JPS61117913A - Surface acoustic wave element - Google Patents

Surface acoustic wave element

Info

Publication number
JPS61117913A
JPS61117913A JP23900884A JP23900884A JPS61117913A JP S61117913 A JPS61117913 A JP S61117913A JP 23900884 A JP23900884 A JP 23900884A JP 23900884 A JP23900884 A JP 23900884A JP S61117913 A JPS61117913 A JP S61117913A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
insulator
electrodes
wave element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23900884A
Other languages
Japanese (ja)
Inventor
Takehiko Sone
竹彦 曽根
Takehiro Takojima
武広 蛸島
Yoshimi Kamijo
芳省 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP23900884A priority Critical patent/JPS61117913A/en
Publication of JPS61117913A publication Critical patent/JPS61117913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To suppress the increase in a resonance resistance lower even at a high frequency and to prevent short-circuit between electrodes due to a conductive foreign material by coating an insulator on a reed screen electrode formed separately of Al or Al alloy film by means of the anodic oxidation. CONSTITUTION:The reed screen electrodes 2 are formed separately by applying anodic oxidation method to an Al or an Al alloy film and the insulator 5 is coated on them. For example, a crystal substrate subject to mirror grinding is used as the piezoelectric substrate 1 and an Al is vapor-deposited by sputtering on the substrate 1. Then the reed screen electrodes 2 are formed separately by oxidizing parts other than the reed screen electrodes 2 by means of the anodic oxidation method to form alumina parts 7. Further, reflectors 3 are formed by the wet photo etching method. Moreover, the insulator 5 is formed by applying sputter vapor deposition to a silicon dioxide onto the reed screen electrodes 2 and the alumina parts 7.

Description

【発明の詳細な説明】 「技術分野」 本発明は遅延線1発振器、フィルタなどに適用される弾
性表面波素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a surface acoustic wave element applied to a delay line 1 oscillator, a filter, etc.

「従来技術およびその問題点」 弾性表面波素子は、従来軍需用の特殊な用途に使用され
ていたが、近年FMチューナ、TV等の民生用機器にも
使用され始め、にわかに脚光を浴びるようになってきた
6弾性表面波素子は具体的には遅延素子、発振子、フィ
ルタなどとして製品化されている。これら各種の弾性表
面波素子の特徴は、小型、軽量で、信頼性が高いこと、
およびその製造工程が集積回路と類似しており、量産性
に富むことなどである。そして、現在では欠くべからざ
る電子部品として量産されるに至っている。
"Prior art and its problems" Surface acoustic wave elements have traditionally been used for special military purposes, but in recent years they have begun to be used in consumer equipment such as FM tuners and TVs, and have suddenly come into the spotlight. Specifically, the 6 surface acoustic wave elements that have become available are commercialized as delay elements, oscillators, filters, and the like. The characteristics of these various surface acoustic wave devices are that they are small, lightweight, and highly reliable.
Another advantage is that the manufacturing process is similar to that of integrated circuits, making it highly suitable for mass production. Nowadays, it is mass-produced as an indispensable electronic component.

従来の弾性表面波素子の一例を弾性表面波素子を例とし
て説明すると、第7図および第8図に示すように、圧電
基板1の上に導電性物質からなるすだれ状電極2が形成
されている。この場合。
To explain an example of a conventional surface acoustic wave device using a surface acoustic wave device as an example, as shown in FIGS. 7 and 8, an interdigital electrode 2 made of a conductive material is formed on a piezoelectric substrate 1. There is. in this case.

圧電基板1は、例えば水晶、ニオブ酸リチウムなどの圧
電性をもった単結晶や圧電セラミックス。
The piezoelectric substrate 1 is, for example, a piezoelectric single crystal such as quartz, lithium niobate, or a piezoelectric ceramic.

あるいはガラスの表面に圧電性をもった薄膜を形成した
ものが使用される。また、すだれ状電極2は、例えばア
ルミニウム、金などの金属を圧電基板1の上に蒸着後、
フォトエツチングにより形成することができる。そして
、このすだれ状電極2の両側に誘電体、導電体、溝等か
らなるリッジで構成されるl対の格子状反射器3.3が
形成されている。
Alternatively, a glass surface with a piezoelectric thin film formed thereon is used. Further, the interdigital electrode 2 is formed by depositing a metal such as aluminum or gold on the piezoelectric substrate 1.
It can be formed by photoetching. On both sides of this interdigital electrode 2, there are formed 1 pairs of lattice reflectors 3.3 each consisting of a ridge made of a dielectric, a conductor, a groove, etc.

すだれ状電極2に特定周波数の電圧を印加すると、すだ
れ状電極2の間隙の圧電基板1表面に電界がかかり、圧
電基板lの圧電性により電圧に比例したひずみが生じ、
そのひずみが圧電基板1の材料によって定まった音速で
表面波として画側に伝搬する。この表面波は、両側の格
子状反射器3.3によって反射され、再びすだれ状電極
2に帰還して共振がなされるようになっている。
When a voltage of a specific frequency is applied to the interdigital electrodes 2, an electric field is applied to the surface of the piezoelectric substrate 1 in the gap between the interdigital electrodes 2, and a strain proportional to the voltage is generated due to the piezoelectricity of the piezoelectric substrate l.
The strain propagates toward the image side as a surface wave at a sound speed determined by the material of the piezoelectric substrate 1. This surface wave is reflected by the grating reflectors 3.3 on both sides, returns to the interdigital electrode 2 again, and resonates.

ところで、これら各種の弾性表面波素子は、第3図に示
すようなハーメチックシール4と呼ばれる金属製容器に
よって封止されるのが一般的である。ハーメチックシー
ル4は封止性、耐蝕性等を考慮して1通常はニッケルメ
ッキ等のメッキが施されている。
By the way, these various surface acoustic wave elements are generally sealed with a metal container called a hermetic seal 4 as shown in FIG. The hermetic seal 4 is usually plated with nickel or the like in consideration of sealing properties, corrosion resistance, etc.

しかしながら、かかる従来の弾性表面波素子においては
、ハーメチックシール4の封止前に混入した導電性異物
や、ハーメチックシール等のメッキ剥離物等がすだれ状
電極に付着し、電極間短絡現象を起すことがあった。こ
のため、電気的インピーダンスが変化するなどの支障が
生じ、弾性表面波素子の信頼性が低下し、量産を妨げて
いた。
However, in such conventional surface acoustic wave elements, conductive foreign matter mixed in before the hermetic seal 4 is sealed, peeled off plating of the hermetic seal, etc. adhere to the interdigital electrodes, causing a short circuit phenomenon between the electrodes. was there. This causes problems such as changes in electrical impedance, lowers the reliability of the surface acoustic wave element, and hinders mass production.

そこで、本発明者らは、すだれ状電極部分に絶縁物を被
覆することにより、ハーメチックシールのメッキ剥離物
やその他の導電性異物による電極間短絡現象を防止でき
ることを見出し、既に特許出願した。
Therefore, the present inventors have discovered that by coating the interdigital electrode portion with an insulating material, it is possible to prevent short-circuiting between the electrodes due to peeled off plating of the hermetic seal or other conductive foreign matter, and have already filed a patent application.

第10図にはかかる弾性表面波素子の一例が示されてい
る。すなわち、水晶基板等の圧電基板lの上にAI等の
金属を例えばスパッタ蒸着により成膜した後、通常の湿
式エツチング法により、すだれ状電極2および反射器3
を形成する。この場合、金属の膜厚は1例えば130M
Hz帯の弾性表面波素子ではi p−m程度とされ、 
800 MHz帯の弾性表面波素子では0.15終■程
度とされる。また、エツチング液としては例えばリン酸
、硝酸の混合液を用いる。そして、すだれ状電極2の上
に二酸化シリコン等の絶縁物5を例えばスパッタ蒸着に
より成膜する。成膜は1例えば基板温度200℃、成膜
レー)0.15es八r、 Ar+02混合ガス圧3 
X 1O−3Torrにて基板lを自公転しながら行な
う。
FIG. 10 shows an example of such a surface acoustic wave element. That is, after forming a film of a metal such as AI by, for example, sputter deposition on a piezoelectric substrate l such as a quartz substrate, the interdigital electrode 2 and the reflector 3 are formed by a normal wet etching method.
form. In this case, the metal film thickness is 1, for example, 130M.
For surface acoustic wave devices in the Hz band, it is about i p-m,
For surface acoustic wave devices in the 800 MHz band, it is approximately 0.15 mm. Further, as the etching solution, for example, a mixed solution of phosphoric acid and nitric acid is used. Then, an insulator 5 such as silicon dioxide is formed on the interdigital electrode 2 by, for example, sputter deposition. For film formation, 1, e.g., substrate temperature 200°C, film formation rate) 0.15es8r, Ar+02 mixed gas pressure 3
This is carried out while the substrate 1 is rotating around its axis at X 10-3 Torr.

しかしながら、この弾性表面波素子では、電極間短絡現
象を効果的に防止するため、絶縁物5の膜厚を2000
人程度以上とすることが必要である。
However, in this surface acoustic wave element, in order to effectively prevent the phenomenon of short circuit between electrodes, the film thickness of the insulator 5 is increased to 2000 mm.
It is necessary that the number of people is at least the same level as that of a person.

そして、絶縁物5を形成した場合、弾性表面波素子の共
振抵抗が増大する問題点が生じる0例えば90)IHz
帯の弾性表面波素子では絶縁物5の膜厚が2000人の
とき、共振抵抗増加率は最大lO%程度であり、設計上
対応できる程度なのでそれほど問題はない、しかし、例
えば800MHz帯の弾性表面波素子では絶縁物5の膜
厚が2000人のとき、共振抵抗増加率が最大25%に
なり、バラツキも増大し、生産性が低下することがわか
った。したがって、この弾性表面波素子は、例えばVH
F帯においては充分に実用化できるが、さらに高周波の
例えばUHF帯では共振抵抗の増加を無視できなくなる
If the insulator 5 is formed, a problem arises in that the resonance resistance of the surface acoustic wave element increases (for example, 90) IHz.
In a band surface acoustic wave device, when the film thickness of the insulator 5 is 2000 MHz, the resonance resistance increase rate is about 10% at maximum, which can be accommodated in the design, so it is not a big problem.However, for example, for an 800 MHz band elastic surface It was found that in the wave element, when the film thickness of the insulator 5 was 2000 mm, the resonance resistance increase rate reached a maximum of 25%, the variation increased, and the productivity decreased. Therefore, this surface acoustic wave element has, for example, VH
Although it is sufficiently practical in the F band, the increase in resonance resistance cannot be ignored in higher frequencies such as the UHF band.

「発明の目的」 本発明の目的は、ハーメチックシールのメッキ剥離物や
その他の導電性異物による電極間短絡現象を防止でき、
かつ、高周波の場合にも共振抵抗の増加を低く抑えるこ
とができるようにした弾性表面波素子を提供することに
ある。
"Objective of the Invention" The object of the present invention is to prevent short-circuiting between electrodes caused by peeled off plating of hermetic seals or other conductive foreign matter;
Another object of the present invention is to provide a surface acoustic wave element that can suppress an increase in resonance resistance even in the case of high frequencies.

「発明の構成」 本発明による弾性表面波素子は、すだれ状電極がAIも
しくはAl合金膜を陽極酸化法により分離形成してなり
、かつ、すだれ状電極部分に絶縁物が被覆されている。
"Structure of the Invention" In the surface acoustic wave element according to the present invention, the interdigital electrodes are formed by separating and forming an AI or Al alloy film by an anodizing method, and the interdigital electrode portions are coated with an insulator.

本発明は、第1O図に示した弾性表面波素子の問題点に
ついて検討し、これをさらに改良したものである。すな
わち、第10図に示した弾性表面波素子では、第11図
に示すように、すだれ状電極2がエツチングにより圧電
基板lから突出した状態となるので、これに絶縁物5を
被覆したとき、絶縁物5は実際には図示の如く凹凸状態
となる。このため、例えば図中Aで示す部分においては
、絶縁物5の膜厚が極めて薄くなり、電極間短絡現象の
v′Jk効果が弱められるのである。
The present invention investigates the problems of the surface acoustic wave element shown in FIG. 1O, and further improves the problems. That is, in the surface acoustic wave element shown in FIG. 10, as shown in FIG. 11, the interdigital electrode 2 is etched so as to protrude from the piezoelectric substrate l, so when it is covered with the insulator 5, The insulator 5 actually has an uneven state as shown in the figure. For this reason, for example, in the portion indicated by A in the figure, the film thickness of the insulator 5 becomes extremely thin, and the v'Jk effect of the inter-electrode short circuit phenomenon is weakened.

本発明による弾性表面波素子は、例えば第1図および第
2図に示されるように、圧電基板l上にAIもしくは^
1合金膜を形成した後、これを陽極酸化してすだれ状電
極2を形成しである。すなわち、すだれ状電極2以外の
部分を陽極酸化法により酸化して非導電性のアルミナ部
分7とし、これによってすだれ状電極2を分離形成した
のである。その結果、アルミナ部分7はすだれ状電極2
の部分よりも若干盛り上がるが、全体としては上面がか
なり平坦化されたものとなる。したがって、この上に絶
縁膜5を被覆すると、絶縁JI[5辻比較的均−な暦と
なってすだれ状電極2およびアルミナ部分7を覆う、こ
のため、絶縁WI5の厚さを例えば1oooxs度とし
ても充分な絶縁性が得られるようになり、絶aSSの膜
厚を薄くすることにより、ひいては共振抵抗の増加も小
さく抑えることができる。このように、本発明の弾性表
面波素子によれば、UHFHF上の高周波の場合にも共
振抵抗をそれほど増大させることがない。
The surface acoustic wave element according to the present invention has AI or
After forming the first alloy film, this is anodized to form the interdigital electrode 2. That is, the portions other than the interdigital electrode 2 were oxidized by anodic oxidation to form a non-conductive alumina portion 7, thereby forming the interdigital electrode 2 separately. As a result, the alumina portion 7 is connected to the interdigital electrode 2.
The upper surface is slightly more raised than the upper surface, but the upper surface is considerably flattened as a whole. Therefore, when the insulating film 5 is coated on this, the insulating film 5 becomes relatively uniform and covers the interdigital electrode 2 and the alumina part 7. Therefore, the thickness of the insulating WI5 is set to 100xs degree, for example. Also, sufficient insulation properties can be obtained, and by reducing the thickness of the aSS film, the increase in resonance resistance can also be suppressed. As described above, according to the surface acoustic wave element of the present invention, the resonance resistance does not increase significantly even in the case of high frequencies such as UHFHF.

本発明の好ましい態様によれば、絶縁物5としては、 
Sing、TaNx、 Al0K等の酸化物、Sing
、τaNx等の窒化物、あるいはそれらの複合体からな
る無機絶縁物が使用される。
According to a preferred embodiment of the present invention, the insulator 5 is
Oxides such as Sing, TaNx, Al0K, Sing
, τaNx, or an inorganic insulator made of a composite thereof.

本発明のさらに好ましい態様によれば、絶縁物5は膜厚
が500〜3000人とされる。絶縁物5の膜厚が50
0人未満では電極間短絡現象の防止効果が充分に得られ
にくくなり、3000人を超えると共振抵抗が増大する
傾向となる。
According to a further preferred embodiment of the present invention, the insulator 5 has a thickness of 500 to 3000 layers. The film thickness of the insulator 5 is 50
If the number of participants is less than 0, it will be difficult to obtain a sufficient effect of preventing short-circuiting between electrodes, and if the number of participants exceeds 3,000, the resonance resistance will tend to increase.

本発明の弾性表面波素子は、また第3図および第4図に
示すような構造であってもよい、すなわち、この例は、
陽極酸化法によりすだれ状電極2を分離形成した後9す
だれ状電極2の上面も陽極酸化法により酸化して、すだ
れ収電fI2の全体をアルミナ部分7によって覆ったも
のである。したがって、この例においては、すだれ状電
極2の上面を覆うアルミナ部分7゛が実質的に絶縁物5
の役割をなしている。
The surface acoustic wave element of the present invention may also have a structure as shown in FIGS. 3 and 4, that is, in this example,
After the interdigital electrodes 2 are separated and formed by an anodizing method, the upper surface of the interdigital electrodes 2 is also oxidized by an anodizing method, so that the entire interdigital current collection fI2 is covered with an alumina portion 7. Therefore, in this example, the alumina portion 7' covering the upper surface of the interdigital electrode 2 is substantially the insulator 5.
It plays the role of

「発明の実施例」 実施例 鏡面研磨を施した水晶基板を圧電基板lとし、その上に
Alを膜厚2G00八となるようにスパッタ蒸着した0
次いで1周知の陽極酸化法によって、すだれ状電極2以
外の部分を酸化してアルミナ部分7とすることにより、
すだれ状電極2を分離形成した。また1通常の湿式フォ
トエツチング法により反射器3を形成した。さらに、す
だれ状電極2およびアルミナ部分7の上に、二酸化シリ
コンを基板加熱温度200℃、成膜L/−)0.15#
Lm八r、 Ar十〇、混合ガスで全圧3 X1O−3
Torrにて基板1を自公転しながらスパッタ蒸着して
、絶縁物5を形成した。こうして、第1図および第2図
に示すような構造を有する弾性表面波素子を製造した。
``Embodiments of the Invention'' Example A mirror-polished quartz substrate was used as a piezoelectric substrate 1, and Al was sputter-evaporated onto it to a film thickness of 2G00.
Next, by using a well-known anodic oxidation method, the portion other than the interdigital electrode 2 is oxidized to form the alumina portion 7.
The interdigital electrode 2 was formed separately. Further, a reflector 3 was formed by a conventional wet photoetching method. Furthermore, on the interdigital electrode 2 and the alumina part 7, silicon dioxide is formed into a film at a substrate heating temperature of 200°C (L/-)0.15#.
Lm8r, Ar10, total pressure 3 with mixed gas X1O-3
The insulator 5 was formed by sputter deposition while rotating the substrate 1 under Torr. In this way, a surface acoustic wave device having a structure as shown in FIGS. 1 and 2 was manufactured.

次に、この弾性表面波素子の電極間短絡現象の防止効果
を試験するため、第5図に示すように。
Next, in order to test the effect of preventing short circuit between electrodes of this surface acoustic wave element, as shown in FIG.

マスク蒸着法により絶縁物5の上にAIを2000人の
厚さでスパッタ蒸着し、擬似導電性異物8を形成した。
AI was sputter-deposited on the insulator 5 to a thickness of 2,000 yen by a mask evaporation method to form a pseudo-conductive foreign material 8.

擬似導電性異物8は、上方から見てすだれ状電極2にま
たがる大きさとされ、すだれ状電極2を被覆する絶縁l
15の上の任意の場所に数個付着させた。そして、この
擬似導電性異物8を形成した後、直流抵抗不良率を測定
して、すだれ状電極2の電極間短絡現象を検討した。な
お、この試験方法は、従来より用いられている振動試験
によるものと比較して、少ない数量でより確実かつ厳密
に検査できる方法であることが実験より分っている。
The pseudo-conductive foreign matter 8 is sized to span the interdigital electrode 2 when viewed from above, and the insulating material covering the interdigital electrode 2 is
Several pieces were attached to arbitrary locations on the 15. After forming the pseudo-conductive foreign matter 8, the direct current resistance failure rate was measured to examine the short-circuit phenomenon between the interelectrode of the interdigital electrode 2. It has been found through experiments that this test method allows for more reliable and rigorous testing with a smaller number of products than the conventionally used vibration test.

そして、第1r!4および第2図に示す弾性表面波素子
を、二酸化シリコンからなる絶縁物5の膜厚を50OA
、IQooA、2000人、3000人と変えて製造し
、それぞれについて上述した方法により直流抵抗不良率
を測定すると共に、共撤抵抗増加率を測定した。その結
果を第8rI!Iに示す、なお、この弾性表面波素子は
、800MHz帯のものである。881mから、この弾
性表面波素子は、絶縁物5の膜厚がtooo人で擬似導
電性異物8による直流抵抗不良率が零になり、その時点
における共#!抵抗増加率も平均で5%、最大で10%
であることがわかる。
And the 1st r! 4 and the surface acoustic wave device shown in FIG.
, IQooA, 2,000, and 3,000 people were manufactured, and the DC resistance failure rate and co-removal resistance increase rate were measured for each by the method described above. The result is the 8th rI! Note that this surface acoustic wave element shown in I is of the 800 MHz band. From 881 m onwards, this surface acoustic wave element has a film thickness of the insulator 5 of too much, and the DC resistance failure rate due to the pseudo-conductive foreign matter 8 becomes zero, and at that point, the surface acoustic wave element becomes #! The resistance increase rate is also 5% on average and 10% at maximum.
It can be seen that it is.

なお、絶縁物5の材質をTaNx、^10!、SiNx
、 TaNxに変えて行なっても同様な結果が得られた
。また、すだれ状電極2の全体をアルミナ部分7で覆っ
てなる第3図および第4図に示した弾性表面波素子にお
いても同様な結果が得られた。
In addition, the material of the insulator 5 is TaNx, ^10! , SiNx
, Similar results were obtained even when TaNx was used instead. Further, similar results were obtained in the surface acoustic wave elements shown in FIGS. 3 and 4 in which the entire interdigital electrode 2 was covered with the alumina portion 7.

比較例 水晶基板からなる圧電基板lの上にAIを2000人の
厚さでスパッタ蒸着した後、通常の湿式エツチング法に
より、すだれ状電極2および反射器3を形成した。そし
て、すだれ状電極2の上K、二酸化シリコンを基板温度
200℃、成膜レー) 0.15xm/hr、^j+%
混合ガスで全圧3 Xl0−”Tarrにて基板lを自
公転しながらスパッタ蒸着して絶縁物5を形成した。こ
うして、第1O図および第11図に示す弾性表面波素子
を製造した。この弾性表面波素子を、二酸化シリコンか
らなる絶縁物5の膜厚を1000人、2000人、30
00人と変えて製造し、それぞれについて上述した方法
により直流抵抗不良率および共振抵抗増加率を測定した
。その結果を第12図および第13図に示す、第12図
は90MHz帯の弾性表面波素子の場合であり、113
図は800MHz帯の弾性表面波素子の場合である。1
12図に示すように、 90MHz帯では、絶縁物5の
膜厚が2000人で導電性異物8による直流抵抗不良率
が零になり、その時点の共振抵抗増加率は最大でもlO
%程度であるから充分に実用的である。しかしながら、
第13図に示すように、800MHz帯では、絶縁物5
の膜厚が2000人のとき、共4[Jl抗増加率が最大
25%程度と大きくなり、かつ、バラツキも増大して生
産性が悪くなることがわかる。
Comparative Example After sputter-depositing AI to a thickness of 2,000 yen on a piezoelectric substrate 1 made of a quartz substrate, interdigital electrodes 2 and reflectors 3 were formed by a conventional wet etching method. Then, on the interdigital electrode 2, silicon dioxide was deposited at a substrate temperature of 200°C at a film deposition rate of 0.15xm/hr, ^j+%.
The insulator 5 was formed by sputter deposition using a mixed gas at a total pressure of 3 Xl0-'' Tarr while rotating the substrate 1. In this way, the surface acoustic wave device shown in FIGS. 1O and 11 was manufactured. The surface acoustic wave element is manufactured by using a film thickness of the insulator 5 made of silicon dioxide of 1000, 2000, or 30.
00 people, and the direct current resistance failure rate and resonance resistance increase rate were measured for each of them by the method described above. The results are shown in FIGS. 12 and 13. FIG. 12 shows the case of a 90 MHz band surface acoustic wave element, and 113
The figure shows the case of an 800 MHz band surface acoustic wave element. 1
As shown in Figure 12, in the 90 MHz band, the DC resistance failure rate due to conductive foreign matter 8 becomes zero when the film thickness of the insulator 5 is 2000, and the resonant resistance increase rate at that point is at most 1O
%, it is sufficiently practical. however,
As shown in Figure 13, in the 800MHz band, the insulator 5
It can be seen that when the film thickness is 2000, the increase rate of both 4[Jl resistance increases to a maximum of about 25%, and the variation also increases, resulting in poor productivity.

「発明の効果」 以上説明したように、本発明によれば、すだれ状電極の
上に絶縁物を被覆したので、すだれ状電極の電極間短絡
現象をほぼ完全に防止できる。また、すだれ状電極がA
IもしくはAl合金膜を陽極酸化法により分離形成した
ものからなるので、すだれ状電極の上面が平滑となり、
比較的薄い膜厚の絶縁物によっても充分にすだれ状電極
の電極間短絡現象を防止でき、それによって高周波にお
いても共振抵抗増加率を極めて小さくすることがでξる
。したがって、本発明によれば、91性表面波素子の信
頼性を飛躍的に高めることができ、量産に際しても不良
品の発生を極めて少なくすると共に、製造に際しては検
査等の作業を簡略化することができる。
[Effects of the Invention] As explained above, according to the present invention, since the interdigital electrodes are coated with an insulating material, the phenomenon of short circuit between the interelectrode of the interdigital electrodes can be almost completely prevented. Also, the interdigital electrode is A
Since it is made of I or Al alloy film separated by anodization, the upper surface of the interdigital electrode is smooth.
Even with a relatively thin insulating film, it is possible to sufficiently prevent the inter-electrode short circuit phenomenon of the interdigital electrodes, thereby making it possible to extremely reduce the rate of increase in resonance resistance even at high frequencies. Therefore, according to the present invention, it is possible to dramatically improve the reliability of the 91-frequency surface wave device, extremely reduce the occurrence of defective products even during mass production, and simplify work such as inspection during manufacturing. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による弾性表面波素子の一実施例を示す
断面図、第2図は同弾性表面波素子の部分拡大断面図、
第3図は本発明による弾性表面波素子の他の実施例を示
す断面図、第4図は同弾性表面波素子の部分拡大断面図
、第5図は電極間短絡現象を調べるための試験方法を示
す平面図、第8図は本発明による弾性表面波素子の直流
抵抗不良率および共振抵抗増加率を示す図表、第7図は
従来の弾性表面波素子の一例を示す平面図、第8図は同
弾性表面波素子の断面図、第9図は弾性表面波素子をハ
ーメチックシールで封止した製品形態を示す斜視図、第
1O図は本発明外の弾性表面波素子の一例を示す断面図
、第11図は同弾性表面波素子の部分拡大断面図、第1
2図は同弾性表面波素子の90MHzにおける直流抵抗
不良率および共振抵抗増加率を示す図表、第13図は同
弾性表面波素子1の60OMHzにおける直流抵抗不良
率および共振抵抗増加率を示す図表である。 図中、1は圧電基板、2はすだれ状電極、3は反射器、
5は絶縁物、7.7゛はアルミナ部分である。 第1図 第3図 第5図 第6図 二酉Iヒシタフシ間 第7図 第8図 第10図
FIG. 1 is a sectional view showing an embodiment of a surface acoustic wave device according to the present invention, FIG. 2 is a partially enlarged sectional view of the same surface acoustic wave device,
FIG. 3 is a sectional view showing another embodiment of the surface acoustic wave device according to the present invention, FIG. 4 is a partially enlarged sectional view of the same surface acoustic wave device, and FIG. 5 is a test method for investigating the phenomenon of short circuit between electrodes. FIG. 8 is a diagram showing the direct current resistance failure rate and resonant resistance increase rate of the surface acoustic wave device according to the present invention. FIG. 7 is a plan view showing an example of a conventional surface acoustic wave device. is a sectional view of the same surface acoustic wave device, FIG. 9 is a perspective view showing a product form in which the surface acoustic wave device is sealed with a hermetic seal, and FIG. 1O is a sectional view showing an example of a surface acoustic wave device other than the present invention. , FIG. 11 is a partially enlarged cross-sectional view of the same surface acoustic wave element, the first
Figure 2 is a chart showing the direct current resistance failure rate and resonance resistance increase rate at 90 MHz of the same surface acoustic wave element, and Figure 13 is a chart showing the DC resistance failure rate and resonance resistance increase rate at 60 MHz of the same surface acoustic wave element 1. be. In the figure, 1 is a piezoelectric substrate, 2 is an interdigital electrode, 3 is a reflector,
5 is an insulator, and 7.7 is an alumina part. Fig. 1 Fig. 3 Fig. 5 Fig. 6 Between the two roosters and I. Fig. 7 Fig. 8 Fig. 10

Claims (3)

【特許請求の範囲】[Claims] (1)圧電基板上にすだれ状電極を形成した弾性表面波
素子において、前記すだれ状電極はAlもしくはAl合
金膜を陽極酸化法により分離形成してなり、かつ、前記
すだれ状電極部分に絶縁物が被覆されていることを特徴
とする弾性表面波素子。
(1) In a surface acoustic wave device in which interdigital electrodes are formed on a piezoelectric substrate, the interdigital electrodes are formed by separately forming an Al or Al alloy film by an anodizing method, and an insulator is provided in the interdigital electrode portions. A surface acoustic wave element characterized by being coated with.
(2)特許請求の範囲第1項において、前記絶縁物はS
iOx、TaOx、AlOx、SiNx、TaNxから
なる群より選ばれた一種または二種以上の複合体である
弾性表面波素子。
(2) In claim 1, the insulator is S
A surface acoustic wave element that is a composite of one or more selected from the group consisting of iOx, TaOx, AlOx, SiNx, and TaNx.
(3)特許請求の範囲第1項または第2項において、前
記絶縁物は膜厚が500〜3000Åである弾性表面波
素子。
(3) A surface acoustic wave device according to claim 1 or 2, wherein the insulator has a thickness of 500 to 3000 Å.
JP23900884A 1984-11-13 1984-11-13 Surface acoustic wave element Pending JPS61117913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23900884A JPS61117913A (en) 1984-11-13 1984-11-13 Surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23900884A JPS61117913A (en) 1984-11-13 1984-11-13 Surface acoustic wave element

Publications (1)

Publication Number Publication Date
JPS61117913A true JPS61117913A (en) 1986-06-05

Family

ID=17038519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23900884A Pending JPS61117913A (en) 1984-11-13 1984-11-13 Surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPS61117913A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003933A1 (en) * 2004-06-30 2006-01-12 Matsushita Electric Industrial Co., Ltd. Electronic part and manufacturing method thereof
WO2007099742A1 (en) * 2006-03-02 2007-09-07 Murata Manufacturing Co., Ltd. Acoustic wave device and method for fabricating the same
US7642694B2 (en) 2006-09-21 2010-01-05 Murata Manufacturing Co., Ltd. Boundary acoustic wave device
JP2016096378A (en) * 2014-11-12 2016-05-26 株式会社デンソー Surface acoustic wave element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132188A (en) * 1978-04-06 1979-10-13 Nippon Telegr & Teleph Corp <Ntt> Elastic surface wave device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132188A (en) * 1978-04-06 1979-10-13 Nippon Telegr & Teleph Corp <Ntt> Elastic surface wave device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201168A (en) * 2004-06-30 2009-09-03 Panasonic Corp Electronic part, and manufacturing method thereof
EP1768255A1 (en) * 2004-06-30 2007-03-28 Matsushita Electric Industrial Co., Ltd. Electronic part and manufacturing method thereof
EP1768255A4 (en) * 2004-06-30 2012-09-12 Panasonic Corp Electronic part and manufacturing method thereof
JP4717131B2 (en) * 2004-06-30 2011-07-06 パナソニック株式会社 Electronic component and manufacturing method thereof
WO2006003933A1 (en) * 2004-06-30 2006-01-12 Matsushita Electric Industrial Co., Ltd. Electronic part and manufacturing method thereof
US7589606B2 (en) 2004-06-30 2009-09-15 Panasonic Corporation Electronic part utilizing a protective film on a comb-shaped electrode
US20100219911A1 (en) * 2006-03-02 2010-09-02 Murata Manufacturing Co., Ltd. Acoustic wave device and method for fabricating the same
JPWO2007099742A1 (en) * 2006-03-02 2009-07-16 株式会社村田製作所 Elastic wave device and manufacturing method thereof
EP1990915A4 (en) * 2006-03-02 2010-03-31 Murata Manufacturing Co Acoustic wave device and method for fabricating the same
US7701113B2 (en) 2006-03-02 2010-04-20 Murata Manufacturing Co., Ltd. Acoustic wave device and method for fabricating the same
KR100954688B1 (en) * 2006-03-02 2010-04-27 가부시키가이샤 무라타 세이사쿠쇼 Acoustic wave device and method for fabricating the same
CN101395796A (en) * 2006-03-02 2009-03-25 株式会社村田制作所 Acoustic wave device and method for fabricating the same
EP1990915A1 (en) * 2006-03-02 2008-11-12 Murata Manufacturing Co. Ltd. Acoustic wave device and method for fabricating the same
WO2007099742A1 (en) * 2006-03-02 2007-09-07 Murata Manufacturing Co., Ltd. Acoustic wave device and method for fabricating the same
US8810104B2 (en) * 2006-03-02 2014-08-19 Murata Manufacturing Co., Ltd. Acoustic wave device and method for fabricating the same
US7642694B2 (en) 2006-09-21 2010-01-05 Murata Manufacturing Co., Ltd. Boundary acoustic wave device
JP2016096378A (en) * 2014-11-12 2016-05-26 株式会社デンソー Surface acoustic wave element

Similar Documents

Publication Publication Date Title
US6516503B1 (en) Method of making surface acoustic wave device
US6271619B1 (en) Piezoelectric thin film device
US6661162B1 (en) Piezoelectric resonator and method of producing the same
JPS6048927B2 (en) Crystal resonator and its manufacturing method
JPS61136312A (en) Surface acoustic wave element
WO1991019352A1 (en) Ultra thin quartz crystal filter element of multiple mode
JPH07105688B2 (en) Piezoelectric vibration parts
JP2000244030A (en) Piezoelectric thin film element
JPS61117913A (en) Surface acoustic wave element
US4617487A (en) Piezoelectric elastic surface wave element with film of tantalum pentoxide or silicon nitride
US20010023084A1 (en) Method of manufacturing a piezoelectric filter with an acoustic resonator situated on an acoustic reflector layer formed by a carrier substrate
US4496435A (en) Method of manufacturing thin film circuits
JPH1188101A (en) Surface acoustic wave element and manufacture of the surface acoustic wave element
JP2001144581A (en) Piezoelectric vibrator and its manufacturing method
JPH11284480A (en) Piezoelectric thin film resonator
JPH0222564B2 (en)
JPS58137318A (en) Thin-film piezoelectric oscillator
JPS60244108A (en) Surface acoustic wave element
JPS6177412A (en) Surface acoustic wave element
JPH07226642A (en) Surface acoustic wave element
JPH11145758A (en) Piezoelectric element and its production
JPS61199315A (en) Surface acoustic wave element
JPS6162221A (en) Surface acoustic wave resonator
US7003875B2 (en) Method for manufacturing piezo-resonator
KR940009397B1 (en) Ultra thin quartz crystal filter element of multiple mode