ化硫黄を含む気体供給
源に連通していることを特徴とするものである。 次に、本発明に係る方法を図面に基づいて説明
する。 本発明の方法 第1図は本発明に係る方法を実施する鋳型、溶
湯受槽及び鋳塊を示す縦断面図である。マグネシ
ウム合金の溶湯は、図示されていない溶湯保持炉
より、溶湯受槽に供給される。溶湯受槽の溶湯面
は、六フツ化硫黄を含む気体でおおい酸化を防止
する。(図示せず。)金属又は黒鉛などの材料から
なる鋳型1は、鋳塊17の輪郭を規定する適当な
る形状、例えば円柱状鋳塊の場合は円形、横断面
を有し、鋳塊17が形成される空間を取囲んでい
る。鋳型1は柱状金属16,17を強制冷却する
ための冷却媒体、例えば水、4が流れる空胴部を
有する。図示されていない冷却媒体供給源から冷
却媒体を空胴部に供給する管3が鋳型1に接続さ
れている。鋳型1の内周面の一部から溶湯16の
熱が吸収され、斜線で示された如く溶湯は凝固を
開始する。このように鋳型によつて一次的に冷却
された金属を二次的に冷却するために、冷却媒体
は噴出口5から鋳塊17に向かつて噴出される。
噴出口5は鋳型1の下端コーナー部に等間隔に設
けられた孔、又は全周にスリツト状に設けられて
いる。なお一次冷却と二次冷却の媒体は共通であ
る必要はないが通常は冷水が用いられる。 鋳型1の上端面に、マリナイト(Marinite)
又はフアイバーフラツクス(Fiberflax)などの
商品名で周知である耐熱耐火物からなる溶融金属
受槽2がボルト15によつて鋳型1に固定されて
いる。溶湯受槽2は鋳型1と同軸状に配置されて
おり且つ鋳型1の内周面と実質的に平行な内周面
を有する。溶湯受槽2は周知の如く溶融金属を溜
め、注湯量の変動によつて凝固開始面が変動する
のを防止している。 凝固した鋳塊17は図示されていない底板を或
る一定の速度(すなわち鋳造速度)で降下させる
ことによつて鋳型1から下方に連続的に引抜かれ
る。 次に、第2図ないし4図に基づいて、本発明に
係る気体導入に用いられる鋳型の構造を説明す
る。 鋳型1の外周面から直径方向に120゜の角度を置
いて3本の管6,6′,6″が分岐しており、図示
されていない気体供給源と導通されている。この
気体供給源6,6′,6″は鋳型1の上部全周に伸
びている環状流路7と導通している。したがつ
て、気体は鋳型の上部全周に対して均等に分配さ
れる。供給管は1本であつても2〜3本の場合と
同一の結果がえられることが実験によつて確かめ
られた。鋳型1の外側上面1aは溶湯受槽2の下
面と密着するような平坦面となつており、その一
部に鋳型の全周を伸びる溝12が形成されてい
る。この溝12には図示されていない、耐熱性ゴ
ム質等のパツキング材が詰められ、流路7を流れ
る気体が外部に漏れるのを防止する。 鋳型1の内側上面1bは外側面1aより僅か低
くなつており、溶湯受槽2の下面との間に非常に
小さく間〓8が形成されている。この間〓8は流
路7と導通し且つ鋳型内周面の全面において開口
している。溶湯受槽2の下面の内側端部は鋳型1
の内周面を覆うように水平に張出しており、この
ため内周面全体にオーバーハング部9が形成され
ている。したがつて間〓8から気体はオーバーハ
ング部直下に導入される。 鋳型の一次冷却作用によつて凝固した金属と鋳
型内周面の間に液状潤滑油を供給する手段が、鋳
型1の内部に設けられている。すなわち、図示さ
れない液状潤滑油供給源と導通した2本の供給管
(図示せず)が潤滑油入口14に固定される。潤
滑油入口14は鋳型1の内部を直径方向に伸びる
通路13と導通している。さらにこの通路13は
鋳型1の内部を円周方向に伸びている液状潤滑油
供給管状通路10と導通している。この供給通路
10から多数の液状潤滑油微細供給口11が分岐
し、鋳型内周面に開口している。供給口11は鋳
型内部に向かつて放射状に伸び且つ鋳造方向とは
反対方向に傾斜している。供給口11は水平に又
は引抜方向に傾斜して伸びるものであつてもよ
く、鋳型内の所要の高さから潤滑剤が流下するよ
うに傾斜が定められる。一体の鋳型の中に通路1
0や供給口11を加工することはほとんど不可能
であるために、通路10などが規定されるように
予め加工された二つの部材な溶接などにより固着
する方法が得策であることは容易に理解されよ
う。以上の如き構造によると入口14から供給さ
れた液状潤滑油は供給口11から浸出し、オーバ
ーハング部9の下方から鋳型内周面に常時供給さ
れる。 さらに、第1図ないし第4図の装置によると、
オーバーハング直下の柱状金属の外周面を横切る
ように気体が導入され、且つ鋳型内面に潤滑剤が
供給された状態で鋳造が行われる。 (実施例) 本発明に係る方法を、気体導入条件・潤滑油供
給の条件等を変化させて実験を実施した。 マグネシウム合金AZ31を第1図ないし第5
図に示す連続鋳造装置によつて、直径62mmの円柱
インゴツトに鋳造した。 受槽内溶湯温度は680℃、冷却水温度は20℃、
冷却水供給量は20/minとし、鋳造速度150
mm/minで鋳造した。 気体導入条件 5Kg/cm2の圧力を有する六フツ化硫黄ボンベを
気体源として、ニードルバルブ及び浮子式流量計
を経由して、気体を供給管6,6′,6″から導入
した。鋳造期間中0.2ないし4.0/minの間の特
定の量に調節した気体流を、オーバーハング部9
の直下に向つて導入して試験を行つた。潤滑油と
しては、ヒマシ油を使用し、そのヘツド圧は、各
気体流に対応する気体圧値より+20mm上位に調整
した。 気体流量が少いと、参考写真第1図のごとく得
られたインゴツトの表面は、焼付肌になつた。良
好な鋳肌を得るための適当な気体の流量は、0.5
〜3.0/minの範囲であり、この上限を越える
流量においては、溶湯受槽の溶湯面から気泡の吹
出しが見られた。なお、参考写真第2図の如く、
非常に平滑で良好な鋳肌の得られる最適流量は、、
1.0〜2.0/minの範囲である。導入気体の気体
圧(オーバーハング直下の柱状もしくは筒状の金
属溶湯の外周面に印加される気体圧と実質的に等
しい)の適正値は溶湯受槽内に溜められる金属溶
湯の静水圧相当値の近傍であり、その上限は金属
溶湯の静水圧に依存して気体が受槽内の溶湯中を
浮上することのない圧力によつて定められ、また
その下限は金属と鋳型内面との接触面積が実質的
に減少させうる圧力によつて定められる。結局、
導入気体はオーバーハング部直下に溶湯の静水圧
近傍の気体圧を有する弾力的空間を形成し、過剰
分は鋳型内面と溶湯の薄い凝固殻の接触界面の微
細な間〓から下方に向つて流出する。 潤滑油使用条件 連続給油を行うための潤滑油の最低ヘツド圧力
は、気体導入量が適正範囲に選択されているなら
ば、オーバーハング部直下に印加されている気体
圧以上の圧力が必要であるが通常はこの気体圧よ
り10〜50mm上位の給油ヘツド圧で安定した給油が
行われる。この範囲においては良好な鋳肌が得ら
れる。潤滑油供給圧が、この下限より低下すれ
ば、気体が油供給口11に入り込み油を押し戻す
ので、油の連続供給が妨げられ、良好な鋳肌が得
られない。 次に油ヘツド圧H0が上昇し使用油量が増加し
ても鋳肌への影響は認められない。したがつて油
使用量を節減する観点からは、油供給の断続を起
こさない限り油ヘツド圧が低い方が好ましい。 尚、潤滑油の種類としては、粘度の高いもの程
鋳肌には好結果をもたらすが、油の流出を考慮す
れば、5〜40ポアズの粘度が、工業上適切であ
り、ヒマシ油、菜種油、サラダオイルなどが好適
である。 導入気体の作用 オーバーハング部に導入された気体がどのよう
に作用しているかを調べるために、(a)気体加圧下
及(b)気体加圧なしの状態での鋳塊の凝固領域を観
察した。鋳造中に、ヘツダー内の溶湯中にトレー
サーを投入しそれと同時に鋳造機の下型テーブル
の降下を停止した。その後凝固した鋳塊を軸を含
む面で切断し、カセイソーダ溶液にてエツチング
した。それによると、気体加圧が効かないもの
(第6図a)にはヘツダー直下から凝固殻50の
成長が認められたが、気体加圧が効いたもの(第
6図b)には凝固殻の成長は認められなかつた。 この実験より溶湯は第5図の如く、凝固してい
るものと考えられる。すなわち、印加された気体
圧によつて溶湯はオーバーハング部9の直下領域
から排除される。溶湯は鋳型1の最上端よりはか
なり降下した位置で鋳型内周面と接触を開始し直
ちに薄い凝固殻を形成し、そしてそこから分離し
て行く。マグネシウム合金溶湯が鋳型内周面と接
している鋳造方向の長さはかなり短かく、したが
つて一次冷却の効果は少なくなつている。第5図
の如き、凝固過程が実現されている事が本発明の
効果をもたらす一つの原因と考えられる。他の原
因は、溶湯レベルが受槽内で変動したり、また受
槽内への流入の流路の乱れたりすることによる影
響が、オーバーハング直下に存在する気体によつ
て緩和され、鋳型内で凝固する溶湯に直接及ば
ず、したがつて一定条件で凝固が進行する。この
ようなプロセスが本発明の効果をもたらす重要な
原因と考えられる。 鋳塊中の合金成分の逆偏析 連続鋳造によつて形成される鋳塊の良否は鋳肌
のほか、鋳塊中の合金成分の逆偏析の大小によつ
て評価される。 マグネシウム合金AZ31を本発明の方法と、
第7図に示す従来の連続鋳造方法とによつて鋳造
し、それぞれ直径62mmの円柱インゴツトを得た。
その鋳塊の表面直下の偏析層並びに鋳塊内部の逆
偏析層を比較して、第1表の結果を得た。
(Industrial Application Field) The present invention relates to a continuous casting method for casting ingots or billets for remelting, such as magnesium or magnesium alloys, which are materials for plastic working such as forging, extrusion, and rolling. (Prior art) Ingots and billets for remelting, which are materials for plastic working such as magnesium and magnesium alloys (hereinafter simply referred to as magnesium alloys), are used in the Durville casting method, air-cooled cast iron molds (book molds), continuous casting methods, etc. It is manufactured by The D'Urville casting method is excellent for producing small ingots on a small scale, but when producing large quantities of large ingots, it is more efficient to produce them by the continuous casting method. As shown in Figure 7, in the continuous casting method, molten metal is poured into a water-cooled copper or aluminum alloy mold, and the outer shell of the molten metal is solidified by removing heat from the molten metal within the mold. In this method, a dummy block is pulled down using a hydraulic cylinder or the like, and molten metal is continuously injected and solidified. When the formed ingot reaches a certain length downward, casting is stopped and the ingot is pulled upward. In addition, the solidified ingot is pulled down using pinch rolls, a saw is moved in synchronization with the descent, and the ingot is cut and taken out at certain lengths during the descent, allowing completely continuous pouring and removing the ingot. It can also be manufactured. The supply of molten metal from the sump to the mold is regulated by valve operation. The disadvantages of this casting method are that the molten metal often sweats and enters the outer shell surface during the casting process due to fluctuations or fluctuations in the molten metal level, and cold shut phenomenon is also likely to occur. The problem is that the casting surface deteriorates. Furthermore, since the reverse segregation of alloy components in the surface layer is large, it is necessary to remove the reverse segregation layer by performing many surface scrapings during plastic working. A major advance in continuous casting of non-ferrous metals in recent years is the so-called hot-top casting method, in which a molten metal receiving tank made of an insulating refractory is installed above the mold to hold molten metal under high hydrostatic pressure above the solidified layer of metal. There is a casting method called. In this casting method, the surface of the molten metal exists in the molten metal receiving tank, so unlike traditional casting, there is no need to strictly adjust the height of the molten metal surface in the mold, and labor savings can be expected. . Although it has advantages such as less contamination of oxide film, this method is still far from a perfect technology for casting magnesium alloys whose molten metal tends to be easily oxidized. It is insufficient as a lump, and improvements in improving the casting surface are desired. (Problems to be Solved by the Invention) The existing continuous casting method for manufacturing magnesium alloy ingots has problems in terms of the quality of the ingot, such as poor casting surface and reverse segregation of alloy components in the surface layer. There are many problems such as a large amount of carbon dioxide, and since magnesium is very easily oxidized, many safety considerations are required and the casting operation is complicated. Therefore, the present inventors have developed a continuous casting method for magnesium alloys that is simple in process and provides excellent quality of the cast ingot, and has completed the present invention. Therefore, the present invention provides, from a molten magnesium alloy,
The purpose is to efficiently obtain ingots of excellent quality using a continuous casting method. (Means and effects for solving the problems) The present invention provides a refractory metal molten metal receiving tank provided above a forced cooling mold, and the inner peripheral lower end surface of the molten metal receiving tank is located inside the inner peripheral surface of the mold. A forced cooling mold with a molten metal receiving tank overhanging to form an overhang part is used, the molten metal of magnesium or its alloy to be cast is stored in the molten metal receiving tank, and a lubrication interface is formed on the inner peripheral surface of the mold. A continuous casting method for magnesium or its alloy, which includes the step of holding the molten metal in a columnar or cylindrical shape in close proximity, and cooling the columnar or cylindrical body with a coolant passing through a mold. Introducing a gas containing sulfur hexafluoride directly under the overhang,
The gist of the present invention is a continuous casting method for magnesium or an alloy thereof, characterized in that casting is performed by applying gas pressure to the outer peripheral surface of the columnar or cylindrical molten magnesium or alloy thereof. Since molten magnesium alloy is more easily oxidized than copper, aluminum, etc., it is necessary to cover the surface of the molten metal with a non-oxidizing atmosphere. Conventionally, SO 2 gas has been used for this purpose, but it has drawbacks such as severe effects on the human body and strong corrosive effects on metal materials of structures such as equipment. The sulfur hexafluoride gas used in the present invention does not have these drawbacks and is effective in preventing oxidation, and is suitable as a gas to be applied to the outer peripheral surface of a molten magnesium alloy metal. The shape of the ingot to which the present invention is applied is mainly as follows:
These are cylindrical ingots that serve as raw materials for extrusion or pultrusion molding, prismatic ingots that serve as raw materials for forming rolled plate materials, thick-walled cylindrical hollow ingots that serve as raw materials for hollow tube extrusion products, or billets for remelting. The present invention relates to an improvement in a continuous casting method called the direct chill method, in which the molten metal is held in a columnar or cylindrical shape in close proximity to a mold. At this time, the columnar or cylindrical body held in the mold comes into contact with the forcedly cooled inner surface of the mold, and the outer peripheral surface of the molten metal is rapidly cooled, forming a thin solidified outer shell, which then becomes thicker. It is believed that the solidified shell is separated from the peripheral surface of the mold, and that solidification starts from a portion near the entrance of the mold. According to the present invention, the gas pressure of a gas containing sulfur hexafluoride is applied to the outer peripheral surface directly below the overhang portion. For example, the gas is introduced parallel to the lower end surface of the magnesium alloy molten metal receiving tank forming an overhang and perpendicular to the axial direction of the casting. That is, the gas is introduced from one or more locations on the interface between the molten metal receiving tank and the mold, is then distributed over all the interfaces, and reaches the outer peripheral surface of the columnar or cylindrical body from all the interfaces. That is, in this case, there is no problem whether the gas branch flow is introduced facing the outer circumferential surface of the magnesium alloy columnar or cylindrical body, or the gas branch flow is introduced obliquely. However, all of the gas may be introduced substantially perpendicular to the outer circumferential surface. The gas is introduced during the entire casting period and around the entire circumference. As long as the introduced gas arrives at the outer peripheral surface of the predetermined area and in a predetermined direction, the flow path of the gas does not matter. However, in practice it is advisable for the gas to pass through the interface. In the present invention, casting is performed by forming a lubricating interface on the inner surface of the mold. As a method for forming a lubricating interface, any of the following known methods may be employed. (1) Liquid lubricating oil is continuously leached from a position below the overhang toward the inner surface of the mold. (2) Apply lubricant to the inner surface of the mold before starting casting. (3) Use a mold made of a material such as graphite, which has a large contact angle with the molten metal and has self-lubricating properties with respect to the solidified metal shell. Formation of the above-mentioned lubricating interface on the inner surface of the mold is one of the essential components for obtaining a smooth and good casting surface, which is a characteristic effect of the present invention. The above (1) and (2) apply to molds made from metals with good thermal conductivity such as aluminum or copper. The casting apparatus used for carrying out the present invention has a refractory metal molten metal receiving tank provided above a forced cooling mold, and the inner peripheral lower end surface of the molten metal receiving tank protrudes inward from the inner peripheral surface of the mold and has an overhang. 1. An apparatus for continuous casting of magnesium alloys, comprising a forced cooling mold with a molten metal receiving tank forming a section, the outer region where the joint between the mold and the molten metal receiving tank are in airtight contact, and a slit between the mold and the molten metal receiving tank. an inner region formed and surrounded by said outer region, said slit being defined therebetween to prevent said molten metal from entering and communicating with a gas source containing sulfur hexafluoride; This is a characteristic feature. Next, the method according to the present invention will be explained based on the drawings. Method of the Invention FIG. 1 is a longitudinal sectional view showing a mold, a molten metal receiving tank, and an ingot for carrying out the method of the invention. Molten magnesium alloy is supplied to the molten metal receiving tank from a molten metal holding furnace (not shown). The surface of the molten metal in the molten metal receiving tank is covered with a gas containing sulfur hexafluoride to prevent oxidation. (Not shown) The mold 1 made of a material such as metal or graphite has a suitable shape defining the outline of the ingot 17, for example, a circular shape in the case of a cylindrical ingot, or a cross section, so that the ingot 17 It surrounds the space that is formed. The mold 1 has a cavity through which a cooling medium such as water 4 flows for forcedly cooling the metal columns 16 and 17. Connected to the mold 1 is a pipe 3 that supplies a cooling medium to the cavity from a cooling medium supply source (not shown). The heat of the molten metal 16 is absorbed from a part of the inner peripheral surface of the mold 1, and the molten metal starts solidifying as shown by diagonal lines. In order to secondarily cool the metal that has been primarily cooled by the mold in this way, the cooling medium is ejected from the ejection port 5 toward the ingot 17 .
The spout ports 5 are holes provided at equal intervals in the lower corner of the mold 1, or are provided in the form of slits around the entire circumference. Although it is not necessary that the medium for primary cooling and secondary cooling be the same, cold water is usually used. Marinite is applied to the upper end surface of mold 1.
A molten metal receiving tank 2 made of a heat-resistant refractory material well known under the trade name of Fiberflax is fixed to the mold 1 with bolts 15. The molten metal receiving tank 2 is arranged coaxially with the mold 1 and has an inner peripheral surface substantially parallel to the inner peripheral surface of the mold 1. As is well known, the molten metal receiving tank 2 stores molten metal and prevents the solidification start surface from changing due to fluctuations in the amount of poured metal. The solidified ingot 17 is continuously drawn downward from the mold 1 by lowering a bottom plate (not shown) at a certain speed (ie, casting speed). Next, the structure of the mold used for introducing gas according to the present invention will be explained based on FIGS. 2 to 4. Three pipes 6, 6', and 6'' branch off from the outer peripheral surface of the mold 1 at an angle of 120° in the diametrical direction, and are communicated with a gas supply source (not shown). 6, 6', and 6'' communicate with an annular channel 7 extending around the entire upper part of the mold 1. The gas is therefore evenly distributed over the entire upper circumference of the mold. It has been confirmed through experiments that the same results can be obtained with one supply pipe as with two or three supply pipes. The outer upper surface 1a of the mold 1 is a flat surface that comes into close contact with the lower surface of the molten metal receiving tank 2, and a groove 12 extending around the entire circumference of the mold is formed in a part of the outer surface 1a. This groove 12 is filled with a packing material such as heat-resistant rubber (not shown) to prevent the gas flowing through the channel 7 from leaking to the outside. The inner upper surface 1b of the mold 1 is slightly lower than the outer surface 1a, and a very small gap 8 is formed between it and the lower surface of the molten metal receiving tank 2. During this time, the hole 8 is in communication with the flow path 7 and is open on the entire inner circumferential surface of the mold. The inner end of the lower surface of the molten metal receiving tank 2 is the mold 1
It extends horizontally so as to cover the inner circumferential surface of the inner circumferential surface, and therefore an overhang portion 9 is formed over the entire inner circumferential surface. Therefore, the gas is introduced directly below the overhang portion from the interval 〓8. A means for supplying liquid lubricating oil between the metal solidified by the primary cooling action of the mold and the inner peripheral surface of the mold is provided inside the mold 1. That is, two supply pipes (not shown) connected to a liquid lubricant supply source (not shown) are fixed to the lubricant inlet 14 . The lubricating oil inlet 14 communicates with a passage 13 extending diametrically inside the mold 1 . Furthermore, this passage 13 communicates with a liquid lubricant supply tubular passage 10 extending circumferentially inside the mold 1 . A large number of liquid lubricant fine supply ports 11 branch from this supply passage 10 and open to the inner peripheral surface of the mold. The supply ports 11 extend radially toward the inside of the mold and are inclined in a direction opposite to the casting direction. The supply opening 11 may extend horizontally or obliquely in the drawing direction, the inclination being defined so that the lubricant flows down from the required height within the mold. Passage 1 in one mold
It is easy to understand that since it is almost impossible to process the passage 10 and the supply port 11, it is better to use two members that have been pre-processed to define the passage 10 and the like, and then fix them together by welding or the like. It will be. According to the structure described above, the liquid lubricating oil supplied from the inlet 14 leaks out from the supply port 11 and is constantly supplied to the inner circumferential surface of the mold from below the overhang portion 9. Furthermore, according to the apparatus shown in FIGS. 1 to 4,
Casting is performed with gas introduced across the outer circumferential surface of the metal column just below the overhang, and with lubricant supplied to the inner surface of the mold. (Example) Experiments were conducted using the method according to the present invention by changing gas introduction conditions, lubricating oil supply conditions, etc. Magnesium alloy AZ31 is shown in Figures 1 to 5.
A cylindrical ingot with a diameter of 62 mm was cast using the continuous casting apparatus shown in the figure. The temperature of the molten metal in the receiving tank is 680℃, the temperature of the cooling water is 20℃,
The cooling water supply rate is 20/min, and the casting speed is 150/min.
Cast at mm/min. Gas introduction conditions A sulfur hexafluoride cylinder with a pressure of 5 kg/cm 2 was used as a gas source, and gas was introduced from supply pipes 6, 6', 6'' via a needle valve and a float type flow meter.Casting period A gas flow adjusted to a specific amount between 0.2 and 4.0/min is applied to the overhang part 9
The test was conducted by introducing it directly under the Castor oil was used as the lubricating oil, and its head pressure was adjusted to +20 mm above the gas pressure value corresponding to each gas flow. When the gas flow rate was low, the surface of the obtained ingot became a baked skin, as shown in the reference photo in Figure 1. The appropriate gas flow rate to obtain a good casting surface is 0.5
~3.0/min, and at flow rates exceeding this upper limit, bubbles were observed blowing out from the molten metal surface of the molten metal receiving tank. In addition, as shown in the reference photo Figure 2,
The optimal flow rate to obtain a very smooth and good casting surface is:
It is in the range of 1.0 to 2.0/min. The appropriate value for the gas pressure of the introduced gas (substantially equal to the gas pressure applied to the outer peripheral surface of the columnar or cylindrical molten metal directly under the overhang) is the value equivalent to the hydrostatic pressure of the molten metal stored in the molten metal receiving tank. The upper limit is determined by the hydrostatic pressure of the molten metal at which gas does not float through the molten metal in the receiving tank, and the lower limit is determined by the contact area between the metal and the inner surface of the mold. is determined by the pressure that can be substantially reduced. in the end,
The introduced gas forms an elastic space with a gas pressure close to the hydrostatic pressure of the molten metal just below the overhang, and the excess gas flows downward from the fine gap at the contact interface between the mold inner surface and the thin solidified shell of the molten metal. do. Conditions for using lubricating oil The minimum head pressure of lubricating oil for continuous lubrication must be higher than the gas pressure applied directly below the overhang if the amount of gas introduced is selected within the appropriate range. However, stable refueling is normally performed at a refueling head pressure 10 to 50 mm above this gas pressure. In this range, a good casting surface can be obtained. If the lubricating oil supply pressure falls below this lower limit, gas enters the oil supply port 11 and pushes back the oil, which prevents continuous oil supply and makes it impossible to obtain a good casting surface. Next, even if the oil head pressure H 0 increases and the amount of oil used increases, no effect on the casting surface is observed. Therefore, from the viewpoint of reducing the amount of oil used, it is preferable for the oil head pressure to be low unless the oil supply is interrupted. Regarding the type of lubricating oil, the higher the viscosity, the better the results for the casting surface, but if oil spillage is taken into consideration, a viscosity of 5 to 40 poise is industrially appropriate, and castor oil, rapeseed oil, etc. , salad oil, etc. are suitable. Effect of introduced gas In order to investigate how the gas introduced into the overhang is acting, we observed the solidification region of the ingot under (a) gas pressure and (b) no gas pressure. did. During casting, a tracer was introduced into the molten metal in the header, and at the same time, the lower die table of the casting machine was stopped from descending. Thereafter, the solidified ingot was cut along the surface including the shaft and etched with a caustic soda solution. According to this, a solidified shell 50 was observed to grow from just below the header in the case where gas pressure was not effective (Fig. 6a), but a solidified shell 50 was observed in the case where gas pressurization was effective (Fig. 6b). No growth was observed. From this experiment, it is thought that the molten metal solidified as shown in Figure 5. That is, the molten metal is removed from the area directly below the overhang portion 9 by the applied gas pressure. The molten metal starts contacting the inner peripheral surface of the mold at a position considerably lower than the top end of the mold 1, immediately forms a thin solidified shell, and then separates from there. The length of the molten magnesium alloy in the casting direction in contact with the inner peripheral surface of the mold is quite short, and therefore the effect of primary cooling is reduced. The realization of the solidification process as shown in FIG. 5 is considered to be one of the reasons for the effects of the present invention. Another reason is that the effects of fluctuations in the molten metal level in the receiving tank and disturbances in the flow path of the inflow into the receiving tank are alleviated by the gas that exists directly under the overhang, and It does not reach the molten metal that solidifies directly, and therefore solidification progresses under certain conditions. Such a process is considered to be an important cause of the effects of the present invention. Reverse segregation of alloy components in an ingot The quality of an ingot formed by continuous casting is evaluated not only by the cast surface but also by the magnitude of the reverse segregation of alloy components in the ingot. Magnesium alloy AZ31 by the method of the present invention,
The ingots were cast by the conventional continuous casting method shown in FIG. 7 to obtain cylindrical ingots each having a diameter of 62 mm.
The results shown in Table 1 were obtained by comparing the segregation layer just below the surface of the ingot and the reverse segregation layer inside the ingot.

【表】 (発明の効果) マグネシウム合金を六フツ化硫黄を含む気体加
圧のホツトトツプ鋳造法により連続鋳造して平滑
な鋳肌、逆偏析層の少ないすぐれた鋳塊がえられ
た。 従つて、皮削りを省略し、或いは、極めて少量
の皮削りにより、押出し、圧延などの塑性加工が
可能になり、又、押出工程を経ず、切断后そのま
ま鍛造用素材として使用も可能となつた。
[Table] (Effects of the invention) An excellent ingot with a smooth casting surface and few reverse segregation layers was obtained by continuous casting of a magnesium alloy using a hot-top casting method using pressurized gas containing sulfur hexafluoride. Therefore, plastic processing such as extrusion and rolling can be performed by omitting skin shaving or by only a very small amount of skin shaving, and it is also possible to use the material directly as a forging material after cutting without going through the extrusion process. Ta.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る鋳造装置の一具体例を示
す縦断面図、第2図は第1図の装置の鋳型の平面
図、第3図は第2図のAB断面図、第4図は第2
図のCD断面図、第5図は、冷却機構を説明する
為の第1図の部分拡大図、第6図は(a)気体加圧下
(b)気体加圧なしの状態での鋳塊の凝固領域を示す
鋳塊断面のスケツチ図、第7図は、従来の連続鋳
造法を示す説明図である。 1…鋳型、2…耐火物製溶湯受槽、3…冷却媒
体供給孔、4…冷却媒体、6…六フツ化硫黄気体
の供給口、8…間〓、9…オーバーハング部、1
0…潤滑油供給管状口、11…潤滑油侵出口、1
6…マグネシウム合金の金属溶湯、17…マグネ
シウム合金の鋳塊、20…バルブ、21…マグネ
シウム合金溶湯移送管、22…ノズル、24…分
配カツプ。
Fig. 1 is a vertical sectional view showing a specific example of a casting device according to the present invention, Fig. 2 is a plan view of a mold of the device in Fig. 1, Fig. 3 is a sectional view AB of Fig. 2, and Fig. 4 is the second
Figure 5 is a partial enlarged view of Figure 1 to explain the cooling mechanism, Figure 6 is (a) under gas pressure.
(b) A sketch of a cross section of an ingot showing the solidification region of the ingot without gas pressurization. FIG. 7 is an explanatory diagram showing a conventional continuous casting method. 1...Mold, 2...Refractory molten metal receiving tank, 3...Cooling medium supply hole, 4...Cooling medium, 6...Sulfur hexafluoride gas supply port, 8...Between, 9...Overhang part, 1
0...Lubricating oil supply tubular port, 11...Lubricating oil outflow port, 1
6... Molten magnesium alloy metal, 17... Magnesium alloy ingot, 20... Valve, 21... Magnesium alloy molten metal transfer pipe, 22... Nozzle, 24... Distribution cup.

Claims (1)

【特許請求の範囲】[Claims] 1 耐火物製金属溶湯受槽が、強制冷却鋳型の上
部に設けられ、該溶湯受槽の内周下端面が、該鋳
型の内周面より内側に張出してオーバーハング部
を形成している溶湯受槽付き強制冷却鋳型を用い
前記溶湯受槽に鋳造すべきマグネシウムまたはそ
の合金の金属溶湯を溜め、内周面に潤滑界面を形
成させた前記鋳型内に近接して、前記金属溶湯を
柱状もしくは筒状に保持し、そして鋳型内を通過
する冷却剤によつて該柱状体、もしくは筒状体を
冷却する工程を含むマグネシウムまたはその合金
の連続鋳造法であつて、前記オーバーハング部直
下に6フツ化硫黄を含む気体を導入し、前記柱状
もしくは筒状のマグネシウムまたはその合金の溶
湯の外周面に気体圧を印加して鋳造することを特
徴とするマグネシウムまたはその合金の連続鋳造
法。
1. A molten metal receiving tank made of a refractory material is provided above the forced cooling mold, and the lower end surface of the inner periphery of the molten metal receiving tank extends inward from the inner peripheral surface of the mold to form an overhang part. The molten metal of magnesium or its alloy to be cast is stored in the molten metal receiving tank using a forced cooling mold, and the molten metal is held in a columnar or cylindrical shape close to the mold with a lubricated interface formed on the inner peripheral surface. A continuous casting method for magnesium or its alloy including the step of cooling the columnar body or cylindrical body by a coolant passing through the mold, and in which sulfur hexafluoride is placed directly under the overhang part. 1. A continuous casting method for magnesium or its alloy, characterized in that casting is carried out by introducing a gas containing gas and applying gas pressure to the outer circumferential surface of the columnar or cylindrical molten magnesium or its alloy.
JP23933484A 1984-11-15 1984-11-15 Continuous casting method of magnesium or ally thereof Granted JPS61119359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23933484A JPS61119359A (en) 1984-11-15 1984-11-15 Continuous casting method of magnesium or ally thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23933484A JPS61119359A (en) 1984-11-15 1984-11-15 Continuous casting method of magnesium or ally thereof

Publications (2)

Publication Number Publication Date
JPS61119359A JPS61119359A (en) 1986-06-06
JPH057100B2 true JPH057100B2 (en) 1993-01-28

Family

ID=17043182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23933484A Granted JPS61119359A (en) 1984-11-15 1984-11-15 Continuous casting method of magnesium or ally thereof

Country Status (1)

Country Link
JP (1) JPS61119359A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO171303C (en) * 1990-09-21 1993-02-24 Norsk Hydro As PROCEDURE AND DEVICE FOR HOT-TOP CASTING OF REACTIVE METALS
US6158498A (en) * 1997-10-21 2000-12-12 Wagstaff, Inc. Casting of molten metal in an open ended mold cavity
AU2003254877A1 (en) * 2003-07-16 2005-02-04 Sumitomo Metal Industries, Ltd. Continuous casting method for magneisum alloy
KR100721874B1 (en) 2004-12-23 2007-05-28 재단법인 포항산업과학연구원 Apparatus for continuous casting of Magnesium billet or slab using low frequency electromagnetic field
WO2006068424A1 (en) * 2004-12-23 2006-06-29 Research Institute Of Industrial Science & Technology Apparatus for continuous casting of magnesium billet or slab using electromagnetic field and the method thereof
KR100679313B1 (en) * 2004-12-23 2007-02-06 재단법인 포항산업과학연구원 Apparatus for continuous casting of Magnesium billet or slab using high frequency electromagnetic field
JP5564652B2 (en) * 2008-12-11 2014-07-30 国立大学法人 熊本大学 Casting apparatus, casting method, and manufacturing method of magnesium alloy billet
JP5612881B2 (en) * 2010-03-19 2014-10-22 三協立山株式会社 Magnesium alloy continuous casting method and continuous casting apparatus, and magnesium alloy billet
CN109894586A (en) * 2019-04-15 2019-06-18 中国科学院金属研究所 A kind of preparation method of low surface segregation layer thickness aluminium alloy continuous casting ingot

Also Published As

Publication number Publication date
JPS61119359A (en) 1986-06-06

Similar Documents

Publication Publication Date Title
US4157728A (en) Process for direct chill casting of metals
US3381741A (en) Method and apparatus for continuous casting of ingots
US3519059A (en) Method of vacuum slag refining of metal in the course of continuous casting
US3780789A (en) Apparatus for the vertical multiple continuous casting of aluminum and aluminum alloys
US4166495A (en) Ingot casting method
US2515284A (en) Differential cooling in casting metals
US2527545A (en) Apparatus for continuous castings
JPH057100B2 (en)
CN112122568A (en) Continuous casting bloom combined stirring flow control method and flow control device
US3467168A (en) Continuous casting apparatus and method including mold lubrication,heat transfer,and vibration
US3066364A (en) Pouring technique for continuous casting
US3746072A (en) Method of pouring molten metal
US2789328A (en) Apparatus for casting of metals
JPH09220645A (en) Method for lubricating wall of metallic mold for continuous casting and mold therefor
CA1324478C (en) Method for continuous casting a hollow metallic ingot and apparatus therefor
JPS6133735A (en) Method and device for continuous casting of metal
US3245126A (en) Introducing hydrogen gas to the meniscus for continuously casting steel
US3153822A (en) Method and apparatus for casting molten metal
JP4248085B2 (en) Hollow billet casting core and method for hot top continuous casting of hollow billet using the core
US3752215A (en) Continuous casting apparatus for shaped metal bodies
US2257713A (en) Metal treating
JPH0263647A (en) Method for continuously casting metal
JPS6039142Y2 (en) Horizontal continuous casting equipment
US3903954A (en) Apparatus for pouring molten metal
US4355680A (en) Method and apparatus for continuous casting of hollow articles

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term