JPS61117116A - Purification of rare earth compound - Google Patents

Purification of rare earth compound

Info

Publication number
JPS61117116A
JPS61117116A JP59235044A JP23504484A JPS61117116A JP S61117116 A JPS61117116 A JP S61117116A JP 59235044 A JP59235044 A JP 59235044A JP 23504484 A JP23504484 A JP 23504484A JP S61117116 A JPS61117116 A JP S61117116A
Authority
JP
Japan
Prior art keywords
rare earth
sulfate
compd
aqueous solution
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59235044A
Other languages
Japanese (ja)
Inventor
Masahiro Matsui
正宏 松井
Yasuhiko Iriyama
恭彦 入山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59235044A priority Critical patent/JPS61117116A/en
Publication of JPS61117116A publication Critical patent/JPS61117116A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/282Sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain a rare earth compd. having low content of Pb by adding alkaline earth metal ions to aq. soln. of a rear earth compd. in the presence of H2SO4 and removing separated precipitate of sulfate of the rear earth element. CONSTITUTION:H2SO4 and a water-soluble sulfate such as ammonium sulfate are added to an aq. soln. of a rear earth compd. cong. a Pb compd. as impurity (the concn. of the rare earth compd. is preferred to be ca. 0.01-1.5mol/l) and dissolved. Alkaline earth ions are added to the above-described aq. soln. cong. SO4 ion, and a sulfate of the alkaline earth element is precipitated. The coprecipitate derived from the Pb compd. in the above-described aq. soln. and above-described sulfate is separated and removed. By this method, a rare earth compd. contg. extremely small amt. of Pb compd. is obtd. easily without generating harmful gas.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、希土類化合物の精製方法に関するものである
。詳しくは、鉛化合物の含有量が極めて低い希土類化合
物を得るための方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for purifying rare earth compounds. Specifically, the present invention relates to a method for obtaining a rare earth compound having an extremely low content of lead compounds.

従来の技術 希土類元素は、エレクトロニクス関連をはじめとして広
い分野に用いられているが、エレクトロニクス素材の場
合、特に不純物を含まないことが要求される。
BACKGROUND OF THE INVENTION Rare earth elements are used in a wide range of fields including electronics, but in the case of electronics materials, they are particularly required to be free of impurities.

希土類化合物の分離・精製は、通常、イオン交換法や溶
媒抽出法などによって行なわれるが、例えば、EOTA
やD’ T P A等の錯形成剤を用いたイツトリウム
のイオン交換分離においては、鉛がイツトリウムと類似
の溶出挙動をとり、分離が困難である為、鉛含有量の少
ない希土類化合物を得ることは困難であった。
Separation and purification of rare earth compounds is usually carried out by ion exchange methods, solvent extraction methods, etc.
In ion-exchange separation of yttrium using a complex forming agent such as or D'TPA, lead has an elution behavior similar to that of yttrium, making separation difficult. was difficult.

水溶液中の鉛化合物を除去する方法としては、硫化水素
や硫化ナトリウム等を用い、水溶液中の鉛から硫化鉛を
生成させて除去する方法が知られているが、この方法に
よるときは、水溶液中の鉛を1111g/Jl程度以下
とすることはできない。この方法を希土類化合物の水溶
液に適用しても、通常希土類化合物は0.03〜1.O
mol/ 12程度の濃度の水溶液として取扱われるこ
とが多く、鉛の量が水溶液中で1mQ/ Aであっても
、この水溶液から1与られる希土類元素中には、鉛が濃
縮されて9ppm程度以上含まれることになり、前記用
途の為の希土類元素としては満足しうるちのではない。
A known method for removing lead compounds from an aqueous solution is to generate lead sulfide from the lead in the aqueous solution using hydrogen sulfide, sodium sulfide, etc.; It is not possible to reduce the lead content to less than about 1111 g/Jl. Even when this method is applied to an aqueous solution of a rare earth compound, the rare earth compound is usually 0.03 to 1. O
It is often handled as an aqueous solution with a concentration of about mol/12, and even if the amount of lead in the aqueous solution is 1 mQ/A, the rare earth element given from this aqueous solution will be concentrated to about 9 ppm or more. Therefore, it is not sufficient as a rare earth element for the above-mentioned purpose.

さらに、この方法では、希土類化合物の水溶液が酸性で
ある場合、硫化水素が発生する為、安全性及び操作性と
いう点で問題がある上に、水溶液中に残存する82″に
よる装置の腐食の恐れもある。
Furthermore, in this method, if the aqueous solution of the rare earth compound is acidic, hydrogen sulfide is generated, which poses problems in terms of safety and operability, and there is a risk of corrosion of the equipment due to 82" remaining in the aqueous solution. There is also.

発明が解決しようとする問題点 本発明は鉛の除去率が高く、しかも有害ガスの発生、装
置の腐食をともなわない安全で操作が容易な、希土類化
合物の精製法を提供しようとするものである。
Problems to be Solved by the Invention The present invention aims to provide a method for purifying rare earth compounds that has a high lead removal rate, is safe and easy to operate, and does not generate harmful gas or corrode equipment. .

問題、こを解決するための手段 本発明者等は、鉛化合物の含有量の少ない希土類化合物
を製造すべく、鋭意研究を重ねた結果、水溶液中の鉛が
、アルカリ土類元素の@酸塩と極めて共沈しやすいこと
を見出し、本発明に至った。
Problem, Means for Solving the Problem The inventors of the present invention have conducted extensive research in order to produce rare earth compounds with a low content of lead compounds, and have found that the lead in the aqueous solution is The present invention was based on the discovery that co-precipitation is extremely likely to occur.

本発明の構成は次の通りである。すなわち、不純物とし
て鉛化合物を含有する希土類化合物の水溶液に、@酸イ
オンの存在下、アルカリ土類元素イオンを添加し、アル
カリ土類元素の硫酸塩を沈澱させ、生成した沈澱を分離
除去する希土類化合物の″l製方法である。
The configuration of the present invention is as follows. In other words, alkaline earth element ions are added to an aqueous solution of a rare earth compound containing a lead compound as an impurity in the presence of @ acid ions, sulfate of the alkaline earth element is precipitated, and the resulting precipitate is separated and removed. This is a method for producing a compound.

以下に本発明の詳細を記す。The details of the present invention will be described below.

本発明でいう希土類化合物とは、原子番号が57〜71
の元素及びイツトリウム、スカンジウムを包括する元素
群の化合物を指すものである。
The rare earth compound referred to in the present invention has an atomic number of 57 to 71.
It refers to compounds of the element group including the elements yttrium and scandium.

本発明でいう不純物として鉛化合物を含有する希土類化
合物の水溶液(以下含鉛希土水溶液と略称する)は、1
種類以上の希土類元素の硝酸塩、塩化物、硫酸塩等の酸
の塩の水溶液であり、不純物として鉛化合物を含有する
ものである。希土類化合物の濃度は、0.01〜1.5
II101/J2程度、好ましくは0.03〜1.0m
01/λから選ぶのがよい。
In the present invention, an aqueous solution of a rare earth compound containing a lead compound as an impurity (hereinafter abbreviated as a lead-containing rare earth aqueous solution) is 1
It is an aqueous solution of acid salts such as nitrates, chlorides, and sulfates of rare earth elements, and contains lead compounds as impurities. The concentration of rare earth compound is 0.01 to 1.5
About II101/J2, preferably 0.03 to 1.0m
It is better to choose from 01/λ.

本発明において、含鉛希土水溶液中に存在する硫酸イオ
ンは、硫酸及び硫酸アンモニウム、硫酸ナトリウム、硫
酸カリウム、硫酸銅、硫酸亜鉛等の水溶性の硫酸塩を該
溶液に添加し溶解することによって得られる。又、該溶
液が、希土類元素の@酸塩の水溶液である場合(希土類
酸化物等を硫酸に溶解する場合も含む)には、改めて硫
酸イオンの原料を添加する必要はない。
In the present invention, sulfate ions present in a lead-containing rare earth aqueous solution can be obtained by adding and dissolving sulfuric acid and water-soluble sulfates such as ammonium sulfate, sodium sulfate, potassium sulfate, copper sulfate, and zinc sulfate to the solution. It will be done. Further, when the solution is an aqueous solution of an acid salt of a rare earth element (including when a rare earth oxide or the like is dissolved in sulfuric acid), there is no need to add a raw material for sulfate ions.

又、本発明において添加されるアルカリ土類元素イオン
とは、周期律表1rA族に属する元素のイオンであり、
これらの元素の硝酸塩、塩化物等水溶性の塩を水に溶解
することにより生成される。
Further, the alkaline earth element ions added in the present invention are ions of elements belonging to group 1rA of the periodic table,
It is produced by dissolving water-soluble salts of these elements, such as nitrates and chlorides, in water.

アルカリ土類元素のうち、@酸塩の溶解度の小さいこと
や安全性等の点から、バリウム・ストロンチウムが本発
明を実施する上で特に適している。
Among the alkaline earth elements, barium and strontium are particularly suitable for carrying out the present invention because of their low solubility in @acid salts and their safety.

アルカリ土類元素イオンの添加mは、元素の種類によっ
て異なり、各アルカリ土類元素硫酸塩の溶解度以上を加
えることが最低限必要である。
The addition m of alkaline earth element ions varies depending on the type of element, and it is minimum necessary to add an amount equal to or higher than the solubility of each alkaline earth element sulfate.

、かつ、その添加量は、含鉛希土水溶液中の鉛に対し、
等モル以上、好ましくは3倍゛モル以上であるのがよい
。逆に、添加量が含鉛希土水溶液中の鉛に対し、あまり
に多くても特に支障はないが、多く加えたことによる特
段の効果が期待できるものではなく、最大限でも鉛の5
00倍モル或いは各アルカリ土類元素硫酸塩の溶解度の
20倍のうちの大きな方の量程度が好ましい。
, and the amount added is based on the lead in the lead-containing rare earth aqueous solution.
The amount is preferably equal to or more than 3 times the mole, preferably 3 times the mole or more. On the other hand, there is no particular problem if the amount added is too large for the lead in the lead-containing rare earth aqueous solution, but no particular effect can be expected from adding too much, and at most 5
The amount is preferably about 00 times the molar amount or 20 times the solubility of each alkaline earth element sulfate, whichever is greater.

又、アルカリ土類元素イオンの添加濃度には特に制限は
ないが、あまり濃度が低いと、添加後の液量が多くなり
、アルカリ土類元素硫酸塩の沈澱析出量が少なくなるの
で、添加濃度は101111001/ A以上であるこ
とが好ましい。
In addition, there is no particular limit to the concentration of alkaline earth element ions added, but if the concentration is too low, the amount of liquid after addition will increase and the amount of alkaline earth element sulfate precipitated will decrease. is preferably 101111001/A or more.

本発明において、含鉛希土水溶液中に存在する硫酸イオ
ンの量は、アルカリ土類元素イオンの添加量に対し、等
モル以上、好ましくは2倍モル以上とするのがよい。あ
まりに少ないと、アルカリ土類元素硫酸塩の沈澱生成量
が少なくて、本発明の効果が期待できなくなる上に、希
土類化合物水溶液中に、アルカリ土類元素イオンが不純
物として多量に残存することになる。
In the present invention, the amount of sulfate ions present in the lead-containing rare earth aqueous solution is preferably at least equimolar, preferably at least twice the molar amount of the alkaline earth element ions added. If it is too small, the amount of alkaline earth element sulfate precipitated will be small, and the effect of the present invention cannot be expected, and a large amount of alkaline earth element ions will remain as impurities in the rare earth compound aqueous solution. .

本発明を実施するにあたって、含鉛希土水溶液のl)H
は0〜7、好ましくは1〜6であるのがよい。pHがO
より低いと本発明の効果が小さく、実用的でなくなる。
In carrying out the present invention, l) H of a lead-containing rare earth aqueous solution
is preferably 0 to 7, preferably 1 to 6. pH is O
If it is lower, the effect of the present invention will be small and it will be impractical.

逆にpHが7より高いと、希土類化合物が水酸化物とな
って析出するようになり、希土類化合物の損失が大きく
なるので好まくない。
On the other hand, if the pH is higher than 7, the rare earth compound becomes a hydroxide and precipitates, which is not preferable because the loss of the rare earth compound increases.

含鉛希土水溶液のpHを調整するには、アンモニア、水
酸化ナトリウム、水酸化カリウム等を使用することがで
きる。
To adjust the pH of the lead-containing rare earth aqueous solution, ammonia, sodium hydroxide, potassium hydroxide, etc. can be used.

又、本発明を実施するにあたって、含鉛希上水溶液の温
度は常温でよく、加熱しても本発明の効果は大きくなら
ない。
Further, in carrying out the present invention, the temperature of the lead-containing dilute aqueous solution may be at room temperature, and the effects of the present invention will not be increased even if it is heated.

又、反応時間は、アルカリ土類元素イオンの種類や添加
mにより変わるが、目安としては、アルカリ土類元素硫
酸塩の沈澱が析出しはじめてから、15分乃至6時間を
必要とする。
The reaction time varies depending on the type of alkaline earth element ion and the amount of addition m, but as a rough guide, 15 minutes to 6 hours are required from the time the alkaline earth element sulfate begins to precipitate.

かくしてアルカリ土類元素硫酸塩の沈澱を生成させた棲
、濾過等の手段によって該沈澱を分離除去することによ
って、鉛化合物の含有■が極めて少ない希土類化合物の
水溶液(Pb /RE O<21)l)11)が得られ
る。
In this way, a precipitate of alkaline earth element sulfate is formed, and by separating and removing the precipitate by means such as filtration, an aqueous solution of a rare earth compound (Pb /RE O<21) containing extremely low lead compound content is obtained. )11) is obtained.

本発明は、組積土類化合物をイオン交換や抽出等により
精製する前に適用することもできるし、或いは、精製後
の希土類化合物の水溶液から希土類化合物を沈澱回収す
る直前に行なってもよいが、製品希土類化合物中へのア
ルカリ土類元素の混入を嫌う場合には、イオン交換や抽
出等の操作の前に適用することが好ましい。
The present invention can be applied before purifying masonry earth compounds by ion exchange, extraction, etc., or immediately before precipitating and recovering rare earth compounds from an aqueous solution of rare earth compounds after purification. If mixing of alkaline earth elements into the product rare earth compound is to be avoided, it is preferable to apply it before operations such as ion exchange and extraction.

LL 以下に実施例を述べるが、本発明はその要旨を越えない
限り、以下の実施例に限定されるものではない。
LL Examples will be described below, but the present invention is not limited to the following examples unless the gist of the invention is exceeded.

実施例1 イツトリウム        60mo 1%ジスプロ
シウム       20m0I%テルビウム    
     20mo 1%上記組成でかつ、RE203
  (RE :Y+Dy +Tbを示す)当たり140
0pHの鉛を含有する硫酸積土RE2  (SO4)s
の0.07not/J2水溶液(+)H2,5) 25
0+nJ!に、攪拌上常温にて硫酸バリウムの0.1m
ol/λ水溶液15mJ、を添加したところ、白色沈澱
の生成が認められた。30分後、0.8μミリポアフィ
ルタ−を用いて、沈澱を濾別した。得られた硫酸希上水
溶液中の鉛含有■は、RE203当たり 1.4ppm
であった。尚、湖上水溶液中の鉛含有量の測定は、セイ
コー電子工業製フレームレス原子吸光装置5AS−70
5Vにて行なった(波長282.3nI11)。
Example 1 Yttrium 60mo 1% Dysprosium 20m0I% Terbium
20mo 1% of the above composition and RE203
140 per (representing RE: Y+Dy +Tb)
Sulfuric acid pile RE2 (SO4)s containing 0 pH lead
0.07not/J2 aqueous solution (+)H2,5) 25
0+nJ! Then, add 0.1 m of barium sulfate at room temperature while stirring.
When 15 mJ of ol/λ aqueous solution was added, the formation of a white precipitate was observed. After 30 minutes, the precipitate was filtered off using a 0.8μ Millipore filter. The lead content (■) in the obtained dilute sulfuric acid aqueous solution was 1.4 ppm per RE203.
Met. The lead content in the lake water solution was measured using a flameless atomic absorption spectrometer 5AS-70 manufactured by Seiko Electronics Co., Ltd.
The test was carried out at 5V (wavelength: 282.3nI11).

実施例2 Y203当たり11000ppの鉛を含有する硝酸イツ
トリウムの0.4mol/、g水溶液250m1に、硫
酸アンモニウム3.3gを添加溶解した後(この時、溶
液のpHは2.4> 、攪拌上常温にて硝酸バリウムの
0.1mol/β水溶液25m1を添加したところ、白
色沈澱の生成が認められた。
Example 2 After adding and dissolving 3.3 g of ammonium sulfate to 250 ml of a 0.4 mol/g aqueous solution of yttrium nitrate containing 11,000 pp of lead per Y203 (at this time, the pH of the solution was >2.4, and stirring at room temperature) When 25 ml of a 0.1 mol/β aqueous solution of barium nitrate was added, the formation of a white precipitate was observed.

1時間後、0.8μミリポアフィルタ−を用いて沈澱を
濾別した。得ら°れた硝酸イツトリウム中の鉛含有量は
、Y2O3当たり1.lppmであった。尚、鉛含有量
の測定は実施例1と同様にして行なった。
After 1 hour, the precipitate was filtered off using a 0.8μ Millipore filter. The lead content in the obtained yttrium nitrate was 1.0% per Y2O3. It was lppm. The lead content was measured in the same manner as in Example 1.

実施例3 イツトリウム        20mo 1%ガドリニ
ウム        40mo 1%サマリウム   
      40mo 1%上記組成で、かつRE20
3(REはY+Gd +3mを示す)当たり1200p
pmの鉛を含有し、希硫酸により pl−11,6とし
た硫酸積土RE2  (804) 3 (D O105
mol/12水溶液250n+lに、攪拌上常温におい
て硝酸ストロンチウム0.5mol/λ水溶液15m1
を添加したところ、白色沈澱の生成が認められた。2時
間後、0.8μミリポアフィルタ−を用いて、沈澱を濾
別した。得られたlIi!i酸希土水酸液土水溶液中量
は、RE203当たり0.6ppm r アッタ。
Example 3 Yttrium 20mo 1% Gadolinium 40mo 1% Samarium
40mo 1% of the above composition and RE20
1200p per 3 (RE indicates Y+Gd +3m)
Sulfuric acid pile RE2 (804) 3 (D O105
Add strontium nitrate 0.5 mol/λ aqueous solution 15 ml to 250 n+l of mol/12 aqueous solution at room temperature while stirring.
was added, the formation of a white precipitate was observed. After 2 hours, the precipitate was filtered off using a 0.8μ Millipore filter. Obtained lIi! The amount of i-acid rare earth hydroxide liquid earth aqueous solution is 0.6 ppm per RE203.

尚、鉛含有量の測定は、実施例1と同様にして行なった
The lead content was measured in the same manner as in Example 1.

発明の詳細 な説明したように、本発明によれば、従来、沈澱剤とし
て硫化水素や硫化ナトリウム等を使用していたために、
希土類化合物中の鉛化合物の含有量が十分に低くならな
かったり、硫化水素の発生による安全性、操作性の点で
の問題や、液中に残存するS2−による装置の腐食とい
う問題のあった硫化鉛沈澱法に代わり、極めて容易に、
かつ、有害ガスの発生もなく、鉛化合物の含有量が十分
に低い希土類化合物を得られるようになり、本発明の工
業的価値は極めて大きいものである。
As described in detail, according to the present invention, since hydrogen sulfide, sodium sulfide, etc. were conventionally used as a precipitant,
There were problems in terms of safety and operability due to the content of lead compounds in rare earth compounds not being sufficiently low, generation of hydrogen sulfide, and corrosion of equipment due to S2- remaining in the liquid. An extremely easy alternative to the lead sulfide precipitation method.
Moreover, it becomes possible to obtain a rare earth compound with a sufficiently low content of lead compounds without generating harmful gases, and the industrial value of the present invention is extremely large.

Claims (1)

【特許請求の範囲】 不純物として鉛化合物を含有する希土類化 合物の水溶液に、硫酸イオンの存在下、アルカリ土類元
素イオンを添加し、アルカリ土類元素の硫酸塩を沈澱さ
せ、生成した沈澱を分離除去することを特徴とする希土
類化合物の精製方法。
[Scope of Claims] Alkaline earth element ions are added to an aqueous solution of a rare earth compound containing a lead compound as an impurity in the presence of sulfate ions, the sulfate of the alkaline earth element is precipitated, and the resulting precipitate is separated. A method for purifying rare earth compounds, characterized by removing them.
JP59235044A 1984-11-09 1984-11-09 Purification of rare earth compound Pending JPS61117116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59235044A JPS61117116A (en) 1984-11-09 1984-11-09 Purification of rare earth compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59235044A JPS61117116A (en) 1984-11-09 1984-11-09 Purification of rare earth compound

Publications (1)

Publication Number Publication Date
JPS61117116A true JPS61117116A (en) 1986-06-04

Family

ID=16980249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59235044A Pending JPS61117116A (en) 1984-11-09 1984-11-09 Purification of rare earth compound

Country Status (1)

Country Link
JP (1) JPS61117116A (en)

Similar Documents

Publication Publication Date Title
CN102398910B (en) Method for removing cationic impurities of calcium, magnesium, iron, sodium and potassium from cell grade lithium carbonate
IE913935A1 (en) Process for the manufacture of ammonium rare-earth double¹oxalates and their uses for the manufacture of rare-earth¹oxides
AU2017319464B2 (en) Method for producing solutions containing nickel or cobalt
CN106244828A (en) A kind of impurity-removing method containing vanadium leachate
CN107190156B (en) A method of the Extraction of rare earth from ion adsorption type rare earth ore
JPH07144915A (en) Production of cerium carbonate and cerium oxide
CN108977675A (en) A kind of method that anti-charging precipitating-baking inphases prepare low sulfur content rare earth oxide
JP2005510625A (en) Integrated ammoniacal solvent extraction and hydrogen reduction for nickel
JP3788185B2 (en) Method for recovering cerium from a solution containing chromium and cerium
CN115094250B (en) Method for recovering hafnium and other metals from hafnium-containing waste residues
AU2017408055B2 (en) Method for removing fluoride from a zinc-containing solution or suspension, defluoridated zinc sulfate solution and use thereof, and method for producing zinc and hydrogen fluoride or hydrofluoric acid
WO2001021846A1 (en) Recovery of metallic lead and salt value from lead ores or from spent lead-acid storage batteries with acetic acid lixiviant
JPH06329414A (en) Production of rare earth fluoride
JPS61117116A (en) Purification of rare earth compound
US20230323509A1 (en) Weak Acid Lixiviants for Recovery of Alkaline Earth Metals
KR20190109082A (en) Recovery method rare earth elements from waste RE:YAG crystal
JPH0340094B2 (en)
CN113921932A (en) Precursor solution, preparation method thereof, positive electrode material and lithium ion battery
JPH11293357A (en) Selective recovery of cobalt compound
JP2004182533A (en) Method of recovering cobalt
JP4645826B2 (en) Cerium ion-containing solution and corrosion inhibitor
US3653813A (en) Process for preparing rare earth normal tungstates
US3486843A (en) Process for separating europium from other rare earths
JPH0623048B2 (en) Method for recovering tungsten from ammoniacal tungsten solution
JPH0375216A (en) Purification of alkali hydroxide