JPS61118644A - Apparatus for measuring viscoelasticity - Google Patents
Apparatus for measuring viscoelasticityInfo
- Publication number
- JPS61118644A JPS61118644A JP23954884A JP23954884A JPS61118644A JP S61118644 A JPS61118644 A JP S61118644A JP 23954884 A JP23954884 A JP 23954884A JP 23954884 A JP23954884 A JP 23954884A JP S61118644 A JPS61118644 A JP S61118644A
- Authority
- JP
- Japan
- Prior art keywords
- rollers
- clamp
- test piece
- clamp mechanisms
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/32—Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0092—Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
- G01N2203/0094—Visco-elasticity
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、粘弾性測定装置に関し、特に試料片の伸張変
形モーぜ下の粘弾性を測定可能とする粘弾性測定装置に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a viscoelasticity measuring device, and more particularly to a viscoelasticity measuring device capable of measuring the viscoelasticity of a sample piece under an elongated deformation morse.
高分子物質の分子釦の変形流動挙動な解明する学術的重
要性ならびに高分子加工におけるレオロジー的過程を把
握する必要性から、大変形下における高分子物質の非線
形粘弾性に関する研究が、理論及び実験の両面から多く
の研究者によって行われている。この実験的研究では、
特に剪断変形モーvおよび伸張変形モーVの二つの変形
モーVの材料試験片の応力応答を測定し、これにより、
材料の力学的性質を評価することが必要である。Due to the academic importance of elucidating the deformation flow behavior of molecular buttons in polymeric materials and the need to understand rheological processes in polymer processing, research on the nonlinear viscoelasticity of polymeric materials under large deformations has been conducted both theoretically and experimentally. Many researchers are conducting research from both sides. In this experimental study,
In particular, the stress response of the material specimen in two deformation modes V, shear deformation mode V and extensional deformation mode V, was measured, and thereby,
It is necessary to evaluate the mechanical properties of the material.
上記材料の粘弾性特性の測定において、大変形下の伸張
変形モーVの応力応答の測定用の測定装置に適したもの
が提供されておらず、このため材料の剪断変形モーPの
応力応答の測定が主に行われ、大変形下の伸張変形モー
rの測定があまり行われていない。In the measurement of the viscoelastic properties of the above-mentioned materials, there is no suitable measuring device for measuring the stress response of the tensile deformation mode V under large deformation, and therefore, the stress response of the shear deformation mode P of the material is Measurements are mainly carried out, and the measurement of the extensional deformation mor under large deformations has not been carried out very often.
大変形下の伸張変形モードの粘弾性測定装置としては、
いわゆる引張り試験機が用いられている。As a viscoelasticity measuring device in extensional deformation mode under large deformation,
A so-called tensile testing machine is used.
従来の引張り試験機は、試験片両端を挾持する一対のク
ランプ機構が互に関して相対移動し、すなわちクランプ
間隔を広げて試験片を延伸させるものであり、延伸倍率
は高々100倍程度である。In a conventional tensile testing machine, a pair of clamp mechanisms that clamp both ends of a test piece move relative to each other, that is, the clamp interval is widened to stretch the test piece, and the stretching ratio is about 100 times at most.
〔発明が解決しようとする問題点〕
i高分子物質の大変形下の伸張変形モーVの粘弾性特性
を研究する場合に延伸倍率が高々100倍程度の〃ラン
デ間隔拡大式の引張試験機では、測定装置として不充分
である。なぜなら大変形下における高分子物質の非線形
粘弾性に関する研究を行うには、100倍以上の延伸倍
率下における動的粘弾性の測定が望まれるからである。[Problem that the invention seeks to solve]
When studying the viscoelastic properties of the tensile deformation modus V under large deformation of i-polymer materials, a Lande distance expansion type tensile tester with a stretching ratio of at most 100 times is insufficient as a measuring device. This is because, in order to conduct research on the nonlinear viscoelasticity of polymeric substances under large deformations, it is desirable to measure dynamic viscoelasticity under a stretching ratio of 100 times or more.
高分子材料の延伸挙動は、温度の影響が顕著であり、測
定装置の試験片周囲環境に温度分布があると、試験片の
温度が最も高くなる個所に応力が集中し、破断する恐れ
がある。高倍率延伸を行うためには、試験片を例えば、
100倍以上に延伸させるには従来の引張り試験機式の
測定装置では、試験片挟持用クランプ機構のクランプ間
隔を1cmから100cm以上に広げる必要があり、こ
の広い範囲にわたり温度分布が生じないようにしなげれ
ばならず、極めて困難な問題が生じる。The stretching behavior of polymeric materials is significantly affected by temperature, and if there is a temperature distribution in the environment surrounding the test piece in the measurement device, stress will concentrate at the point where the test piece is at its highest temperature, which may cause it to break. . In order to perform high-magnification stretching, the test piece must be, for example,
In order to stretch the specimen by more than 100 times, with conventional tensile tester-type measurement equipment, it is necessary to increase the clamp interval of the clamp mechanism for holding the specimen from 1 cm to more than 100 cm, and it is necessary to prevent temperature distribution over this wide range. This creates an extremely difficult problem.
また動的粘弾性を検討するために伸張変形下で試験片に
強制振動を加えるが、試料片全体が均等に変形すること
(了フィン変形が成立すること)、横揺動などの共振が
ないことなどの条件を満足させる必要があるが上記のク
ランプ間隔が広がる型の延伸機では、クランプ間隔が極
めて大きくなり横振動の共振が生じたり、変形波の伝播
速度の影響により試験片の各位置で歪の大きさにムラが
生じる場合もあり、測定が不可能となる。In addition, in order to examine dynamic viscoelasticity, forced vibration is applied to the specimen under extensional deformation, but the entire specimen deforms uniformly (fin deformation is established) and there is no resonance such as lateral vibration. However, in the above-mentioned stretching machine with a wide clamp interval, the clamp interval becomes extremely large, causing resonance of transverse vibrations, and the influence of the propagation speed of deformation waves causes the specimen to be distorted at each position. In some cases, the magnitude of distortion may vary, making measurement impossible.
本発明は、以上の従来の大変形下における高分子物質の
延伸変形モードの粘弾性測定に用いられる粘弾性測定装
置の上記欠点を解消する粘弾性測定装置を提供するもの
であり、すなわち、試験片の両端を保持するクランプ機
構のクランプ間隔が試験片の伸張に伴ない広がる必要の
ない、一定としうる構成とした粘弾性測定装置を提供す
るものである。The present invention provides a viscoelasticity measuring apparatus that eliminates the above-mentioned drawbacks of the conventional viscoelasticity measuring apparatus used for measuring the viscoelasticity of a polymer material in the stretching deformation mode under large deformation. The present invention provides a viscoelasticity measuring device having a structure in which the clamp interval of a clamp mechanism that holds both ends of a test piece does not need to widen as the test piece stretches, and can be kept constant.
すなわち本発明の粘弾性測定装置においては、試験片の
両端を挾持する一対のクランプ機構に互に偏倚する一対
のローラをそれぞれ設け、この一対のローラ間で試験片
の各端を挾持する構成となし、これらローラを駆動装置
で回動することにより、試験片をローラ間で繰出すこと
により、試験片を延伸させ、しかしてローラの位置は、
変位させずにローラが支持されるようにして、クランプ
、間隔が一定としうるようにしたものである。That is, in the viscoelasticity measuring device of the present invention, a pair of clamp mechanisms that clamp both ends of a test piece are each provided with a pair of mutually biased rollers, and each end of the test piece is held between the pair of rollers. None, by rotating these rollers with a drive device, the test piece is drawn out between the rollers, and the position of the rollers is
The rollers are supported without being displaced, so that the clamp and spacing can be kept constant.
本発明の粘弾性測定装置においては、ローラ間に試験片
を挾持し、ローラの回動により試験片を繰出すことによ
って試験片を延伸させるため、試験片のクランプ間隔は
、拡大せず一定としりる。In the viscoelasticity measuring device of the present invention, the test piece is held between rollers and the test piece is fed out by rotation of the rollers to stretch the test piece. Therefore, the clamp interval of the test piece does not increase and remains constant. Shiriru.
このため試験片の延伸倍率は理論的には無限大としうる
。Therefore, the stretching ratio of the test piece can theoretically be infinite.
本発明は、以下に除付図とともに実施例の形で具体的に
説明する。The present invention will be specifically explained below in the form of examples along with the accompanying drawings.
第1図は、本発明の第1実施例であり、大変形下の延伸
変形モーげにおける粘弾性測定装置を概略的に示したも
のであり、参照番号1aは、装置本体を示している。FIG. 1 is a first embodiment of the present invention, which schematically shows a viscoelasticity measuring device during stretching deformation motion under large deformation, and reference number 1a indicates the main body of the device.
本体1aの左右内壁には、加振機10および力検出器1
が互に対向して、それぞれ取付けられている。加振機1
0の加振シャツ)I Qaは、ブラケット8を介して、
第1クランプ機構4を担持し、ット8を介して第2クラ
ンプ機構4を担持している。A vibrator 10 and a force detector 1 are installed on the left and right inner walls of the main body 1a.
are mounted facing each other. Vibrator 1
0 vibration shirt) I Qa is transmitted through the bracket 8,
A first clamp mechanism 4 is supported, and a second clamp mechanism 4 is supported via a nut 8.
第1クランプ機構および第2クランプ機構は、同様の構
成であり、それぞれ一対のローラ(第1a図)、すなわ
ち駆動ローラ3および被動ローラ3aを互に対しで偏倚
した状態で、かつ回動可能に保持している。例えば、ス
プリング(図示せず)の手段で駆動ローラ3に被動ロー
ラを押圧させる構成として良い。これらローラ3,3a
間で試験片2が挾持される。The first clamp mechanism and the second clamp mechanism have similar configurations, and each has a pair of rollers (FIG. 1a), that is, a driving roller 3 and a driven roller 3a, which are biased relative to each other and are rotatable. keeping. For example, the drive roller 3 may be configured to press the driven roller by means of a spring (not shown). These rollers 3, 3a
The test piece 2 is held between them.
駆動ローラ3はサーボモータ6により、クランプ機構4
の上部に設けた減速機5を介して駆動される。The drive roller 3 is connected to the clamp mechanism 4 by a servo motor 6.
It is driven via a speed reducer 5 provided on the top of the.
サーボモータ6には、回転検出器Tが直結され、これに
より試験片2の延伸量を升ることかできる。A rotation detector T is directly connected to the servo motor 6, so that the amount of stretching of the test piece 2 can be controlled.
参照番号9は、加振機10による振動振幅を検出するた
めの変位検出器である。Reference number 9 is a displacement detector for detecting the vibration amplitude caused by the vibrator 10.
U上の第1実施例の構成の作動を以下に説明す す
る。The operation of the configuration of the first embodiment on U will be explained below.
試験片2は、二対のローラ3,3aの各ローラ間に挾持
する。サーがモータ6でローラ3を回動させれば、試験
片2が延伸される。加振機10で正弦振動をプラケット
8に与えれば、第1クランプ機構4が振動し、その振幅
は、変位検出器9で検出される。振動は、ローラ3,3
aを介しで、試験片2に伝達され、第2クラン′7′′
機楕を介して、力検出器1で試験片2の粘弾性動特性応
力応答が検出される。具体的には力検出器1は、試験片
2に生じる張力を測定するものである。The test piece 2 is held between two pairs of rollers 3 and 3a. When the operator rotates the roller 3 with the motor 6, the test piece 2 is stretched. When the vibrator 10 applies sinusoidal vibration to the placket 8, the first clamp mechanism 4 vibrates, and the amplitude of the vibration is detected by the displacement detector 9. The vibration is caused by rollers 3 and 3.
a to the test specimen 2, and the second crank '7''
A force detector 1 detects the viscoelastic dynamic stress response of the test specimen 2 via the machine ellipse. Specifically, the force detector 1 measures the tension generated in the test piece 2.
加振機10を停止させ、ローラ3を一定の回転数で回転
させると、歪速度一定の変形を試験片2に与えることが
できる。試験片2を挾持後ローラ3を一定量回動し、停
止させると応力緩和の測定が可能である。この場合、加
振機10を駆動させると、高延伸倍率下で動的粘弾性が
測定できる。When the vibrator 10 is stopped and the roller 3 is rotated at a constant rotation speed, the test piece 2 can be deformed at a constant strain rate. After clamping the test piece 2, the roller 3 is rotated by a certain amount and then stopped to measure stress relaxation. In this case, by driving the vibrator 10, dynamic viscoelasticity can be measured under a high stretching ratio.
なおローラ3,3aを回転させなから加振機10を駆動
させると一定歪速度延伸下での動的粘弾性測定が行なえ
る。Note that if the vibrator 10 is driven without rotating the rollers 3 and 3a, dynamic viscoelasticity measurement under constant strain rate stretching can be performed.
第2図は、本発明の第2実施例を示すものであり、第2
実施例においては、試験片2は、温度制御された液体中
に浸し、同時に試験片2の光学的測定が可能な粘弾性泪
11定装置とされている。FIG. 2 shows a second embodiment of the present invention.
In the embodiment, the test piece 2 is immersed in a temperature-controlled liquid, and the test piece 2 is made into a viscoelastic liquid-determining device capable of optically measuring the test piece 2 at the same time.
すなわち、第1実施例で説明した粘弾性測定装置の構成
3〜10が、試験槽14にヒンジ付けされた蓋体13に
取付けられでいる。二点鉛線は蓋体13を開けた状態を
示す。この構成のゆえ、試験片2の装脱着が容易となる
。That is, configurations 3 to 10 of the viscoelasticity measuring device described in the first embodiment are attached to the lid 13 hinged to the test chamber 14. A two-dot lead line indicates a state in which the lid body 13 is opened. This configuration makes it easy to attach and detach the test piece 2.
試験槽14には、油18が容れられており、ヒータ16
で加熱されフィン19で攪拌される。試験槽14は、二
重槽になっており、フィン19の攪拌による油の流れが
試料片2に直接歯らないようになっているから、この流
れにより、張力の測定が影響されることはない。The test tank 14 contains oil 18, and the heater 16
and stirred by fins 19. The test tank 14 is a double tank, and the flow of oil caused by stirring by the fins 19 does not directly impact the sample piece 2, so this flow will not affect the measurement of tension. do not have.
試験槽14には光学測定用窓15.17が設けられてお
り、例えば、第2図のごとく、単色光光源11、偏光子
12、コンペンセータ20、検出子21を配置すれば、
複屈折が測定できる。その他光学測定装置を適宜設ける
ことにより、光散乱、可視光二色その他の複屈折以外の
光学測定が可能となる。The test chamber 14 is provided with optical measurement windows 15 and 17, and for example, if the monochromatic light source 11, polarizer 12, compensator 20, and detector 21 are arranged as shown in FIG.
Birefringence can be measured. By appropriately providing other optical measuring devices, optical measurements other than birefringence such as light scattering, visible light dichroism, and the like can be performed.
又、X線を朋射することにより、動的粘弾性の微視的測
定も可能となる。In addition, microscopic measurement of dynamic viscoelasticity is also possible by irradiating X-rays.
け上、本発明の粘弾性測定装置は、試験片2のクランプ
機構4にローラ3,3aを設け、このローラ3,3aで
試験片を繰出して、同試験片2を延伸させるようにした
ため、試験片2のクランプ間隔が広大されず一定とする
ことが可能となり、装置自体をコンパクトなサイズとす
ることができ、さらに試験片2に与える環境を付与する
試験槽14のサイズも小さくできる。又高延伸下での動
的粘弾性測定のための、振動付与も、試験片2のクラン
プ間隔が一定かつ短かくすることができるので、試験片
2に対し一様とすることかできる。Furthermore, in the viscoelasticity measuring device of the present invention, the clamp mechanism 4 for the test piece 2 is provided with rollers 3, 3a, and the test piece 2 is drawn out by the rollers 3, 3a, so that the test piece 2 is stretched. The clamping distance between the test pieces 2 can be kept constant without increasing, the apparatus itself can be made compact in size, and the size of the test tank 14 that provides an environment for the test pieces 2 can also be made smaller. Further, since the clamping interval of the test piece 2 can be kept constant and short, the application of vibration for dynamic viscoelasticity measurement under high stretching can be made uniform for the test piece 2.
第1図は、本発明の第1実施例を概略的に図示する図。
第1a図は、第1図の要部の平面図を図示する図。
第2図は、本発明の第2実施例を概略的に図示する図。
1:力検出機、2:試験片、3,3a:ローラ、4:ク
ラン−f′機構、5:減速機、6:サーがモータ、7:
回転検出器、8ニブラケツト、9:変位検出器、10:
加振機。FIG. 1 is a diagram schematically illustrating a first embodiment of the present invention. FIG. 1a is a diagram illustrating a plan view of the main part of FIG. 1; FIG. 2 is a diagram schematically illustrating a second embodiment of the invention. 1: Force detector, 2: Test piece, 3, 3a: Roller, 4: Crank-f' mechanism, 5: Reducer, 6: Ser is motor, 7:
Rotation detector, 8 nib bracket, 9: Displacement detector, 10:
Vibration machine.
Claims (6)
記クランプ機構の一方に設けた加振装置ならびに変位検
出装置と、前記クランプ機構の他方に設けた張力検出装
置とを有する粘弾性測定装置において、 前記クランプ機構の少なくとも一つは、互の方向に偏倚
された一対のローラを有し、さらに前記試料片を延伸さ
せるべくローラを回動するローラ駆動装置を有すること
を特徴とする粘弾性測定装置。(1) A viscoelasticity measuring device that has a pair of clamp mechanisms that clamp both ends of a sample piece, an excitation device and a displacement detection device provided on one of the clamp mechanisms, and a tension detection device provided on the other of the clamp mechanisms. wherein at least one of the clamp mechanisms has a pair of rollers biased in mutual directions, and further includes a roller drive device that rotates the rollers to stretch the sample piece. measuring device.
記クランプ機構の一方に設けた加振装置ならびに変位検
出装置と、前記クランプ機構の他方に設けた張力検出装
置とを有する粘弾性測定装置において、 前記クランプ機構の少なくとも一つは、互の方向に偏倚
された一対のローラを有し、さらに前記試料片を延伸さ
せるべくローラを回動するローラ駆動装置を有するとと
もに、該ローラおよび該試験片を包囲する環境付与試験
槽を含む環境制御装置を有することを特徴とする粘弾性
測定装置。(2) A viscoelasticity measuring device that includes a pair of clamp mechanisms that clamp both ends of a sample piece, an excitation device and a displacement detection device provided on one of the clamp mechanisms, and a tension detection device provided on the other of the clamp mechanisms. wherein at least one of the clamping mechanisms has a pair of rollers biased toward each other, and further includes a roller drive for rotating the rollers to stretch the sample piece; A viscoelasticity measuring device characterized by having an environment control device including an environment imparting test chamber surrounding a piece.
て、前記試験槽に液体が満たされ、液体の温度を制御し
て、環境制御を行うことを特徴とする装置。(3) The apparatus according to claim (2), wherein the test tank is filled with a liquid, and the temperature of the liquid is controlled to perform environmental control.
ちのいずれか一項に記載の装置において、前記クランプ
機構は、前記試験槽から脱着可能とされていることを特
徴とする装置。(4) The apparatus according to any one of claims (2) to (3), wherein the clamp mechanism is removable from the test chamber. A device that does this.
ちのいずれか一項に記載の装置において、前記加振装置
は、正弦波加振装置であることを特徴とする装置。(5) In the device according to any one of claims (2) to (4), the vibration device is a sine wave vibration device. Device.
記クランプ機構の一方に設けた加振装置ならびに変位検
出装置と、前記クランプ機構の他方に設けた張力検出装
置とを有する粘弾性測定装置において、 前記クランプ機構の少なくとも一つは、互の方向に偏倚
された一対のローラを有し、さらに前記試料片を延伸さ
せるべくローラを回動するローラ駆動装置を有するとと
もに、該ローラおよび該試料片を包囲する環境付与試験
槽を含む環境制御装置と、さらには、該試料片の光学的
挙動あるいはその内部構造を測定するべく、光学機器あ
るいは、X線分析機を組込んだことを特徴とする粘弾性
測定装置。(6) A viscoelasticity measurement device having a pair of clamp mechanisms that clamp both ends of a sample piece, an excitation device and a displacement detection device provided on one of the clamp mechanisms, and a tension detection device provided on the other of the clamp mechanisms. At least one of the clamp mechanisms has a pair of rollers biased in mutual directions, and further includes a roller drive device that rotates the rollers to stretch the sample piece, and a roller drive device that rotates the rollers to stretch the sample piece. It is characterized by incorporating an environmental control device including an environmental test tank surrounding the specimen, and an optical instrument or an X-ray analyzer for measuring the optical behavior or internal structure of the specimen. viscoelasticity measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23954884A JPS61118644A (en) | 1984-11-15 | 1984-11-15 | Apparatus for measuring viscoelasticity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23954884A JPS61118644A (en) | 1984-11-15 | 1984-11-15 | Apparatus for measuring viscoelasticity |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61118644A true JPS61118644A (en) | 1986-06-05 |
JPH0341781B2 JPH0341781B2 (en) | 1991-06-25 |
Family
ID=17046445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23954884A Granted JPS61118644A (en) | 1984-11-15 | 1984-11-15 | Apparatus for measuring viscoelasticity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61118644A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060033092A (en) * | 2004-10-14 | 2006-04-19 | 부산대학교 산학협력단 | Experimental apparatus and method of viscoelastic properties of materials and modulus of elasticity and loss factor in terms of the experimental apparatus |
JP2018136307A (en) * | 2016-12-21 | 2018-08-30 | ザ・ボーイング・カンパニーThe Boeing Company | Test apparatus for tensioning and cooling article |
FR3066021A1 (en) * | 2017-05-02 | 2018-11-09 | Peugeot Citroen Automobiles Sa | DEVICE FOR ACCELERATED DYNAMIC AGING OF A MATERIAL USED FOR THE MANUFACTURE OF A THERMAL MOTOR PART |
EP3376945A4 (en) * | 2015-11-17 | 2019-08-07 | Rutgers, The State University of New Jersey | Systems and methods for non-invasive measurement of material mechanical properties and internal body forces and stresses |
-
1984
- 1984-11-15 JP JP23954884A patent/JPS61118644A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060033092A (en) * | 2004-10-14 | 2006-04-19 | 부산대학교 산학협력단 | Experimental apparatus and method of viscoelastic properties of materials and modulus of elasticity and loss factor in terms of the experimental apparatus |
EP3376945A4 (en) * | 2015-11-17 | 2019-08-07 | Rutgers, The State University of New Jersey | Systems and methods for non-invasive measurement of material mechanical properties and internal body forces and stresses |
US10488277B2 (en) | 2015-11-17 | 2019-11-26 | Rutgers, The State University Of New Jersey | Systems and methods for non-invasive measurement of material mechanical properties and internal body forces and stresses |
JP2018136307A (en) * | 2016-12-21 | 2018-08-30 | ザ・ボーイング・カンパニーThe Boeing Company | Test apparatus for tensioning and cooling article |
FR3066021A1 (en) * | 2017-05-02 | 2018-11-09 | Peugeot Citroen Automobiles Sa | DEVICE FOR ACCELERATED DYNAMIC AGING OF A MATERIAL USED FOR THE MANUFACTURE OF A THERMAL MOTOR PART |
Also Published As
Publication number | Publication date |
---|---|
JPH0341781B2 (en) | 1991-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6487902B1 (en) | Apparatus and method for biaxial tensile testing of membrane materials | |
Vadillo et al. | Microsecond relaxation processes in shear and extensional flows of weakly elastic polymer solutions | |
CN100507503C (en) | Single-axle double-direction symmetric stretching experimental machine | |
CN106525571B (en) | Microscope stretcher suitable for optical microscope | |
CN201780236U (en) | Stretching rheological device for detecting X rays and multiple light source in-situ structures | |
Lee-Sullivan et al. | Guidelines for performing storage modulus measurements using the TA Instruments DMA 2980 three-point bend mode: I. Amplitude effects | |
CN204718885U (en) | Material Micro Mechanical Properties is biaxial stretch-formed-fatigue test system | |
Dealy | Extensional Rheometers for molten polymers; a review | |
CN111208002A (en) | Cloth tensile force detection device | |
CN103207120A (en) | Test device and test method for asphalt rotational shear creep and repeated creep recovery | |
JPS61118644A (en) | Apparatus for measuring viscoelasticity | |
US3605488A (en) | Machine for applying loads to a test specimen | |
WO2021162327A1 (en) | Rheometer | |
DE1922414B2 (en) | ARRANGEMENT FOR DETERMINING THE DEFORMATION MECHANICAL BEHAVIOR OF VISCOELASTIC MATERIALS, IN PARTICULAR OF PLASTIC MELTS | |
Nielsen et al. | Observing the chain stretch transition in a highly entangled polyisoprene melt using transient extensional rheometry | |
Gehman | Dynamic properties of elastomers | |
WO2006109371A1 (en) | Compact in-plane multiaxial stretching tester and method of compact in-plane multiaxial stretching testing | |
US9766172B2 (en) | Double-motor rheometer with extension assembly | |
Romo-Uribe | Light scattering, x-ray scattering, and microscopy studies of nanoscale polymer-based coatings | |
US3756074A (en) | Continuously recording mechanical relaxation spectrometer | |
DE10029091A1 (en) | Oscillatory-spider rheometer extending measurement frequency into kilohertz ranges, carries piezoelectric actuators and sensors on its arms | |
Henson et al. | Use of the farol‐weissenberg rheogoniometer to follow the early stages of cure of a polyester resin | |
US3537301A (en) | Apparatus for testing thin films,foils and other materials | |
JP2759626B2 (en) | Method and apparatus for measuring viscoelastic properties of polymer coating of optical fiber | |
JP2517852Y2 (en) | Fabric tensile tester |