JPS61119338A - Manufacture of vessel - Google Patents

Manufacture of vessel

Info

Publication number
JPS61119338A
JPS61119338A JP59240507A JP24050784A JPS61119338A JP S61119338 A JPS61119338 A JP S61119338A JP 59240507 A JP59240507 A JP 59240507A JP 24050784 A JP24050784 A JP 24050784A JP S61119338 A JPS61119338 A JP S61119338A
Authority
JP
Japan
Prior art keywords
steel foil
thickness
container
organic resin
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59240507A
Other languages
Japanese (ja)
Other versions
JPH0232052B2 (en
Inventor
Hiroshi Matsubayashi
松林 宏
Kazusane Hirota
広田 和実
Hisao Iwamoto
岩本 久夫
Tamio Fujiwara
藤原 民雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP59240507A priority Critical patent/JPS61119338A/en
Priority to ZA858785A priority patent/ZA858785B/en
Priority to AU49961/85A priority patent/AU589144B2/en
Priority to DE8585308388T priority patent/DE3568756D1/en
Priority to US06/799,388 priority patent/US4686152A/en
Priority to EP85308388A priority patent/EP0182646B1/en
Publication of JPS61119338A publication Critical patent/JPS61119338A/en
Publication of JPH0232052B2 publication Critical patent/JPH0232052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/22Boxes or like containers with side walls of substantial depth for enclosing contents
    • B65D1/26Thin-walled containers, e.g. formed by deep-drawing operations
    • B65D1/28Thin-walled containers, e.g. formed by deep-drawing operations formed of laminated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To manufacture easily a packaging vessel which is excellent in its corrosion resistance and appearance characteristic by drawing a laminated body formed by sticking a specified organic resin covering material to both faces of a steel foil by an adhesive agent. CONSTITUTION:Both faces of a steel foil 2 having 100kg/mm<2>>=sigmaB>=30kg/mm<2> tensile strength sigmaB, 120mum>=T>=15mum thickness T, and a surface treating film containing Sn, Cr, Ni, etc. on the surface are covered with thermoplastic resins 4, 6 of polyolefin, polyamide, polyester, polycarbonate, vinyl chloride resin, vinyldene chloride resin, high nitrile resin and others, by polyurethane adhesive agents 3, 5. A laminated body 1 which consists of this steel foil 2 and the organic resin covering materials 4, 6, and whose whole thickness (t) is shown by an inequality (1) is manufactured. By drawing it by a punch 11 and a die 12 by using a wrinkle holder 10, a side face seamless composite vessel which is excellent in its corrosion resistance and appearance characteristic, and has no wrinkle can be manufactured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、容器の製造方法に関するもので、より詳細に
は鋼箔と有機樹脂被覆とから成る積層体を用いて、耐腐
食性、外観特性及び密封的性質に優れた包装容器、特に
側面無継目複合容器を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a container, and more particularly to a method for manufacturing a container, using a laminate consisting of a steel foil and an organic resin coating to improve corrosion resistance, appearance characteristics, and The present invention relates to a method for manufacturing packaging containers with excellent sealing properties, particularly composite containers with seamless sides.

従−来の技術及び発明の技術的課題 従来、ブリキ或いはティン・フリー・スチール(TFS
 :電解クロム酸処理鋼板)等の表面処理鋼板を用いた
絞り成形容器が、魚肉缶詰、ゼリー類或いは羊カン等を
充填した缶詰等に広く使用されている。
Conventional technology and technical problems of the invention Conventionally, tinplate or tin free steel (TFS)
Draw-formed containers using surface-treated steel sheets such as electrolytic chromic acid treated steel sheets are widely used for canned fish, jelly, sheep cans, etc.

これらの表面処理鋼板は一般に厚みが0117乃至0.
23mの範囲にありこれを用いた缶詰の空缶は廃棄処理
が困難であることから、所謂缶公害の問題を生ずるに至
っている。
These surface-treated steel sheets generally have a thickness of 0.117 to 0.01 mm.
Empty cans used within a range of 23 m are difficult to dispose of, leading to the problem of so-called can pollution.

容器を使用した後での廃棄の容易さ及び省資源の見地か
ら、板厚の薄い鋼製容器の出現が望まれており、この要
望に答えるものとして、鋼箔と有機樹脂被覆とから成る
積層体を用いて、側面無継目容器を製造することについ
ても既に多くの提案がなされている。
From the viewpoint of ease of disposal after use and resource conservation, there is a desire for thinner steel containers.In order to meet this demand, a laminated film consisting of steel foil and an organic resin coating is being developed. Many proposals have already been made regarding manufacturing containers with seamless sides using the same material.

しかしながら、鋼板の板厚fe0.12m以下に迄減少
させて、有機樹脂被覆層との積層体の形で絞り容器に成
形すると1次のような特有の問題を生じることがわかっ
た。先ず、絞り成形に際して、フランジ部から側壁部に
かけてシワが発生し易くなり、このシワの存在によりヒ
ートシールや巻締による確実な密封が困難となることで
ある。また、このシワの発生を防止した容器でも、内容
物を充填、密封径長期間保存すると、容器内面、特に側
壁部で有機被覆下の腐食が進行し、ガスバリヤ−性の低
下或いは金属溶出等により商品寿命が著しく短かくなる
という欠点を生じる。この理由は、容器成形時に発生す
るシワを減少させる目的でシワ押え力を上げると、内面
有機樹脂被覆や、内面樹脂被覆と鋼箔との接着界面が損
傷を受け、或いは損傷を受けない場合にも剥離の原因と
なる応力等が残留するためと思われる。
However, it has been found that when the thickness of the steel plate is reduced to fe0.12 m or less and formed into a drawn container in the form of a laminate with an organic resin coating layer, the following specific problems occur. First, during drawing, wrinkles tend to occur from the flange to the side wall, and the presence of these wrinkles makes it difficult to achieve reliable sealing by heat sealing or seaming. In addition, even in containers that have been prevented from forming wrinkles, if they are filled with contents and stored for a long period of time, corrosion under the organic coating will progress on the inside of the container, especially on the side walls, resulting in a decrease in gas barrier properties or metal leaching. This has the disadvantage that the product life is significantly shortened. The reason for this is that if the wrinkle pressing force is increased to reduce wrinkles that occur during container molding, the internal organic resin coating and the adhesive interface between the internal resin coating and the steel foil may be damaged, or if no damage is caused. This is thought to be due to residual stress that causes peeling.

発明の目的 従って、本発明の目的は、従来の鋼箔−有機樹脂被覆積
層体から製造した絞り容器の前述した欠点が解消された
容器の製造法を提供するにある。
OBJECTS OF THE INVENTION Accordingly, it is an object of the present invention to provide a method for manufacturing containers which eliminates the aforementioned drawbacks of conventional drawn containers made from steel foil-organic resin coated laminates.

本発明の他の目的は、耐腐食性、外観特性及び密封性の
望ましい組合せを有する鋼箔−有機樹脂複合容器の製造
方法を提供するにある。
Another object of the present invention is to provide a method for manufacturing a steel foil-organic resin composite container that has a desirable combination of corrosion resistance, appearance characteristics, and sealability.

本発明の更に他の目的は、廃棄処理が容易であり、しか
もその製造も容易な鋼箔−有機樹脂複合側面無継目容器
の製造方法を提供するKある。
Still another object of the present invention is to provide a method for manufacturing a steel foil-organic resin composite side-sided seamless container that is easy to dispose of and also easy to manufacture.

発明の構成 本発明によれば、有機樹脂被覆金属箔積層体を絞り成形
に付することから成る容器の製造方法において、 抗張力(σB)が 100に!g/露z≧σB≧30ゆ/鵡2 ・・曲(1
)で且つ厚さ(T)が 120 fim≧T≧15 ttm     −−(2
)の範囲内にありしかも金属スズ、金属クロム又は金属
ニッケルを含有する表面処理膜を備えた鋼箔と全厚み(
1)が T1/nC/σ≧t≧3 μm     −−(3) 
一 式中nは5.6及びCは4630の数であるの範囲内に
ある有機樹脂被覆との積層体を絞り成形に付することを
特徴とする方法が提供される。
Structure of the Invention According to the present invention, in the method for producing a container, which comprises subjecting an organic resin-coated metal foil laminate to drawing forming, the tensile strength (σB) can be increased to 100! g / dew z≧σB≧30 yu / parrot 2 ... song (1
) and the thickness (T) is 120 fim≧T≧15 ttm --(2
) and has a surface treatment film containing metallic tin, metallic chromium, or metallic nickel, and the total thickness (
1) is T1/nC/σ≧t≧3 μm --(3)
A method is provided, characterized in that the laminate with an organic resin coating is subjected to drawing forming, in which n is a number of 5.6 and C is a number of 4630.

発明の特徴及び作用効果 本発明は、鋼箔として金属スズ、金属クロム又は金属ニ
ッケルを含有する表面処理膜を備えた鋼箔を使用すると
共に、鋼箔の抗張力(σB)及び厚み(1)並びに有機
樹脂被覆の全厚み(1)を一定の範囲内に選ぶことが、
絞り成形時におけるシワの発生を防止し且つ鋼箔の腐食
を防止する上で臨界的であるという知見に基づくもので
ある。
Features and Effects of the Invention The present invention uses a steel foil equipped with a surface treatment film containing metal tin, metal chromium, or metal nickel as the steel foil, and also improves the tensile strength (σB) and thickness (1) of the steel foil. Choosing the total thickness (1) of the organic resin coating within a certain range,
This is based on the knowledge that this is critical in preventing the occurrence of wrinkles during drawing and corrosion of steel foil.

一般に、金属や樹脂の絞り成形において、ブランク(絞
り成形用素材)の周辺部においては、周方向に寸法の縮
少を生じながら、容器軸方向に塑性流動を生じて、最終
容器への成形が行われる。
Generally, when drawing metal or resin, the peripheral area of the blank (drawing material) undergoes a reduction in dimensions in the circumferential direction while plastic flow occurs in the axial direction of the container, making it difficult to form the final container. It will be done.

この場合、金属素材について言えば、素材の厚みが小さ
くなる程、周辺部でのシワの発生が大きくなることが認
められる。これは、厚みが小さくなる種馬方向への素材
の座屈が生じるためと考えられる。また、金属と有機樹
脂被覆との積層体の絞り成形について言えば、有機樹脂
被覆の厚みが大きくなる種周辺部でのシワの発生が犬き
ぐなることが観察される。これは、樹脂層の厚みが大き
くなると、シワ押え力によって樹脂層自体の変形が大き
くなり、金属層へシワ押え力が伝達されにくくなるため
と考えられる。勿論、絞り成形しつつある素材の周辺部
に加えるシワ押え力を大きくすると、シワの発生は少な
くなるが、この場合には既に述べた通り、有機樹脂層の
破損や有機樹脂層と金属との接着界面の破損が生じ易い
。また、必要なシワ押え力は、金属の抗張力にも密接に
関連し、金属の抗張力が大きくなると、一般に高いシワ
押え力が必要となる。
In this case, when it comes to metal materials, it is recognized that the smaller the thickness of the material, the more wrinkles occur in the periphery. This is thought to be due to buckling of the material in the direction of the stallion where the thickness becomes smaller. Furthermore, with regard to drawing forming of a laminate of metal and organic resin coating, it has been observed that wrinkles occur more frequently around the seed where the thickness of the organic resin coating increases. This is thought to be because as the thickness of the resin layer increases, the resin layer itself deforms more due to the wrinkle suppressing force, making it difficult for the wrinkle suppressing force to be transmitted to the metal layer. Of course, increasing the wrinkle pressing force applied to the periphery of the material being drawn will reduce the occurrence of wrinkles, but in this case, as already mentioned, damage to the organic resin layer or contact between the organic resin layer and the metal may occur. Damage to the adhesive interface is likely to occur. Further, the necessary wrinkle suppressing force is closely related to the tensile strength of the metal, and as the tensile strength of the metal increases, generally a high wrinkle suppressing force is required.

本発明は、鋼箔の抗張力(σB)を前記式(1)の範囲
In the present invention, the tensile strength (σB) of the steel foil is within the range of the above formula (1).

その厚みσ)を前記式(2)の範囲、及び有機樹脂被覆
の全厚み(t) t−前記式(3)の範囲とすることに
より、絞り成形に際し、比較的小さいシワ押え力で容器
フランジや側壁部におけるシワの発生を防止し、これに
より容器の密封性を向上させ、また樹脂被覆層の破損や
該被覆層と鋼箔との接着界面の破損を防止して、容器の
耐腐食性を防止したものである。
By setting the thickness σ) within the range of formula (2) above and the total thickness (t) of the organic resin coating within the range of t - formula (3) above, the container flange can be formed with a relatively small wrinkle pressing force during drawing forming. This prevents the occurrence of wrinkles on the sidewalls and side walls, thereby improving the sealing performance of the container.It also prevents damage to the resin coating layer and the adhesive interface between the coating layer and the steel foil, improving the corrosion resistance of the container. This prevents

先ず、式(1)の上限値はシワ発生を防止するのに必要
なシワ押え力から決定されるものであり、抗張力(σB
)がこの上限値を越える場合には、過度のシワ押え力が
必要となって、接着界面の破損等により耐腐食性が低下
する。また、この上限値を越えると、絞り成形に際して
素材の切断を生じたり、不均一な塑性流動により厚みが
極めて不均質になる等の欠点を生じる@ 金属箔として鋼箔を用いる場合の顕著な利点は、鋼箔は
剛性や抗張力がアルミ箔等に比して著しく犬であり、従
って金属箔がかなり薄い場合でも。
First, the upper limit of equation (1) is determined from the wrinkle pressing force required to prevent wrinkles, and the tensile strength (σB
) exceeds this upper limit, excessive wrinkle-pressing force is required, resulting in damage to the adhesive interface and the like, resulting in a decrease in corrosion resistance. In addition, if this upper limit is exceeded, disadvantages such as cutting of the material during drawing and extremely non-uniform thickness due to non-uniform plastic flow will result.@ Remarkable advantages when using steel foil as metal foil The stiffness and tensile strength of steel foil are significantly lower than those of aluminum foil, etc., so even if the metal foil is quite thin.

得られる絞り成形容器の腰が強いことであるが、鋼箔の
抗張力が式(1)の下限を下まわると、上述した利点が
失われることになる。
The resulting draw-formed container is strong, but if the tensile strength of the steel foil falls below the lower limit of formula (1), the above-mentioned advantages will be lost.

上記式(2)の鋼箔の厚み(1)め下限値は、前述した
現象に基づいて実験的に定められたものであり、この下
限値を下廻ると、他の条件を如何に変動させてもシワの
発生を防止することが困難である。
The lower limit value for the thickness (1) of the steel foil in equation (2) above was determined experimentally based on the phenomenon described above, and when it falls below this lower limit value, it is difficult to change other conditions. However, it is difficult to prevent wrinkles from forming.

またこの下限値よりも下では鋼箔によるガス遮断も完全
を期すことが困難である。また、上記式(2)の鋼箔の
厚み(1)の上限値は、容器を軽量化し、資源を節約し
、その廃棄処理を容易にするという所期の目的から定め
られるものである。
Furthermore, below this lower limit, it is difficult to completely shut off the gas using the steel foil. Further, the upper limit value of the thickness (1) of the steel foil in the above formula (2) is determined from the intended purpose of reducing the weight of the container, saving resources, and facilitating its disposal.

上記式(3)の有機樹脂被覆の厚−”it)の上限値、
即ち σ・t = T”’−C・・・・・・ (4)は、前述
した考察と実験結果とから誘導された実験値であり、よ
り詳細には次のように求められる値である。
The upper limit of the thickness of the organic resin coating in the above formula (3) - "it),
That is, σ・t = T"'-C... (4) is an experimental value derived from the above-mentioned consideration and experimental results, and more specifically, it is a value determined as follows. .

即ち、添付図面第1図は鋼箔の抗張力σBを縦軸、有機
被覆の厚み(1)を横軸として、本発明の範囲をプロッ
トした図である。この第1図において、曲線(4)は上
記式(4)で与えられる双曲線である。先ず。
That is, FIG. 1 of the accompanying drawings is a diagram in which the scope of the present invention is plotted with the vertical axis representing the tensile strength σB of the steel foil and the horizontal axis representing the thickness (1) of the organic coating. In this FIG. 1, curve (4) is a hyperbola given by the above equation (4). First.

鋼箔の厚みσ)を一定とし、σB及びtt一種々変化さ
せ、次忙シワ押え力を比較的小さい一定値とし、この積
層体にシワが発生するか否かを調べると、第1図の曲線
(4)に示すような臨界線(曲線(4))の右方がシワ
の発生する域で、左方がシワの発生しない域)が求めら
れる。次に、シワ押え力を向上させて、同様のプロット
を行うと、この臨界線は次第に右方に移動するが、シワ
押え力が成る一定値を越えると、この臨界線の右方でも
左方でも、有機被覆の破損や接着界面の破損が生じるよ
うになる。本発明における前記一般式(4)は、有機波
長の破損や接着界面の破損が生じない限界値として求め
られる。しかも、この場合の限界値、σ8とtとの積は
、鋼板の厚みT′t−変化させた場合、Tの17n乗の
値に比例することが見出された。
The thickness σ) of the steel foil is kept constant, σB and tt are varied one by one, and the subsequent wrinkle pressing force is set to a relatively small constant value, and it is investigated whether wrinkles occur in this laminate. A critical line as shown in curve (4) (the right side of curve (4) is the area where wrinkles occur, and the left side is the area where wrinkles do not occur) is determined. Next, if you increase the wrinkle holding force and make a similar plot, this critical line will gradually move to the right, but when the wrinkle holding force exceeds a certain value, both the right side and the left side of this critical line will move. However, damage to the organic coating and damage to the adhesive interface will occur. The above general formula (4) in the present invention is determined as a limit value that does not cause damage to the organic wavelength or damage to the adhesive interface. Furthermore, it has been found that the limit value in this case, the product of σ8 and t, is proportional to the value of T to the 17nth power when the thickness T't of the steel plate is varied.

第1図においては、後述する実施例及び比較例の結果が
プロットされているが、式t≦T1/′1・qσ8を満
足する場合には、シワの発生防止や鋼箔の腐食防止が有
効に行われていることが了解されよう。
In Fig. 1, the results of Examples and Comparative Examples described later are plotted, and when the formula t≦T1/'1・qσ8 is satisfied, prevention of wrinkles and corrosion of steel foil is effective. It will be understood that what is being done is

前記(3)の被覆厚み(1)の下限値は、鋼箔上にピン
ホールやクラック等の塗膜欠陥のない完全被覆を形成さ
せるという見地から決定されたものである。
The lower limit of the coating thickness (1) in (3) above was determined from the viewpoint of forming a complete coating on the steel foil without coating defects such as pinholes and cracks.

本発明に用いる鋼箔は、金属スズ、金属クロム及び金属
ニッケルから成る群より選ばれた金属層含有表面処理層
を備えていることも、耐腐食性と加工性との見地から重
要であり、鋼箔の上にこれらの金属層が形成されていな
い表面処理鋼箔では、たとい前述した諸条件が満足され
たとしても、レトルト殺菌後の耐腐食性が著しく劣るよ
うになる。
It is also important from the viewpoint of corrosion resistance and workability that the steel foil used in the present invention is provided with a surface treatment layer containing a metal layer selected from the group consisting of metal tin, metal chromium, and metal nickel. Surface-treated steel foil on which these metal layers are not formed has significantly poor corrosion resistance after retort sterilization, even if the above-mentioned conditions are satisfied.

発明の好適態様 本発明を、その好適態様について以下に詳細に説明する
Preferred Embodiments of the Invention The preferred embodiments of the present invention will be explained in detail below.

積層体 本発明に用いる積層体の一例を示す第2図において、こ
の積層体1は、鋼箔2、鋼箔2の容器内面側となる面に
、必要により接着剤層3を介して設けられた有機樹脂内
面被覆材4及び容器外面側となる面に、必要により接着
剤層5t−介して設けられた有機樹脂外面被覆材6から
成っている。
Laminated body In FIG. 2 showing an example of the laminated body used in the present invention, this laminated body 1 includes a steel foil 2 and a surface of the steel foil 2 that is provided on the inner surface of the container, with an adhesive layer 3 interposed therebetween if necessary. It consists of an organic resin inner surface covering material 4 and an organic resin outer surface covering material 6 provided on the outer surface of the container via an adhesive layer 5t if necessary.

鋼箔2としては、前述した制限全満足する表面処理鋼箔
が全て使用される。この表面処理鋼箔は、例えば前述し
た厚みに迄冷間圧延された鋼箔に表面処理を施こすこと
により製造され、鋼箔の抗張力(σB)は鋼箔に焼鈍操
作を行い、この際、焼鈍の条件を変えることにより、所
望とする抗張力の鋼箔が得られろ。
As the steel foil 2, any surface-treated steel foil that satisfies all of the above-mentioned restrictions is used. This surface-treated steel foil is manufactured, for example, by subjecting a steel foil that has been cold-rolled to the above-mentioned thickness to a surface treatment, and the tensile strength (σB) of the steel foil is determined by annealing the steel foil. By changing the annealing conditions, a steel foil with the desired tensile strength can be obtained.

本発明の目的に特に好適な表面処理鋼箔は、電解クロム
酸処理鋼箔であり、このものは鋼箔基質上に金属クロム
層及び金属クロム層上にクロム酸化物層を備えたもので
ある。金属クロム層の厚みは、面積当りの重量で表わし
て、一般に30乃至300m97m”、特に50乃至2
50W/m”の範囲にあることが望ましく、一方クロム
酸化物層の厚みは、Cr原子基準で表わして、一般に3
乃至501!9/m”、特に7乃至30■/m 2の範
囲にあることが望ましい。
A particularly suitable surface-treated steel foil for the purposes of the present invention is an electrolytically chromic acid treated steel foil, which comprises a metallic chromium layer on the steel foil substrate and a chromium oxide layer on the metallic chromium layer. . The thickness of the metallic chromium layer, expressed in terms of weight per area, is generally from 30 to 300m97m, in particular from 50 to 2.
The thickness of the chromium oxide layer is preferably in the range of 50 W/m'', while the thickness of the chromium oxide layer is generally 3.
It is desirable that the thickness be in the range of from 7 to 30 μ/m 2 , particularly from 7 to 30 μ/m 2 .

金属クロム層が耐腐食性及び加工性に関して重要な役割
を演じることは既に指摘した通りであるが、金属クロム
層上のクロム酸化物層は有機樹脂被覆の鋼箔への密着力
を向上させる上で重要である。
As already pointed out, the metallic chromium layer plays an important role in corrosion resistance and processability, but the chromium oxide layer on the metallic chromium layer also improves the adhesion of the organic resin coating to the steel foil. is important.

耐腐食性に優れた表面処理鋼箔の他の例は、鋼箔基質上
にニッケル或いはスズのメッキ層を設けたものであり、
これらのメッキ層の厚みは、面積当りの重量で表わして
一般に30乃至10,0OOII9/m2、特に50乃
至50001197m”の範囲にあることが望ましい。
Another example of surface-treated steel foil with excellent corrosion resistance is one in which a nickel or tin plating layer is provided on a steel foil substrate.
The thickness of these plating layers, expressed in terms of weight per area, is generally in the range of 30 to 10,0 OOII9/m2, particularly preferably in the range of 50 to 5,000,1197 m''.

これらの金属メッキ層を有する鋼箔は、最終厚みに圧延
した鋼箔にメッキ処理を行って製造してもよいし、或い
は最終厚みに迄圧延する前の鋼箔乃至は鋼板にメッキ処
理を行ない、このメッキしたものを圧延処理に付して、
所望のメッキ処理鋼箔としてもよい。これらのメッキ層
の上にクロム酸及び/又はリン酸による処理膜を形成し
て、有機樹脂被覆との密着性を向上させることもできる
Steel foil having these metal plating layers may be manufactured by plating the steel foil rolled to the final thickness, or by plating the steel foil or steel plate before rolling to the final thickness. , this plated material is subjected to rolling treatment,
It may also be a steel foil with a desired plating treatment. It is also possible to form a film treated with chromic acid and/or phosphoric acid on these plating layers to improve the adhesion with the organic resin coating.

有機樹脂被覆層4及び6としては、鋼箔に密着された状
態で絞り加工可能な樹脂類の全てを用いることができる
。このような樹脂の適当な例は、これに限定されないが
次の通りである。
As the organic resin coating layers 4 and 6, any resin that can be drawn while in close contact with the steel foil can be used. Suitable examples of such resins include, but are not limited to:

(、)  ポリオレフィン類;ポリプロピレン、/リエ
チレン、/リブテンー1.プロピレン−エチレン共重合
体、プロピレン−ブテン−1共重合体、エチレンー酢酸
ビニル共重合体、イオン架橋オレフィン共重合体(アイ
オノマー)。
(,) Polyolefins; polypropylene, /lyethylene, /ributene-1. Propylene-ethylene copolymer, propylene-butene-1 copolymer, ethylene-vinyl acetate copolymer, ionically crosslinked olefin copolymer (ionomer).

(b)  71?リアミド類;特に一般式%式%(1) 式中nは3乃至13の数、mは4乃至11の数である で表わされる反復単位か、ら成るポリアミド類。(b) 71? Lyamides; especially general formula % formula % (1) In the formula, n is a number from 3 to 13, and m is a number from 4 to 11. Polyamides consisting of repeating units represented by

例えば、ポリ−ω−アミノカプロン酸、ポリ−ω−アミ
ノへブタン酸、ポリ−ω−アミノカプリル酸、ylIJ
−ω−アミノペラゴイン酸、ポリーω−アミノデカン酸
、ポリ−ω−アミノウンデカン酸、2リーω−アミノド
デカン酸、ポリ−ω−アミノトリデカン酸、ポリへキサ
メチレンアジノぐミド、ポリへキサメチレンドデカミド
、ポリへキサメチレンドデカミド、ポリへキサメチレン
トリデカミド、ポリデカメチレンアジパミド、ポリデカ
メチレンアパミド、ポリデカメチレンドデカミド、ポリ
デカメチレントリデカミド、ポリドブ力メチレンアジノ
々ミド、1リドデカメチレンセバカミド、ポリドデカメ
チレンドデカミド、ポリドデカメチレントリデカミド、
ポリトリデカメチレンアジパミド、ポリトリデカメチレ
ンアパミド、ポリトリデカメチレンドデカミド、ポリト
リデカメチレントリデカミド、ポリデカメチレンアジパ
ミド、ポリデカメチレンアジパミド、ポリデカメチレン
アジパミド、ポリトリデカメチレンアジパミド或いはこ
れらのコポリアミド。
For example, poly-ω-aminocaproic acid, poly-ω-aminohebutanoic acid, poly-ω-aminocaprylic acid, ylIJ
-ω-aminopelagoic acid, poly-ω-aminodecanoic acid, poly-ω-aminoundecanoic acid, 2-ω-aminododecanoic acid, poly-ω-aminotridecanoic acid, polyhexamethylene azinogumide, polyhexamethylene dodecanoic acid 1 lidodecamethylene sebacamide, polydodecamethylene dodecamide, polydodecamethylene tridecamide,
Polytridecamethylene adipamide, polytridecamethylene apamide, polytridecamethylene dodecamide, polytridecamethylene tridecamide, polydecamethylene adipamide, polydecamethylene adipamide, polydecamethylene adipamide , polytridecamethyleneadipamide or copolyamides thereof.

(C)/リエステル類;特に一般式 %式%(4) 式中8.は炭素数2乃至6のプルキレン基、R2は炭素
数2乃至24のアルキレン基又はアリーレン基である、 で表わされる反復単位から成る。i? +3エステル。
(C)/Reesters; especially general formula % formula % (4) where 8. is a pulkylene group having 2 to 6 carbon atoms, and R2 is an alkylene group or arylene group having 2 to 24 carbon atoms. i? +3 esters.

例、t ハ、?リエチレンテレフタレート、Iジエチレ
ンテレフタレート/イソフタレート、ポリテトラメチレ
ンテレフタレート、ポリエチレン/テトラメチレンテレ
フタレート、ポリテトラメチレンテレフタレート/イソ
フタレート、ポリエチレンテレフタレート/イソフタレ
ート、?リテトラメチレン/エチレンテレフタレート、
ポリエチレン/テトラメチレンテレフタレート/イソフ
タレート、z+)エチレン/オキシベンゾエート、或い
はこれらのブレンド物。
Example, t ha? Liethylene terephthalate, I diethylene terephthalate/isophthalate, polytetramethylene terephthalate, polyethylene/tetramethylene terephthalate, polytetramethylene terephthalate/isophthalate, polyethylene terephthalate/isophthalate, ? Litetramethylene/ethylene terephthalate,
Polyethylene/tetramethylene terephthalate/isophthalate, z+) ethylene/oxybenzoate, or blends thereof.

(a)  ylリカービネート類;特に一般式%式%(
5) 式中R3は炭素数8乃至15の炭化水素基、で表わされ
るぼりカーゴネート。
(a) yl recarbinates; especially the general formula % formula % (
5) A cargonate represented by the formula in which R3 is a hydrocarbon group having 8 to 15 carbon atoms.

例えば、ポリ−p−キシレングリコールビスカーゼネー
ト、/ IJ−ジオキシジフェニル−メタンカーブネー
ト、ポリージオキシジフェニルエタンカーゲネート、ホ
リージオキシジフェニル2.2− ニア’ロバンカーボ
、*−4、/リーフオキシジフェニル1.1−エタンカ
ー?ネート。
For example, poly-p-xylene glycol biscarzenate, /IJ-dioxydiphenyl-methane carbinate, polydioxydiphenylethanecargenate, polydioxydiphenyl 2.2-nia'lovancarbo, *-4, /leaf Oxydiphenyl 1.1-ethanker? Nate.

(e)  !り塩化ビニル、塩化ビニル−ブタジェン共
重合体、塩化ビニル−スチレン−ブタジェン共重合体等
の塩化ビニル樹脂。
(e)! Vinyl chloride resins such as vinyl chloride, vinyl chloride-butadiene copolymer, and vinyl chloride-styrene-butadiene copolymer.

(f)  塩化ビニリデン−塩化ビニリデン共重合倣塩
化ビニリデン−ビニルピリジン共重合体等の塩化ビニリ
デン樹脂。
(f) Vinylidene chloride resin such as vinylidene chloride-vinylidene chloride copolymer imitating vinylidene chloride-vinylpyridine copolymer.

(g)  高ニトリル含有量のアクリロニトリル−ブタ
ジェン共重合体、アクリロニトリル−スチレン共重合体
、アクリロニトリル−スチレン−ブタジェン共重合体等
のハイニトリル樹脂。
(g) High nitrile resins such as acrylonitrile-butadiene copolymers, acrylonitrile-styrene copolymers, and acrylonitrile-styrene-butadiene copolymers with high nitrile content.

(h)  ポリスチレン樹脂、スチレン−ブタジェン共
重合体等。
(h) Polystyrene resin, styrene-butadiene copolymer, etc.

これらの樹脂は、一般にフィルムの形に成形し、前述し
た鋼箔に対して熱融着により密着させるか、或いは接着
剤を用いて貼合せる。広範囲の熱可塑性樹脂フィルムと
鋼箔とに対して優れた接着剤は、ウレタン系接着剤であ
り、更にポリオレフィン系フィルムに対してはエチレン
系不飽和カルメン酸やその無水物でグラフト変性された
酸変性オレフィン樹脂を用いることができ、またポリア
ミドフィルムに対しては低融点コポリアミドを、ポリエ
ステルフィルムに対しては低融点コポリエステルを夫々
接着剤として使用することができる。
These resins are generally formed into a film and adhered to the above-mentioned steel foil by thermal fusion, or bonded using an adhesive. Adhesives that are excellent for a wide range of thermoplastic resin films and steel foils are urethane adhesives, and for polyolefin films, acids graft-modified with ethylenically unsaturated carmenic acid or its anhydride are suitable for use with polyolefin films. Modified olefin resins can be used, and low melting copolyamides can be used as adhesives for polyamide films, and low melting copolyesters can be used for polyester films.

上述した熱可塑性樹脂フィルムに代えて、有機樹脂塗料
を用いることもできる。このような塗料としては、熱硬
化性及び熱可塑性樹脂から成る任意の保護塗料;例えば
フェノール・エポキシ塗料、アミノーエポキン塗料等の
変性エポキシ塗料;例えば塩化ビニル−酢酸ビニル共重
合体、塩化ビニル−酢酸ビニル共重合体部分ケン化物、
塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、エ
ポキシ変性−、エポキノアミノ変性−或いはエポキシフ
ェノール変性−ビニル樹脂塗料等のビニル又は変性ビニ
ル塗料ニアクリル樹脂系塗料;スチレン−ブタジェン系
共重合体等の合成ゴム系塗料等の単独又は2種以上の組
合せが使用される。
An organic resin paint can also be used instead of the above-mentioned thermoplastic resin film. Such paints include any protective paints consisting of thermosetting and thermoplastic resins; modified epoxy paints such as phenol-epoxy paints, amino-epoxy paints; e.g. vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinyl acetate. partially saponified copolymer,
Synthesis of vinyl or modified vinyl paints such as vinyl chloride-vinyl acetate-maleic anhydride copolymers, epoxy-modified, epoxy-amino-modified, or epoxyphenol-modified vinyl resin paints; acrylic resin paints; styrene-butadiene copolymers, etc. Rubber paints and the like may be used alone or in combination of two or more.

これらの塗料は、エナメル或いはラッカー等の有機溶媒
溶液の形で、或いは水性分散液又は水溶液の形で、ロー
ラ塗装、スプレー塗装、浸漬塗装、静電塗装、電気泳動
塗装等の形で金属素材に予め施こす。勿論、前記樹脂塗
料が熱硬化性の場合には、必要により塗料を焼付ける。
These paints can be applied to metal materials in the form of organic solvent solutions such as enamels or lacquers, or in the form of aqueous dispersions or solutions, in the form of roller coating, spray coating, dip coating, electrostatic coating, electrophoretic coating, etc. Apply in advance. Of course, if the resin paint is thermosetting, the paint may be baked if necessary.

これらの樹脂フィルム及び塗料は、容器の用途や特性に
応じて、徨々の形で使用し得る。例えば鋼箔が比較的薄
く、樹脂被覆による機械的補強が望ましい場合には、樹
脂フィルムを使用すればよく、また鋼箔が比較的厚く、
機械的補強がさほど要求されない場合には塗膜を用いれ
ばよい。勿論、鋼箔の一方の表面に樹脂フィルムを施し
、他方の表面に塗膜を設けてもよいし、また鋼箔の表面
に先ず塗膜を設け、この塗膜の上に樹脂フィルムを設け
てもよい。
These resin films and paints can be used in various forms depending on the purpose and characteristics of the container. For example, if the steel foil is relatively thin and mechanical reinforcement by resin coating is desired, a resin film may be used;
If mechanical reinforcement is not so required, a coating may be used. Of course, it is also possible to apply a resin film to one surface of the steel foil and provide a coating film to the other surface, or to apply a coating film to the surface of the steel foil first and then apply a resin film on this coating film. Good too.

更に、使用する樹脂の種類も用途により適宜選定されろ
。例えば、ヒートシールにより蓋を密封するための容器
においては、容器のフランジ部に露出する樹脂被覆材、
即ち樹脂内面材を、ポリエチレン、ポリプロピレン等の
オレフィン樹脂の様なヒートシール性樹脂とすることが
有利である。
Furthermore, the type of resin to be used should be appropriately selected depending on the application. For example, in a container whose lid is sealed by heat sealing, the resin coating material exposed on the flange of the container,
That is, it is advantageous to use a heat-sealing resin such as an olefin resin such as polyethylene or polypropylene as the inner resin material.

また、内容物充填容器をレトルト殺醒のような加熱殺菌
に付する用途においては、内面材及び外面材を、ポリプ
ロピレン、ポリアミド、ポリエステルのような耐熱性樹
脂層とすることが有利である。
Furthermore, in applications in which the filled container is subjected to heat sterilization such as retort sterilization, it is advantageous to make the inner and outer materials layers of a heat-resistant resin such as polypropylene, polyamide, or polyester.

更Kまた、樹脂フィルムや塗膜は、透明なものであって
もよいが、表面処理鋼板を隠蔽するために、チタン白等
の白色顔料や、他の着色顔料或いは染料等を配合した樹
脂フィルムや塗膜を使用してもよい。また、着色剤配合
樹脂フィルムを使用する代りに、樹脂フィルム表面に印
刷インキ層を設け、この印刷インキ層が鋼箔側に位置す
るように、鋼箔に対して樹脂フィルムを貼合せてもよい
In addition, the resin film or paint film may be transparent, but in order to hide the surface-treated steel sheet, a resin film containing a white pigment such as titanium white or other colored pigments or dyes may be used. or a coating film may be used. Alternatively, instead of using a colorant-containing resin film, a printing ink layer may be provided on the surface of the resin film, and the resin film may be laminated to the steel foil so that this printing ink layer is located on the steel foil side. .

絞り成形 本発明によれば、前述した積層体に絞り成形を行う。こ
の絞り成形工程を説明するための第3図において、積層
体1を、しわ押え10で押えた状態で、相対的に軸方向
運動可能なIフチ11とダイス12との間で絞り成形に
付する。この絞り成形は、一段でも或いは多段にも行う
ことができ、例えば、所望の形状及び所望の高さ/径比
率となる迄、ポンチ11及びダイス12の径を段々小さ
くしながら、数次にわたって行うことができる。
Drawing Forming According to the present invention, the above-described laminate is subjected to drawing forming. In FIG. 3 for explaining this drawing process, the laminate 1 is drawn between an I edge 11 and a die 12, which are relatively movable in the axial direction, while being held down by a wrinkle presser 10. do. This drawing forming can be performed in one stage or in multiple stages, for example, it is performed in several stages while gradually reducing the diameters of the punch 11 and die 12 until the desired shape and desired height/diameter ratio are achieved. be able to.

この際、本発明によれば、下記式 で定義される絞り比を、一段の絞り加工で1.5乃至2
.3となるように、また全体としての絞り比を1.5乃
至3.5となるような苛酷な条件下で、即ち高度の絞り
比で、無継目カップ容器を製造できることが顕著な特徴
である。
At this time, according to the present invention, the drawing ratio defined by the following formula can be adjusted from 1.5 to 2 by one drawing process.
.. A remarkable feature is that seamless cup containers can be manufactured under severe conditions such that the overall drawing ratio is 1.5 to 3.5, i.e., at a high drawing ratio. .

得られる絞りカップは、7ランジ加工、或いは更に7ラ
ンジ端縁部をカーリング加工等に付して、最終容器とす
る。本発明の容器は、蓋との間にヒートシールによる密
封を行うための用途にも使用し得るし、また蓋との間に
巻締による密封を行うための用途にも使用し得る。
The resulting drawn cup is subjected to a seven-lunge process, or further subjected to a curling process on the edge of the seven-lunge to form a final container. The container of the present invention can be used for sealing with a lid by heat sealing, and can also be used for sealing with a lid by seaming.

本発明を次の実施例で説明する。The invention is illustrated in the following examples.

実施例 各実施例を通じ各試験及び評価は次の様に行なった0 1、絞り容器成形性 有機被覆鋼箔を外径118鱈の円板状に打抜き、潤滑剤
として・々−ム油を約1.2+9/d−塗布した後、ノ
臂ンチ直径66 m 、パンチ角半径3蝙、ダイ角半径
1簡、ノーンチとダイのクリアランスは、板厚の1,2
〜1,8倍の範囲内に入るように、板厚に応じてダイス
径を変更した焼入鋼製の絞り工具を用い、しわ押え力は
エア・クッション方式による単動プレスにセットし、直
径66 txm 、カツグ深さ32mのフランジ付き力
ツノを成形した。
Examples Throughout each example, tests and evaluations were carried out as follows. 1. Draw container formable organic coated steel foil was punched out into a disk shape of codfish with an outer diameter of 118 mm, and about 100 g of oil was added as a lubricant. After applying 1.2+9/d-, the arm punch diameter is 66 m, the punch angle radius is 3 mm, the die corner radius is 1 mm, and the clearance between the noch and the die is 1 or 2 of the plate thickness.
A hardened steel drawing tool with die diameter changed according to the plate thickness was used so that the die diameter was within the range of ~1.8 times. A flanged force horn with a cutting depth of 66 txm and a cutting depth of 32 m was molded.

・7ランジ・シワの評価方法 絞り成形後、フランジ部及び側壁部の7ランジ近傍に生
成するシワを肉眼観察し、シワが全くないもの及び密封
性、外観上許容できる軽度のシワの場合をO1密封性及
び外観上許容できないシワの場合を×とした。
・Evaluation method for 7-lunge wrinkles After drawing, visually observe the wrinkles that form near the 7-lunge on the flange and side wall, and choose O1 if there are no wrinkles at all or if there are slight wrinkles that are acceptable in terms of sealability and appearance. Cases in which wrinkles were unacceptable in terms of sealability and appearance were marked as ×.

・ 成形状態の評価方法 絞り成形後、側壁部のクラックの発生、底伸び異常、形
状不良を肉眼観察した。
・Evaluation method for forming condition After drawing, cracks on the side wall, abnormal bottom elongation, and poor shape were observed with the naked eye.

2、実容器保存耐食試験 1で正常に成形できた絞り容器に常法によりドレッシン
グ・ツナを充填し、容器と同じ材料構成の蓋をヒートシ
ールし、116℃で30分間加圧加熱殺菌後、37℃に
て6ケ月間貯蔵したO ・実容器保存耐食試験評価方法 発 錆、○:発錆面積が0〜5%、×:発錆面積が6%
以上 被膜剥離、O:剥離面積がθ〜5チ、X:剥離面積が6
%以上 3、落下耐性 1で正常に成形できた絞り容器に10Qccの水を充填
し、容器と同じ材料構成の蓋をヒートシールした。この
ものを高さ30c1nから容器底角部が当たるようにコ
ンクリート床面に落下して変形の度合を観察した。
2. Fill the squeezed container that was successfully formed in Actual Container Storage Corrosion Resistance Test 1 with dressing tuna using the usual method, heat seal the lid made of the same material as the container, and sterilize it by heat and pressure at 116°C for 30 minutes. O stored at 37°C for 6 months - Based on actual container storage corrosion resistance test evaluation method Rust, ○: Rust area is 0 to 5%, ×: Rust area is 6%
The above film peels off, O: peeled area is θ ~ 5 inches, X: peeled area is 6
% or more and a drop resistance of 1, which was successfully formed, was filled with 10 Qcc of water, and a lid made of the same material as the container was heat-sealed. This product was dropped onto the concrete floor surface from a height of 30 cm so that the bottom corner of the container hit, and the degree of deformation was observed.

・落下耐性評価 O:変形なしあるいは軽度であるもの ×:商品価値がなくなる程度に変形したもの実施例1 厚み30μm、抗張力35 kpf/m’の電解クロム
酸処理鋼箔(表面皮膜量、金属クロム:1100rtq
i” 、 alR化クワクロム1589/m” )の両
面に、厚み3μmのウレタン系接着剤を介して201h
n厚のポリエチレンをラミネートして、全厚みが46μ
mの有機樹脂被覆を設けた有機樹脂被覆鋼箔を得た。
- Drop resistance rating O: No or slight deformation ×: Deformed to the extent that the commercial value is lost Example 1 Electrolytic chromic acid treated steel foil with a thickness of 30 μm and a tensile strength of 35 kpf/m' (surface film amount, :1100rtq
i'', alR-treated Quarchrome 1589/m'') for 201 hours via a 3 μm thick urethane adhesive.
Laminated with n-thick polyethylene, total thickness is 46μ
An organic resin-coated steel foil provided with an organic resin coating of m was obtained.

こうして得た有機樹脂被覆鋼箔から直径66m。The organic resin-coated steel foil obtained in this way has a diameter of 66 m.

深さ32箇の7ランノ付カツプを成形し、絞り容器成形
性、実容器保存耐食性試験、落下耐性を調べた。その結
果を表1に示す。
Cups with 7 runs at 32 depths were molded, and the formability of the drawn container, storage corrosion resistance test of actual containers, and drop resistance were examined. The results are shown in Table 1.

実施例2及び3 容器内面側のポリエチレンの厚みが夫々130μm及び
210μmであり、全厚みが夫々151−及び236μ
mの有機樹脂被覆を設けた以外は実施例1と同様に製造
・試験を行った。
Examples 2 and 3 The thickness of the polyethylene on the inner surface of the container was 130 μm and 210 μm, respectively, and the total thickness was 151 μm and 236 μm, respectively.
Manufacturing and testing were conducted in the same manner as in Example 1 except that an organic resin coating of m was provided.

比較例1及び2 容器内面側のポリエチレンの厚みが夫b230μm及び
320μmであり、全厚みが夫々256μm及び346
μmの有機樹脂被覆を設けた以外は実施例1と同様に製
造・試験を行った。
Comparative Examples 1 and 2 The thickness of the polyethylene on the inner surface of the container was 230 μm and 320 μm, and the total thickness was 256 μm and 346 μm, respectively.
Manufacturing and testing were carried out in the same manner as in Example 1, except that a μm thick organic resin coating was provided.

実施例4 厚み30μm、抗張力60に9f/■2の電解クロム酸
処理鋼箔(表面処理量、金属クロム: J O0WI9
/@! 、 II!化りa ム: 15 ml/m” 
)’)片面に焼付後の淳さが5μmになるようエポキシ
−フェノール系塗料を塗布し230℃で30秒間焼付け
た。
Example 4 Electrolytic chromic acid treated steel foil with a thickness of 30 μm and a tensile strength of 60 and 9 f/■2 (surface treatment amount, metallic chromium: J O0WI9
/@! , II! Formation: 15 ml/m”
)') An epoxy-phenol paint was applied on one side to a thickness of 5 μm after baking, and baked at 230° C. for 30 seconds.

次に、未塗装面側K、厚み3μmのウレタン系接着剤を
介して厚み25μmのコポリエステルをラミネートして
、全厚みが33μmの有機樹脂被覆を設けた有機樹脂被
覆鋼箔を得て、これを実施例1と同様にして容器内面に
コポリエステル被覆層をもつ7ランノ付きカップを成形
し、実施例1と同様の試験を行なりた。その結果を表1
に示す。
Next, on the unpainted side K, a 25 μm thick copolyester was laminated via a 3 μm thick urethane adhesive to obtain an organic resin coated steel foil with an organic resin coating having a total thickness of 33 μm. A 7-run cup having a copolyester coating layer on the inner surface of the container was molded in the same manner as in Example 1, and the same tests as in Example 1 were conducted. Table 1 shows the results.
Shown below.

実施例5及び比較例3及び4 容器内面側のコポリエステルの厚みが夫々130μm 
、 150μm及び260μmであり、全厚みが夫夫1
38μm 、、 158μm及び268μmの有機樹脂
波1を設けた以外は実施例4と同様に製造・試験を行っ
た。
Example 5 and Comparative Examples 3 and 4 The thickness of the copolyester on the inner surface of the container was 130 μm, respectively.
, 150 μm and 260 μm, and the total thickness is
Manufacturing and testing were conducted in the same manner as in Example 4, except that organic resin waves 1 of 38 μm, 158 μm, and 268 μm were provided.

実施例6 厚み30μm、抗張力85ゆf 7m”のスズめっき鋼
箔(表面処理量、スズ: 2800ダ/m” )の一方
の面に、厚み3μmのウレタン系接着剤を介して208
℃厚のポリプロピレンを、また、他方の面K。
Example 6 A tin-plated steel foil with a thickness of 30 μm and a tensile strength of 85 mm (surface treatment amount, tin: 2800 Da/m”) was coated with 208 mm on one side via a 3 μm thick urethane adhesive.
℃ thick polypropylene, and the other side K.

厚み3μmのウレタン系接着剤を介して208℃厚のナ
イロンをラミネートして、全厚みが46μmの有機樹脂
被覆を設けた有機樹脂被覆鋼箔を得て、これを実施例1
と同様にして、容器内面側にポリプロピレン被覆層をも
つ、7ランジ付きカップを成形し、実施例1と同様の試
験を行なった。その結果を表1に示す。
A 208° C. thick nylon was laminated with a 3 μm thick urethane adhesive to obtain an organic resin coated steel foil with a total thickness of 46 μm.
In the same manner as in Example 1, a 7-lunged cup having a polypropylene coating layer on the inner surface of the container was molded, and the same tests as in Example 1 were conducted. The results are shown in Table 1.

実施例7及び比較例5及び6 容器内面側のポリプロピレンの厚みが夫々70μm、9
0μm及び130μmであり、全厚みが夫々96μm 
、 116μm及び156μmの有機樹脂被覆を設けた
以外は実施例6と同様に製造・試験を行りたO 比較例7 スズめっき鋼箔の抗張力が28 kgf 7m”である
こと以外は、実施例6と同様に製造・試験を行った。
Example 7 and Comparative Examples 5 and 6 The thickness of the polypropylene on the inner surface of the container was 70 μm and 9
0 μm and 130 μm, and the total thickness is 96 μm respectively.
Comparative Example 7 Example 6 except that the tensile strength of the tin-plated steel foil was 28 kgf 7 m''. Manufactured and tested in the same manner.

実施例8 厚み75μm、抗張力36k17f/m”の電解クロム
酸処理鋼箔(表面処理量、金属クロム:200■/rP
L2.酸化クロム:8ダ/m2 )の一方の面に、厚み
3μmのウレタン系接着剤を介して208℃厚のポリゾ
ロぜレンを、また、他方の面に、厚み3μmのウレタン
系接着剤を介して208℃厚のナイロンをラミネートし
て、全厚みが46μmの有機樹脂被覆を設けた有機樹脂
被覆鋼箔を得て、これを実施例1と同様にして、容器内
面側にポリプロピレン被覆層をもつ、7ランジ付きカッ
プを成形し、実施例1と同様の試験を行なった。その結
果を表1に示す。
Example 8 Electrolytic chromic acid treated steel foil with a thickness of 75 μm and a tensile strength of 36 k17 f/m (surface treatment amount, metallic chromium: 200 μ/rP
L2. Chromium oxide: 8 da/m2) was coated with 208°C thick polysoloselene on one side through a 3 μm thick urethane adhesive, and on the other side through a 3 μm thick urethane adhesive. An organic resin-coated steel foil was obtained by laminating 208° C. thick nylon to provide an organic resin coating with a total thickness of 46 μm, and this was prepared in the same manner as in Example 1, with a polypropylene coating layer on the inner surface of the container. 7 A cup with a flange was molded, and the same test as in Example 1 was conducted. The results are shown in Table 1.

実施例9,10、比較例8及び9 容器内面側のポリプロピレンの厚みが140μm。Examples 9 and 10, Comparative Examples 8 and 9 The thickness of the polypropylene on the inner surface of the container is 140 μm.

230μm 、 260μm及び340μmであり、全
厚みが夫々166μm 、 256μm、286輛及び
366μmの有機樹脂被覆を設けた以外は実施例8と同
様に製造・試験を行った。
Manufacturing and testing were carried out in the same manner as in Example 8, except that the organic resin coatings were 230 μm, 260 μm, and 340 μm, and the total thicknesses were 166 μm, 256 μm, 286 μm, and 366 μm, respectively.

実施例11 厚み75μm、抗張力60kgf/■2の電解クロム酸
処理鋼箔(表面処理量、金属クロム:200■/m2.
酸化クロム: 8 my/m” )の一方の面に焼付後
の厚さが5μmになるようにエポキシエリア塗料を塗布
し、230℃で30秒間焼付けた。次に、未塗装面側に
厚み3μmのウレタン系接着剤を介して、厚み30μm
の4リエチレンをラミネートし、全厚みが38μmの有
機樹脂被覆を設けた有機樹脂被覆鋼箔を得て、これを実
施例1と同様にして、容器内面側にポリエチレン被覆層
をもつ72ンジ付きカップを成形し、実施例1と同様の
試験を行なった。その結果を表1に示す。
Example 11 Electrolytic chromic acid treated steel foil with a thickness of 75 μm and a tensile strength of 60 kgf/m2 (surface treatment amount, metallic chromium: 200 cm/m2.
An epoxy area paint was applied to one side of the chromium oxide (8 my/m") so that the thickness after baking would be 5 μm, and baked at 230°C for 30 seconds. Next, a 3 μm thick paint was applied to the unpainted side. 30μm thick through urethane adhesive.
An organic resin-coated steel foil was obtained by laminating 4 polyethylene and provided with an organic resin coating having a total thickness of 38 μm, and this was prepared in the same manner as in Example 1 to form a 72-inch cup with a polyethylene coating layer on the inner surface of the container. was molded, and the same test as in Example 1 was conducted. The results are shown in Table 1.

実施例12.13及び比較例10 容器内面側のポリエチレンの厚みが夫々100μm 、
 150μm及び170μmであり、全厚みが夫夫10
8μm 、 158μm及び178μmの有機樹脂被覆
を設けた以外は実施例11と同様に製造・試験を行った
Example 12.13 and Comparative Example 10 The thickness of the polyethylene on the inner surface of the container was 100 μm, respectively.
150 μm and 170 μm, and the total thickness is 10 μm.
Manufacturing and testing were conducted in the same manner as in Example 11, except that organic resin coatings of 8 μm, 158 μm, and 178 μm were provided.

実施例14 厚み75 thy* 、抗張力83 klilf/m”
のニッケルめっき鋼箔(表冒処理量、金属ニッケル: 
15001119/m” )の内面に、それぞれ乾燥後
の厚みが3μm。
Example 14 Thickness: 75 thy*, tensile strength: 83 klilf/m"
Nickel-plated steel foil (surface treatment amount, metallic nickel:
15001119/m”), each with a thickness of 3 μm after drying.

1μmになるように塩化ビニル塗料を塗布し、200℃
で4秒間乾燥して、全厚みが4μmの有機樹脂被覆を設
けた有機樹脂被覆鋼箔を得て、これを実施例1と同様に
して、容器内面側に厚み3μmの塩化ビニル塗料層をも
つ7ランノ付きカップを成形し実施例1と同様の試験を
行なった。その結果を表1に示す。
Apply vinyl chloride paint to a thickness of 1 μm and heat at 200°C.
This was dried for 4 seconds to obtain an organic resin-coated steel foil with an organic resin coating having a total thickness of 4 μm, and this was treated in the same manner as in Example 1 to have a vinyl chloride paint layer with a thickness of 3 μm on the inner surface of the container. A cup with 7 runs was molded and the same test as in Example 1 was conducted. The results are shown in Table 1.

比較例11 容器、内面側の塩化ビニル塗料の厚みが1.5μm、外
面側が無塗装である以外は実施例14と同様に製造・試
験を行った。
Comparative Example 11 The container was manufactured and tested in the same manner as in Example 14, except that the thickness of the vinyl chloride paint on the inner surface of the container was 1.5 μm, and the outer surface was unpainted.

実施例15 実施例14と同じニッケルめっき鋼箔の一方の面に、乾
燥後の厚みが8μmKなるように塩化ビニル塗布し、2
00℃で40秒間乾燥した。次に、他方の面に3μmの
ウレタン系接着剤を介して厚み100μmのポリプロピ
レンをラミネートし、全厚みが111μmの有機被覆を
設けた有機樹脂被覆鋼箔を得て、これを実施例1と同様
にして、容器内面側に塩化ビニル被覆層をもつフランツ
付きカップを成形し、実施例1と同様の試験を行なった
Example 15 Vinyl chloride was coated on one side of the same nickel-plated steel foil as in Example 14 so that the thickness after drying was 8 μmK, and 2
It was dried at 00°C for 40 seconds. Next, polypropylene with a thickness of 100 μm was laminated on the other side via a 3 μm urethane adhesive to obtain an organic resin-coated steel foil with an organic coating having a total thickness of 111 μm. Then, a cup with a flantz having a vinyl chloride coating layer on the inner surface of the container was molded, and the same test as in Example 1 was conducted.

その結果を表1に示す。The results are shown in Table 1.

比較例12及び13 容器外面側のポリプロピレンの厚みが夫々120μm及
び160μmである以外は実施例15と同様に製造・試
験を行った。
Comparative Examples 12 and 13 Manufacturing and testing were conducted in the same manner as in Example 15, except that the thickness of the polypropylene on the outer surface of the container was 120 μm and 160 μm, respectively.

比較例14 ニッケルめっき鋼箔の抗張力が105 kgf/em2
であること以外は実施例15と同じにして製造・試験を
行った。
Comparative Example 14 Tensile strength of nickel-plated steel foil is 105 kgf/em2
The manufacturing and testing were conducted in the same manner as in Example 15 except that.

実施例16 厚み120μm、抗張力35に9f/a”の電解クロム
酸処理鋼箔(表面処理量、金属クロム=50my/m”
 、酸化クロム: 2 sIITg/m” )の一方の
面に厚み3μmのウレタン系接着剤を介して204℃厚
のコポリエステルをラミネートし、また、他方の面に厚
み3μmのウレタン系接着剤を介して20μmのポリエ
ステルをラミネートし、全厚みが46μmの有機樹脂被
覆を設けt有機樹脂被覆鋼箔を得て、これを実施例1と
同様にして、容器内面側にコポリエステル被覆層をもつ
フランジ付きカップを成形し、実施例1と同様の試験を
行なった。その結果を表1に示す。
Example 16 Electrolytic chromic acid treated steel foil with a thickness of 120 μm and a tensile strength of 35 and 9 f/a (surface treatment amount, metallic chromium = 50 my/m)
, chromium oxide: 2 sIITg/m"), a 204°C thick copolyester was laminated on one side with a 3 μm thick urethane adhesive, and the other side was laminated with a 3 μm thick urethane adhesive. A 20 μm polyester was laminated with an organic resin coating having a total thickness of 46 μm to obtain an organic resin coated steel foil, which was then treated in the same manner as in Example 1 to form a container with a flange having a copolyester coating layer on the inner surface. A cup was molded and tested in the same manner as in Example 1. The results are shown in Table 1.

実施例17.18,19、比較例15及び16容器内面
側のコポリエステルの厚みが夫々130゜230.28
0,300及び380 tlmであり、全厚みが夫々1
56.256.306.326及び406μmである以
外は実施例16と同じにして製造・試験を行った。
Examples 17, 18, 19, Comparative Examples 15 and 16 The thickness of the copolyester on the inner surface of the container was 130° and 230.28°, respectively.
0,300 and 380 tlm, and the total thickness is 1 respectively.
Manufacturing and testing were conducted in the same manner as in Example 16, except that the diameter was 56.256.306.326 and 406 μm.

実施例20 厚み120μm、抗張力58に9f/鱈2の電解クロム
酸処理鋼箔(表面処理量、金属クロム:5011197
m” 、酸化クロム:25m9/m”)の一方の面に乾
燥後の厚みが3μmになるように塩化ビニルと酢酸ビニ
ルの共重合体を塗布し、他方の面に乾燥後の厚みが1μ
mになるように塩化ビニル塗料を塗布し、200℃で4
0秒間乾燥して、全厚みが4μmの有機樹脂被覆を設け
た有機樹脂被覆鋼箔を得て、これを実施例1と同様にし
て、容器内面側に塩化ビニル、酢酸ビニル共重合体塗膜
をもつ7ランノ付きカップを成形し、実施例1と同様の
試験を行なった。その結果を表1に示す。
Example 20 Electrolytic chromic acid treated steel foil with a thickness of 120 μm and a tensile strength of 58 and 9 f/cod 2 (surface treatment amount, metal chromium: 5011197
Copolymer of vinyl chloride and vinyl acetate is coated on one side of the chromium oxide (chromium oxide: 25m9/m”) so that the thickness after drying is 3 μm, and on the other side, the thickness after drying is 1 μm.
Apply vinyl chloride paint to a temperature of 4 m at 200℃.
After drying for 0 seconds, an organic resin-coated steel foil with an organic resin coating having a total thickness of 4 μm was obtained, and in the same manner as in Example 1, a vinyl chloride/vinyl acetate copolymer coating was applied to the inner surface of the container. A cup with 7 runs was molded, and the same test as in Example 1 was conducted. The results are shown in Table 1.

比較例17 容器内面側の塩化ビニル、酢酸ビニル共重合体塗膜の厚
みが1.5μm、外面側が無塗装である以外は実施例2
0と同様にして製造・試験を行った。
Comparative Example 17 Example 2 except that the vinyl chloride and vinyl acetate copolymer coating on the inner surface of the container had a thickness of 1.5 μm, and the outer surface was unpainted.
Manufactured and tested in the same manner as 0.

実施例21 実施例20と同じ電解クロム酸処理鋼箔を用い、一方の
面に乾燥後の厚みが8μmになるように、塩化ビニル′
と酢酸ビニルの共重合体を塗布、200℃で40秒間乾
燥した。次に、他方の面に、3μmのウレタン系接着剤
を介して、厚み90μmの、41Jプロピレンをラミネ
ートし、全厚みが101μmの有機樹脂被覆を設けた有
機樹脂被覆鋼箔を得て、これを実施例1と同様にして、
容器内面側に塩化ビニル、酢酸ビニルの共重合体塗膜を
もつ7ランジ付きカップを成形し、実施例1と同様の試
験を行なった。結果を表1に示す。
Example 21 Using the same electrolytic chromic acid treated steel foil as in Example 20, vinyl chloride was coated on one side so that the thickness after drying was 8 μm.
and vinyl acetate copolymer was applied and dried at 200°C for 40 seconds. Next, 41J propylene with a thickness of 90 μm was laminated on the other side via a 3 μm urethane adhesive to obtain an organic resin coated steel foil with a total thickness of 101 μm. In the same manner as in Example 1,
A cup with 7 flanges having a copolymer coating of vinyl chloride and vinyl acetate on the inner surface of the container was molded, and the same test as in Example 1 was conducted. The results are shown in Table 1.

実施例22、比較例18及び19 容器外面側のポリプロピレンの厚みが夫々170゜19
0及び280μmで、有機樹脂被覆の全厚みが夫々18
1,201及び291μmである以外は実施例17と同
様にして製造・試験を行った。
Example 22, Comparative Examples 18 and 19 The thickness of the polypropylene on the outer surface of the container was 170°19
0 and 280 μm, the total thickness of the organic resin coating is 18 μm, respectively.
Manufacturing and testing were conducted in the same manner as in Example 17 except that the diameters were 1,201 and 291 μm.

実施例23 厚み120μm、抗張力87 kgf 7m”の電解ク
ロム酸処理鋼箔(表面処理量、金属クロム:120ダ/
m2.酸化クロム:10〜/m2)の一方の面に厚み3
μmのウレタン系接着剤を介して20μ哨厚のポリエチ
レンをラミネートし、他方の面に厚み3μmの同じ接着
剤を介して20μ哨厚のナイロンをラミネートし、全厚
みが46μmの有機樹脂被覆を設けた有機樹脂被覆鋼箔
を得て、これを実施例1と同様にして、容器内面側にポ
リエチレン層をもつフランツ付きカップを成形し、実施
例1と同様の試験を行なった。その結果を表1に示す。
Example 23 Electrolytic chromic acid treated steel foil with a thickness of 120 μm and a tensile strength of 87 kgf 7 m (surface treatment amount, metal chromium: 120 Da/
m2. Chromium oxide: 10~/m2) thickness 3 on one side
Polyethylene with a thickness of 20 μm is laminated with a urethane adhesive of 3 μm in thickness, and nylon with a thickness of 20 μm is laminated on the other side with the same adhesive with a thickness of 3 μm, and an organic resin coating with a total thickness of 46 μm is provided. An organic resin-coated steel foil was obtained, and a cup with a flanse having a polyethylene layer on the inner surface of the container was formed in the same manner as in Example 1, and the same tests as in Example 1 were conducted. The results are shown in Table 1.

容器内面側のポリエチレンの厚みが夫々90゜110及
び200 Bmで全厚みが夫々116゜136及び22
6μmの有機樹脂被覆を設けた以外は実施例23と同様
にして製造・試験を行った。
The thickness of the polyethylene on the inner surface of the container is 90°110 and 200 Bm, respectively, and the total thickness is 116°136 and 22°, respectively.
Manufacturing and testing were conducted in the same manner as in Example 23, except that a 6 μm thick organic resin coating was provided.

比較例22 電解クロム酸処理鋼箔の抗張力が105 kgf/m”
である以外は実施例24と同様にして製造・試験を行っ
た。
Comparative Example 22 Tensile strength of electrolytic chromic acid treated steel foil is 105 kgf/m”
Manufacturing and testing were conducted in the same manner as in Example 24 except for the following.

実施例25 厚さ75 tim 、抗張力60 kgf 71m2の
電解クロム酸処理鋼箔(表面処理量、金属クロム:io
Example 25 Electrolytic chromic acid treated steel foil with a thickness of 75 tim and a tensile strength of 60 kgf and 71 m2 (surface treatment amount, metallic chromium: io
.

1n9/m2.酸化クロム20 my/m” )の一方
の面に、厚み3μmのウレタン系接着剤を介して40μ
哨厚のポリプロピレンをラミネートし、他方の面に厚み
3μmの同じ接着剤を介して、30μ哨厚のナイロンを
ラミネートし、全厚みが76μmの有機樹脂被覆を設け
た有機樹脂被覆鋼箔を得て、これを実施例1と同様にし
て、容器内面側にポリプロピレン層をもつ7ランジ付き
カップを成形し、実施例1と同様の試験を行なった。そ
の結果を表IK示  −す。
1n9/m2. A 40 μm film was applied to one side of the chromium oxide (20 my/m”) using a 3 μm thick urethane adhesive.
An organic resin-coated steel foil was obtained by laminating a thick polypropylene layer and laminating a 30 μm thick nylon layer on the other side using the same adhesive with a thickness of 3 μm, and providing an organic resin coating with a total thickness of 76 μm. A seven-lunged cup having a polypropylene layer on the inner surface of the container was molded in the same manner as in Example 1, and the same tests as in Example 1 were conducted. The results are shown in Table IK.

実施例26では、鋼箔としてニッケルめっき鋼箔(表面
処理量、金属ニッケル=800 m9/1n2) 実施例27では、鋼箔としてスズめっき鋼箔(表面処理
量、金属スズ: 1000m97m” 。
In Example 26, the steel foil was nickel-plated steel foil (surface treatment amount, metal nickel = 800 m9/1n2), and in Example 27, the steel foil was tin-plated steel foil (surface treatment amount, metal tin: 1000 m97 m'').

酸化クロム:8ダ/、、” ) 比較例23では、鋼箔として無処理鋼箔比較例24では
、鋼箔としてクロム酸処理鋼箔(表面処理量、金属クロ
ム: O’IIQ/m2゜酸化クロム:5ダ/m” ’
) 比較例25では、鋼箔としてリン酸クロム酸処理鋼箔(
表面処理i、金属クロム:O 〜/m2.酸化クロム: 7 ln97m” )を用い
る以外は実施例25と同様にして製造・試験を行った。
Chromium oxide: 8 Da/m2゜) In Comparative Example 23, untreated steel foil was used as the steel foil.In Comparative Example 24, chromic acid treated steel foil was used as the steel foil (surface treatment amount, metal chromium: O'IIQ/m2゜oxidation). Chromium: 5 da/m"'
) In Comparative Example 25, phosphoric acid chromic acid treated steel foil (
Surface treatment i, metal chromium: O ~/m2. Manufacturing and testing were conducted in the same manner as in Example 25, except that chromium oxide (7 ln97m") was used.

電解クロム酸処理、ニッケルめっき、スズめっき処理は
、無処理、クロム酸処理、リン酸クロム酸処理と比べ著
しく耐食値が優れているのが判る。
It can be seen that electrolytic chromic acid treatment, nickel plating, and tin plating treatments have significantly superior corrosion resistance values compared to no treatment, chromic acid treatment, and phosphoric acid chromic acid treatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼箔の抗張力σBを縦軸、有機被覆の厚み(1
)を横軸として本発明の範囲をプロットした線図であシ
、 第2図は本発明に用いる積層体の断面構造の一例を示す
断面図であフ、 第3図は本発明の絞シ工程を説明するための断面図であ
る。 1は積層体、2は鋼箔、4及び6は有機樹脂被覆材、1
0はシワ押え、11はポンチ、12はダイスである。 第1図
Figure 1 shows the tensile strength σB of the steel foil on the vertical axis and the thickness of the organic coating (1
) is a line diagram plotting the range of the present invention with the horizontal axis; Figure 2 is a cross-sectional view showing an example of the cross-sectional structure of the laminate used in the present invention; Figure 3 is a diagram showing an example of the cross-sectional structure of the laminate used in the present invention; It is a sectional view for explaining a process. 1 is a laminate, 2 is a steel foil, 4 and 6 are organic resin coating materials, 1
0 is a wrinkle presser, 11 is a punch, and 12 is a die. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)有機樹脂被覆金属箔積層体を絞り成形に付するこ
とから成る容器の製造方法において、抗張力(σ_B)
が 100kg/mm^2≧σ_B≧30kg/mm^2で
且つ厚さ(T)が 120μm≧T≧15μm の範囲内にありしかも金属スズ、金属クロム又は金属ニ
ッケルを含有する表面処理膜を備えた鋼箔と全厚み(t
)が T^1^/^nC/σ_B≧t≧3μm 式中nは5.6及びCは4630の数であるの範囲内に
ある有機樹脂被覆との積層体を絞り成形に付することを
特徴とする方法。
(1) In a method for producing a container, which involves subjecting an organic resin-coated metal foil laminate to drawing forming, the tensile strength (σ_B)
is 100 kg/mm^2≧σ_B≧30 kg/mm^2, and the thickness (T) is within the range of 120 μm≧T≧15 μm, and is provided with a surface treatment film containing metallic tin, metallic chromium, or metallic nickel. Steel foil and total thickness (t
) is T^1^/^nC/σ_B≧t≧3μm, where n is 5.6 and C is a number of 4630. How to characterize it.
JP59240507A 1984-11-16 1984-11-16 Manufacture of vessel Granted JPS61119338A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59240507A JPS61119338A (en) 1984-11-16 1984-11-16 Manufacture of vessel
ZA858785A ZA858785B (en) 1984-11-16 1985-11-15 Packaging material comprising iron foil and container and container lid composed thereof
AU49961/85A AU589144B2 (en) 1984-11-16 1985-11-15 Packaging material comprising iron foil, and container and container lid composed thereof
DE8585308388T DE3568756D1 (en) 1984-11-16 1985-11-18 Packaging material comprising iron foil, and container and container lid composed thereof
US06/799,388 US4686152A (en) 1984-11-16 1985-11-18 Packaging material comprising iron foil, and container and container lid composed thereof
EP85308388A EP0182646B1 (en) 1984-11-16 1985-11-18 Packaging material comprising iron foil, and container and container lid composed thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59240507A JPS61119338A (en) 1984-11-16 1984-11-16 Manufacture of vessel

Publications (2)

Publication Number Publication Date
JPS61119338A true JPS61119338A (en) 1986-06-06
JPH0232052B2 JPH0232052B2 (en) 1990-07-18

Family

ID=17060542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59240507A Granted JPS61119338A (en) 1984-11-16 1984-11-16 Manufacture of vessel

Country Status (2)

Country Link
JP (1) JPS61119338A (en)
ZA (1) ZA858785B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221428A (en) * 1985-07-19 1987-01-29 Toyo Seikan Kaisha Ltd Manufacture of deep draw forming container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174242A (en) * 1981-04-02 1982-10-26 Dow Chemical Co Manufacture of drawn-redrawn can from steel sheet coated with layer of polymer substance
JPS57181859A (en) * 1981-04-02 1982-11-09 Dow Chemical Co Manufacture of drawn-redrawn can from steel sheet substance coated with high density polyethylene graft copolymer
JPS59124996A (en) * 1983-01-06 1984-07-19 Kishimoto Akira Preparation of metal can

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174242A (en) * 1981-04-02 1982-10-26 Dow Chemical Co Manufacture of drawn-redrawn can from steel sheet coated with layer of polymer substance
JPS57181859A (en) * 1981-04-02 1982-11-09 Dow Chemical Co Manufacture of drawn-redrawn can from steel sheet substance coated with high density polyethylene graft copolymer
JPS59124996A (en) * 1983-01-06 1984-07-19 Kishimoto Akira Preparation of metal can

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221428A (en) * 1985-07-19 1987-01-29 Toyo Seikan Kaisha Ltd Manufacture of deep draw forming container
JPH0239335B2 (en) * 1985-07-19 1990-09-05 Toyo Seikan Kaisha Ltd

Also Published As

Publication number Publication date
ZA858785B (en) 1986-08-27
JPH0232052B2 (en) 1990-07-18

Similar Documents

Publication Publication Date Title
EP0182646B1 (en) Packaging material comprising iron foil, and container and container lid composed thereof
KR900005074B1 (en) Deep drawing plastic container and producing method of same
EP0542552B1 (en) Thickness-reduced draw-formed can
US5048317A (en) Method of manufacturing draw-formed container
EP0457423A2 (en) Thickness-reduced draw-formed can
US5006383A (en) Polymeric blend and laminated structures prepared therefrom
JPH0319880B2 (en)
JPH0225784B2 (en)
US6098829A (en) Can components having a metal-plastic-metal structure
JPH0333506B2 (en)
JPS6294543A (en) Deep-drawing molding vessel
JPS61119338A (en) Manufacture of vessel
WO1995015259A1 (en) Can components having a metal-plastic-metal structure
JP2606451B2 (en) Deep drawn can and method for producing the same
JP2532002B2 (en) Resin coated metal plate for thin-walled deep drawing
KR890004339B1 (en) Adhesive for metallic bottle
JP2003260758A (en) Press molded can made of precoated sheet steel
JP4254112B2 (en) Press-formed cans using pre-coated steel sheets
JP2934182B2 (en) Resin coated metal plate for thinned deep drawn cans
JP4103449B2 (en) Metal packaging material with excellent resistance to sulfur discoloration
JPH0239335B2 (en)
JP2802355B2 (en) Resin-coated metal sheet for thinned deep drawn cans with excellent denting resistance
JPH0215834A (en) Manufacture of drawing container
JP2836079B2 (en) Manufacturing method of draw-formed container
JPH05255864A (en) Deep drawn can and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees