JPS6111813Y2 - - Google Patents

Info

Publication number
JPS6111813Y2
JPS6111813Y2 JP409980U JP409980U JPS6111813Y2 JP S6111813 Y2 JPS6111813 Y2 JP S6111813Y2 JP 409980 U JP409980 U JP 409980U JP 409980 U JP409980 U JP 409980U JP S6111813 Y2 JPS6111813 Y2 JP S6111813Y2
Authority
JP
Japan
Prior art keywords
light
reflective optical
emitting element
light emitting
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP409980U
Other languages
Japanese (ja)
Other versions
JPS56109161U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP409980U priority Critical patent/JPS6111813Y2/ja
Publication of JPS56109161U publication Critical patent/JPS56109161U/ja
Application granted granted Critical
Publication of JPS6111813Y2 publication Critical patent/JPS6111813Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Image Input (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は反射型光結合装置に関し、特に発光素
子の出力が小さくても被検出物体から数mm以上離
れた距離に設置して有効に検出可能な反射型光結
合装置に関する。
[Detailed description of the invention] Industrial application field The present invention relates to a reflective optical coupling device, in particular, which can be installed at a distance of several mm or more from the object to be detected and effectively detect it even if the output of the light emitting element is small. The present invention relates to a reflective optical coupling device.

反射型光結合装置は構成が簡単であること、小
型化が可能で狭い空間でも利用し易いこと、とい
う理由から、電算機の端末器たとえばカード読取
器、文字や図形の読取装置など、またはモータの
回転制御部たとえば音響機器やテープレコーダの
回転数制御部、タコジエネレータ等、時々刻々変
化するものの検出に便利に使用されている。
Reflective optical coupling devices have a simple structure, can be made compact, and can be used in narrow spaces, so they are suitable for use in computer terminals such as card readers, text and graphic reading devices, and motors. It is conveniently used to detect things that change from moment to moment, such as rotation control units of audio equipment and tape recorders, tachometer generators, etc.

従来の技術 このような反射型光結合装置は、たとえば第1
図のような構造になつている。第1図で1は発光
素子、2は受光素子で、発光素子1は発光ペレツ
ト3をペレツト積載用リード線6に積載し、金線
(図示せず)を内部配線用リード線(図示せず)
にワイヤボンデイングして形成されている。受光
素子2も同様に受光ペレツト4を積載してワイヤ
ボンデイングして形成されており、ペレツト積載
用リード線6および内部配線用リード線は発光素
子1の光に対して遮断となる色のセラミツク等で
作られたヘツダ8にあらかじめ固着してあり、ヘ
ツダ8は外囲器部81および遮光壁部82と一体
に形成されている。このように構成された反射型
光結合装置の前面すなわち発光ペレツト3の光を
発する方向に被検出物が位置するように配置すれ
ば、発光素子1から発した光が被検出物によつて
変調されて反射され、その反射光を受光素子2に
より受光して被検出物の状況を知ることができる
ものである。
Prior Art Such a reflective optical coupling device has, for example, a first
The structure is as shown in the figure. In Fig. 1, 1 is a light emitting element, 2 is a light receiving element, the light emitting element 1 is loaded with light emitting pellets 3 on a pellet loading lead wire 6, and a gold wire (not shown) is connected to an internal wiring lead wire (not shown). )
It is formed by wire bonding. The light-receiving element 2 is similarly formed by stacking light-receiving pellets 4 and wire-bonding them, and the lead wire 6 for pellet loading and the lead wire for internal wiring are made of ceramic or the like of a color that blocks light from the light-emitting element 1. The header 8 is fixed in advance to a header 8 made of aluminum, and the header 8 is formed integrally with the envelope portion 81 and the light-shielding wall portion 82. If the object to be detected is placed in front of the reflective optical coupling device configured in this manner, that is, in the direction in which the light emitting pellet 3 emits light, the light emitted from the light emitting element 1 will be modulated by the object to be detected. The reflected light is received by the light-receiving element 2 and the condition of the object to be detected can be known.

しかし、第1図に示したように発光素子1およ
び受光素子2をほほぼ平行状態に配置したもので
は、発光素子の出力にもよるが、例えば500μW
の出力の発光素子では反射型光結合装置と被検出
物との距離が0.3〜1mm位であれば効率良く検出
することができるものの、それより離れると光が
放射状に発散するための光結合効率が低下し、実
用的でない。この場合、反射型光結合装置と被検
出物との距離が近い場合の結合効率を高めるため
には、例えば第2図に断面図に示すように、発光
素子1および受光素子2の両方をやや内側に向く
ように配置したものを使用すれば、反射型光結合
装置に近いところに光軸を合わせることができ、
被検出物に近いところに反射型光結合装置を配置
することができる。
However, in the case where the light emitting element 1 and the light receiving element 2 are arranged almost in parallel as shown in FIG.
A light-emitting element with an output of decreases, making it impractical. In this case, in order to increase the coupling efficiency when the distance between the reflective optical coupler and the object to be detected is short, it is necessary to slightly reduce both the light emitting element 1 and the light receiving element 2, as shown in the cross-sectional view of FIG. If you use one that faces inward, you can align the optical axis close to the reflective optical coupler.
A reflective optical coupling device can be placed close to the object to be detected.

また遠いところにある被検出物の結合効率を高
めるものとしては例えば第3に示すような反射型
光結合装置が考えられている。すなわち第3図で
9はTO−5型ヘツダでそのリード線に発光ペレ
ツト3、発光ペレツト4を積載し内部配線してあ
る。このヘツダ9に凸レンズ11を固着した外囲
器12を固着してある。この装置では発光ペレツ
ト3から発した光が凸レンズ11により像を結ぶ
ため結像位置が被検出物に来るように配置すれば
非常に解像度が良くなるという利点がある。しか
しこの装置では次のような欠点がある。
Further, as a device for increasing the coupling efficiency of objects to be detected at a distant location, for example, a reflective optical coupling device as shown in the third example has been considered. That is, in FIG. 3, reference numeral 9 denotes a TO-5 type header, and the light emitting pellets 3 and 4 are loaded on its lead wires and are internally wired. An envelope 12 to which a convex lens 11 is fixed is fixed to the header 9. In this device, since the light emitted from the light emitting pellet 3 is imaged by the convex lens 11, there is an advantage that the resolution can be extremely improved if the image forming position is placed so as to be on the object to be detected. However, this device has the following drawbacks.

すなわち、まず第一にこのように結像するため
には発光ペレツト3と凸レンズ11の距離を凸レ
ンズ11の焦点距離以上にとらなければならな
い。しかし焦点距離の非常に小さい凸レンズは不
可能で、実用に供する最少のものでも、発光ペレ
ツト3と凸レンズ1の距離が4〜5mmにはなり反
射型光結合装置自体が全長10mm以上の大きなもの
となる。更に発光ペレツト3と凸レンズ11の距
離が遠くなるため、発光ペレツト3から凸レンズ
11をみる立体角が小さくなり、いわゆる開口数
が小さくなり結局光の結合効率が低下する。第二
に結像して解像度が良くなるという利点はあるも
のの、結像位置よりわずかに前後しても像がボ
ケ、解像度および結合効率が急激に低下するた
め、反射型光結合装置の配置が非常に難かしいと
いう欠点がある。更に反射型光結合装置の製造に
おいても発光ペレツト3からの光軸と、発光ペレ
ツト4への光軸とが結像点で交わるように発光ペ
レツト3および受光ペレツト4の位置を調整する
か、または凸レンズの位置をずらして調整しなけ
ればならず組立工数を多く要すること、反射型光
結合装置と被検出物の距離に自由度がなく一定で
あるため使用範囲が狭く大量生産に向かないこ
と、等により製造コストが非常に上昇すると共に
使用上不便であるという欠点がある。
That is, first of all, in order to form an image in this manner, the distance between the light emitting pellet 3 and the convex lens 11 must be greater than the focal length of the convex lens 11. However, it is impossible to create a convex lens with a very short focal length, and even with the smallest practical lens, the distance between the light emitting pellet 3 and the convex lens 1 would be 4 to 5 mm, and the reflective optical coupling device itself would have to be large with a total length of 10 mm or more. Become. Further, since the distance between the light emitting pellet 3 and the convex lens 11 becomes longer, the solid angle at which the convex lens 11 is viewed from the light emitting pellet 3 becomes smaller, so that the so-called numerical aperture becomes smaller, and the light coupling efficiency eventually decreases. Second, although there is the advantage of improved resolution through image formation, the image becomes blurry even slightly before and after the image formation position, and the resolution and coupling efficiency drop sharply, so the placement of a reflective optical coupler is not recommended. The drawback is that it is extremely difficult. Furthermore, in manufacturing a reflective optical coupling device, the positions of the light-emitting pellet 3 and the light-receiving pellet 4 are adjusted so that the optical axis from the light-emitting pellet 3 and the optical axis to the light-emitting pellet 4 intersect at the imaging point, or The convex lens must be adjusted by shifting the position, which requires a lot of assembly man-hours, and the distance between the reflective optical coupler and the object to be detected is fixed and has no flexibility, so the range of use is narrow and it is not suitable for mass production. There are drawbacks such as a significant increase in manufacturing costs and inconvenience in use.

考案が解決しようとする問題点 しかし部品配置等の関係上、従来程度の設置精
度で、反射型光結合装置と被検出物との距離を5
mm以上にしたいという要求が出て来ているが、こ
のような場合従来は発光素子の出力を大きくする
以外に方法はなく、そのためには反射型光結合装
置が大きくなり、消費電力も増大して使用上不便
であるにもかかわらず、満足な特性が得られない
という欠点がある。
Problems that the invention aims to solve However, due to the arrangement of parts, etc., the distance between the reflective optical coupler and the object to be detected can be reduced to 5.
There is a growing demand to increase the output power to mm or more, but in such cases, conventionally the only way was to increase the output of the light emitting element, which required a larger reflective optical coupler and increased power consumption. Although it is inconvenient to use, it has the disadvantage that satisfactory characteristics cannot be obtained.

問題点を解決するための手段 本考案は上記のような欠点を解決するため、被
検出物から3mm以上離れた位置に配置しても広範
囲で使用可能となる安価で小型の反射型光結合装
置を提供することにあり、具体的には従来の反射
型光結合装置外囲器に、発光素子用および受光素
子用それぞれ別々に集光すべく形成した二個の非
点収差集光部および取付部を一体に形成した集光
機構を、発光素子および受光素子に近接するよう
に付設したものである。
Means for Solving the Problems In order to solve the above-mentioned drawbacks, the present invention provides an inexpensive and compact reflective optical coupling device that can be used over a wide range even when placed at a distance of 3 mm or more from the object to be detected. Specifically, two astigmatic light condensing parts formed to separately condense light for a light emitting element and a light receiving element for a conventional reflection type optical coupler and mounting A light condensing mechanism integrally formed with a light-emitting element and a light-receiving element is attached so as to be close to the light-emitting element and the light-receiving element.

作 用 本考案による反射型光結合装置によれば、非点
収差の集光機構を発光素子および受光素子に近接
して配置しているため発光素子から180゜方向に
放射される光を効率良く集光することができ、し
かも集光機構から出た光はほぼ同じスポツト径で
進むため反射型光結合装置と被検出物との距離が
少少変つても、また遠距離でも検出精度に影響を
与えることなく検出できる。
Effect: According to the reflective optical coupler according to the present invention, the astigmatism focusing mechanism is placed close to the light emitting element and the light receiving element, so that the light emitted from the light emitting element in a 180° direction can be efficiently collected. Furthermore, the light emitted from the focusing mechanism travels with almost the same spot diameter, so even if the distance between the reflective optical coupler and the object to be detected changes slightly, or even at long distances, detection accuracy will not be affected. It can be detected without giving anything.

実施例 第4図は本考案に係る反射型光結合装置の断面
図で13は従来の反射型光結合装置部、14は発
光素子用および受光素子用それぞれ別々に集光す
る球状部141および取付部を例えばプラスチツ
クで一体に形成した集光機構で、球状部141が
それぞれ発光素子3および受光素子4に近接する
ように従来の反射型光結合装置部13の外囲器に
付設してある。この例では被検出物15の位置で
発光ペレツト3の光軸と受光ペレツト4の光軸と
が交わるように球状部141の位置を配置してい
る。しかし前にも説明したように、球状では非点
収差となり完全には結像せず、集光機構だけをも
つているので、このときの光路は第4図の斜線部
16で示したようになる。この図ではかなり概念
的に拡大して書いているため、光路が広く検出に
不適のようにみえるが、実際の反射型光結合装置
の大きさは直径5mm以下と小さく、光路のスポツ
ト径も1mm前後を小さい。従つてこの遠距離の被
検出物を検出したいという、テープレコー等のテ
ープエンド検出あるいは回転体の回転検出等には
何ら支障なく、またスポツト径が殆んど同じ大き
さで進むため被検出物の位置が少々前後したり被
検出物の面と発光受光面とが平行でなくなつても
結合効率が急激に低下するということがなく、使
用上での配置に神経を使う必要がなくなる。また
この例では、集光機構として球状部141を使用
しいるため、この球状部141は発光ペレツト3
および受光ペレツト4にほぼ接する位近づけて配
置でき、装置そのものを小型にできるし、発光ペ
レツト3から球状部141をみる立体角が大きい
ため、いわゆる開口数が大きくなり光の結合効率
が向上する。この球状部141は発光ペレツト3
からの光を減衰させることなく透過させれば良い
ので、ガラスなどを使わなくても、プラスチツク
で良く、本実施例のようにプラスチツクで二つの
球状部141および取付部を一体で同時に成形す
ることができ、容易に製造可能である。またこの
球状部は完全な球でなくても、半球でも、楕円状
でも、焦点を結ばない非点収差の集光機構であれ
ば同様の効果を得ることができる。
Embodiment FIG. 4 is a cross-sectional view of a reflective optical coupler according to the present invention, where 13 is a conventional reflective optical coupler part, 14 is a spherical part 141 that collects light separately for the light emitting element and the light receiving element, and the mounting. The spherical part 141 is attached to the envelope of the conventional reflective optical coupler part 13 so that the spherical part 141 is close to the light emitting element 3 and the light receiving element 4, respectively. In this example, the spherical portion 141 is positioned such that the optical axis of the light emitting pellet 3 and the optical axis of the light receiving pellet 4 intersect at the position of the object 15 to be detected. However, as explained earlier, the spherical shape causes astigmatism and does not form an image completely, and only has a focusing mechanism, so the optical path in this case is as shown by the shaded area 16 in Figure 4. Become. In this figure, the optical path is enlarged conceptually, so it appears that the optical path is wide and unsuitable for detection, but the actual size of the reflective optical coupling device is small, less than 5 mm in diameter, and the spot diameter of the optical path is also 1 mm. The front and back are small. Therefore, there is no problem in detecting the end of a tape in a tape recorder or detecting the rotation of a rotating body, and since the spot diameter advances with almost the same size, it is possible to detect objects at long distances. Even if the position of the detector moves slightly back or forth or the surface of the object to be detected and the light emitting/receiving surface are no longer parallel, the coupling efficiency will not drop sharply, and there is no need to be careful about the placement during use. Further, in this example, since the spherical part 141 is used as a light collecting mechanism, this spherical part 141 is used as a light emitting pellet 3.
Moreover, it can be placed close to the light-receiving pellet 4 so as to be almost in contact with it, and the device itself can be made compact.Since the solid angle when viewing the spherical part 141 from the light-emitting pellet 3 is large, the so-called numerical aperture becomes large, and the coupling efficiency of light is improved. This spherical part 141 is the light emitting pellet 3
Since it is sufficient to transmit the light without attenuating it, plastic can be used without using glass or the like, and as in this embodiment, the two spherical parts 141 and the mounting part can be integrally molded from plastic at the same time. and can be easily manufactured. Furthermore, even if this spherical part is not a perfect sphere, it can be a hemisphere, or an ellipse, the same effect can be obtained as long as it is a condensing mechanism with astigmatism that does not focus.

考案の効果 第5図に本考案による反射型光結合装置の特性
を従来のものと比較して示してある。同図で横軸
は反射型光結合装置と被検出物との距離で、縦軸
は発光素子側のLEDに4mAを流したとき前方に
配置した対象物からの反射光により受光素子側に
流れる電流をμAで表わしたものがある。Aが第
4図に示した本実施例に係るもの、Bが従来の何
もつけない第1図に示したもの、Cが従来の凸レ
ンズを使用した第3図に示したものである。図か
らも明らかなように、本実施例によるものは広範
囲に亘つて高い光の結合効率が得られることがわ
かる。なお、本実施例によるものの方が凸レンズ
を使用して焦点を合わせたものより出力が多く得
られる(結合効率が良い。)のは集光機構を発光
素子に近接して配置しているためと思われる。
Effects of the invention FIG. 5 shows the characteristics of the reflective optical coupling device according to the invention in comparison with the conventional one. In the figure, the horizontal axis is the distance between the reflective optical coupler and the object to be detected, and the vertical axis is the distance between the reflective optical coupler and the object to be detected, and the vertical axis is the reflected light from the object placed in front when 4mA is applied to the LED on the light emitting element side. There is a method that expresses current in μA. A is the one according to this embodiment shown in FIG. 4, B is the conventional one shown in FIG. 1 without any attachment, and C is the one shown in FIG. 3 using a conventional convex lens. As is clear from the figure, it can be seen that high light coupling efficiency can be obtained over a wide range in this example. Note that the reason that the device according to this example can obtain more output (better coupling efficiency) than the device that focuses using a convex lens is because the light condensing mechanism is placed close to the light emitting element. Seem.

また第6図にこの種反射型光結合装置による分
解能を被検出物に当るスポツト径で第5図と同様
に示した。即ち横軸は第5図と同じで縦軸にスポ
ツト径をmmで表わしたものである。図からもわか
るように本実施例によるもの(A)はスポツト径が距
離の変化に殆んど影響しないのに対し、従来の何
もつけないもの(B)は距離と共に発散し遠ざかるに
従つてスポツト径がどんどん大きくなる。また凸
レンズを使用した従来のもの(C)は焦点の合つたと
ころではスポツト径が非常に小さくなるのに対し
焦点からずれるに従つて放物線状に急速にスポツ
ト径が大きくなり分解能が悪くなることがわか
る。従つて被検出物の位置を正確に合わせられな
い場合には却つて被検出物を誤認し易いのに対
し、本考案の実施例のものは被検出物が前後(反
射型光結合装置の取付け位置の前後)しても一定
した分解能で安定した検出をすることができる。
Also, in FIG. 6, the resolution of this type of reflective optical coupler is shown in terms of the spot diameter that hits the object to be detected, as in FIG. That is, the horizontal axis is the same as in FIG. 5, and the vertical axis is the spot diameter in mm. As can be seen from the figure, in the case of this embodiment (A), the spot diameter has almost no effect on the change in distance, whereas in the conventional case (B), where nothing is attached, the spot diameter diverges with distance and as it moves away. The spot diameter becomes larger and larger. In addition, with the conventional lens (C) that uses a convex lens, the spot diameter becomes very small at the focused point, but as the focus shifts, the spot diameter increases rapidly in a parabolic manner, resulting in poor resolution. Recognize. Therefore, if the position of the detected object cannot be adjusted accurately, it is easy to misidentify the detected object, whereas in the embodiment of the present invention, the detected object is located at the front and back (when the reflective optical coupling device is installed). It is possible to perform stable detection with constant resolution regardless of the position (before or after the position).

上述した如く、本考案の特徴は集光機構を従来
の反射型光結合装置に取り付けるだけで遠方にあ
る被検出物を検出するのに適した装置にしたこと
にあり、その結果安価で信頼性の良い装置が得ら
れ、また広範囲に亘つて結合効率が向上し10mm位
遠方でも精度良く検出できると共に、使用面での
取扱いも簡便で済むという利点がある。更に従来
のように近いところにある被検出物を検出したい
ときはこの集光機構をつけないものを使用すれば
よく汎用性が広いという利点がある。
As mentioned above, the feature of the present invention is that by simply attaching a condensing mechanism to a conventional reflective optical coupling device, the device can be made suitable for detecting objects located at a distance, and as a result, it is inexpensive and reliable. This method has the advantage of providing a device with good performance, improving coupling efficiency over a wide range, enabling accurate detection even at a distance of about 10 mm, and being easy to use and handle. Furthermore, unlike the conventional method, when it is desired to detect an object in a nearby location, it is sufficient to use a device without this condensing mechanism, which has the advantage of wide versatility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の反射型光結合装置の断
面、第3図は従来の特殊な反射型光結合装置の断
面図、第4図は本考案の一実施例の断面図、第5
図は反射型光結合装置と被検出物の距離に対する
光の結合効率の関係を受光素子側の電流により示
したもので、Aが第4図に示した本考案に係るも
の、Bが第1図に示した従来のもの、Cが第3図
に示した従来の特殊なものの特性図、第6図は分
解能をスポツト径により第5図と同様に示したも
のである。 3……発光ペレツト、4……受光ペレツト、1
3……従来の反射型光結合装置部、14……集光
機構、141……球状部。
Figures 1 and 2 are cross-sectional views of a conventional reflective optical coupler, Figure 3 is a cross-sectional view of a conventional special reflective optical coupler, and Figure 4 is a cross-sectional view of an embodiment of the present invention. 5
The figure shows the relationship between the coupling efficiency of light and the distance between the reflective optical coupler and the object to be detected using the current on the light receiving element side. The conventional one shown in the figure, C is a characteristic diagram of the conventional special one shown in FIG. 3, and FIG. 6 shows the resolution according to the spot diameter in the same way as FIG. 5. 3...Light-emitting pellet, 4...Light-receiving pellet, 1
3... Conventional reflective optical coupler section, 14... Light condensing mechanism, 141... Spherical part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 発光素子と、受光素子と、該発光素子からの光
の漏洩を防止する遮光壁および外囲器とを有し、
該発光素子から放射される光が被検出物により変
調され、この変調された反射光を該受光素子によ
つて受信する反射型光結合装置において、前記発
光素子から放射される光および前記被検出物によ
り反射される光をそれぞれ別々に集光すべく形成
しした二個の球状部からなる非点収差の集光部お
よび取付部を一体に形成した集光機構を前記発光
素子および受光素子に近接して前記外囲器に付設
したことを特徴とする反射型光結合装置。
It has a light emitting element, a light receiving element, and a light shielding wall and an envelope that prevent light leakage from the light emitting element,
In a reflective optical coupling device in which light emitted from the light emitting element is modulated by the object to be detected and this modulated reflected light is received by the light receiving element, the light emitted from the light emitting element and the object to be detected are A light-emitting element and a light-receiving element are provided with a light-emitting element and a light-receiving element. A reflective optical coupling device, characterized in that it is attached adjacent to the envelope.
JP409980U 1980-01-17 1980-01-17 Expired JPS6111813Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP409980U JPS6111813Y2 (en) 1980-01-17 1980-01-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP409980U JPS6111813Y2 (en) 1980-01-17 1980-01-17

Publications (2)

Publication Number Publication Date
JPS56109161U JPS56109161U (en) 1981-08-24
JPS6111813Y2 true JPS6111813Y2 (en) 1986-04-14

Family

ID=29600794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP409980U Expired JPS6111813Y2 (en) 1980-01-17 1980-01-17

Country Status (1)

Country Link
JP (1) JPS6111813Y2 (en)

Also Published As

Publication number Publication date
JPS56109161U (en) 1981-08-24

Similar Documents

Publication Publication Date Title
US4638343A (en) Optical radiation source or detector device having plural radiating or receiving characteristics
JPH0358641B2 (en)
JPH0642258B2 (en) Optical device for fingerprint recognition
US4511248A (en) Active electro-optical distance detection methods and devices
US6114688A (en) Lens for a light detector
CN110836642A (en) Color triangular displacement sensor based on triangulation method and measuring method thereof
CN210534336U (en) Laser radar
JPS6111813Y2 (en)
CN211928172U (en) Optical ranging module, optical scanning ranging device and robot
US4346988A (en) Distance measuring device
JP4999595B2 (en) Reflective photo sensor
JPS6269111A (en) Reflection type inclination detecting element
CN112986961A (en) Transmitting module, electronic equipment and distance measuring method
JPH06151973A (en) Optical semiconductor device
JPS6234460Y2 (en)
JPH0587681A (en) Measuring method and apparatus of coating state
CN115825929B (en) Laser receiving device and laser radar
CN214954068U (en) Transmitting module and electronic equipment
CN212965418U (en) Mobile robot
CN218037415U (en) Photoelectric detection light-gathering structure
CN218003713U (en) Optical measuring device and laser radar
JPS57166530A (en) Color measuring device
JPS6239469Y2 (en)
JPS6238312A (en) Distance detecting device
JPH06840Y2 (en) Reflective photo interrupter