JPS61117049A - Synchronous feed - Google Patents

Synchronous feed

Info

Publication number
JPS61117049A
JPS61117049A JP23762184A JP23762184A JPS61117049A JP S61117049 A JPS61117049 A JP S61117049A JP 23762184 A JP23762184 A JP 23762184A JP 23762184 A JP23762184 A JP 23762184A JP S61117049 A JPS61117049 A JP S61117049A
Authority
JP
Japan
Prior art keywords
main shaft
spindle
pulses
constant
rotation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23762184A
Other languages
Japanese (ja)
Inventor
Nobuo Iwata
岩田 暘生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP23762184A priority Critical patent/JPS61117049A/en
Publication of JPS61117049A publication Critical patent/JPS61117049A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4166Controlling feed or in-feed

Abstract

PURPOSE:To obtain the feed speed of a tool feeding apparatus always synchronized with the number of revolution of a main shaft by continuously detecting the constant revolution angle of the main shaft by a revolution angle detector. CONSTITUTION:The pulse signals T outputted at each constant revolution angle of a main shaft and the pulses F outputted from a pulse oscillation apparatus 37 are input into a count apparatus 39 by a photosensor 13 installed onto a main shaft. The number N of pulses F contained in the time T necessary for the constant revolution angle of the main shaft is counted. Said number N is obtained for each constant revolution angle of the main shaft, and the ratio Nm-1/Nm in comparison with the preceding value is calculated in a main-shaft revolution-speed reduction-rate calculating apparatus 41, and the frequency of the pulses for driving a tool feeding apparatus 35 is reduced in proportion to the ratio Nm-1/Nm in a tool feeding speed controller 43. Thus, the tool feeding apparatus is transferred in synchronization with the revolution of the main shaft.

Description

【発明の詳細な説明】 a、産業上の利用分野 この発明は、精密加工機械に係り、更に詳細には、動力
伝達機構を主軸から切放し、主軸に取付けられたフライ
ホイールの回転エネルギにより、加工を行なう精密加工
機械の送り装置の同期送り方法に関するものである。
Detailed Description of the Invention: a. Field of Industrial Application This invention relates to precision processing machines, and more specifically, the present invention relates to precision processing machines, and more specifically, the power transmission mechanism is separated from the main shaft, and the rotational energy of a flywheel attached to the main shaft is used to perform processing. The present invention relates to a synchronous feeding method for a feeding device of a precision processing machine.

b、従来の技術 従来、数値制御工作機械等において、主軸に同期したテ
ーブル等の送りを得るためには、高分解能を有する完全
密閉形のロータリエンコーダ等をシンクロベルト又は歯
車により、主軸に連動し、これにより得られる高速パル
スを利用し、主軸1回転当りの送りを得るのが一般的な
方法である。
b. Conventional technology Conventionally, in numerically controlled machine tools, etc., in order to obtain table feed synchronized with the spindle, a fully enclosed rotary encoder with high resolution is linked to the spindle using a synchronized belt or gears. A common method is to utilize the resulting high-speed pulses to obtain feed per rotation of the spindle.

C1発明が解決しようとする問題点 フライホイール効果を利用した精密加工機械においては
、機械の振動を極力少くするために振動発生源であるベ
ルト、歯車、電動機等を停止した状態で、切削加工をす
ることを特徴としているので、シンクロベルト、歯車等
を介して主軸と連動する前記の高分解能密閉形ロータリ
エンコーダを使用すると、ベルト、歯車等が振動発生源
となり、その特徴を充分に生かすことができない。また
、シンクロベルト、歯車等を介せず主軸に直結できる高
分解能密閉形のロータリエンコーダは未だ適当なものが
見当らない。この発明は、低分解能主軸直結形の回転角
検出装置を用いて、同期送りを可能にする方法を提供す
ることを目的とするものである。
C1 Problem to be solved by the invention In precision machining machines that utilize the flywheel effect, in order to minimize machine vibration, cutting is performed with the belt, gear, electric motor, etc. that are the sources of vibration stopped. Therefore, when using the above-mentioned high-resolution sealed rotary encoder that is linked to the main shaft via a synchronized belt, gears, etc., the belt, gears, etc. become a source of vibration, and it is difficult to take full advantage of its characteristics. Can not. Furthermore, a suitable high-resolution sealed rotary encoder that can be directly connected to the main shaft without using a synchronized belt or gears has yet to be found. An object of the present invention is to provide a method that enables synchronous feeding using a low-resolution spindle-directly connected rotation angle detection device.

d1問題を解決するための手段 前記目的を達成するために、この発明は、回転角検出装
置により主軸の一定回転角を連続的に検出し、一定周波
数のパルス発振装置と計数装置により、前記一定回転角
に要する時間を前記パルス発振装置のパルス数によって
計数し、これに基づいて、前記一定回転角に対する主軸
の回転数の減少割合を演算し、工具送り装置の送り速度
を前記主軸回転数の減少割合に比例して制御するもので
ある。
Means for Solving the d1 Problem In order to achieve the above object, the present invention continuously detects a constant rotation angle of the main shaft using a rotation angle detection device, and detects the constant rotation angle using a constant frequency pulse oscillation device and a counting device. The time required for the rotation angle is counted by the number of pulses of the pulse oscillator, and based on this, the reduction rate of the spindle rotation speed with respect to the constant rotation angle is calculated, and the feed rate of the tool feeder is adjusted to the spindle rotation speed. It is controlled in proportion to the rate of decrease.

8作用 前記のように構成されているので、主軸の一定回転角に
要する時間がパルスの数によって正確に求められ、これ
に基づいて、一定回転角毎の主軸回転数の減少割合が求
められ、この減少割合に比例して、工具送り装置の送り
速度を減少させるので、常に主軸の回転数に同期した送
り速度を得ることができる。
8 Effects Since the structure is as described above, the time required for the spindle to rotate at a constant rotation angle can be accurately determined by the number of pulses, and based on this, the rate of decrease in the spindle rotation speed for each constant rotation angle can be determined. Since the feed rate of the tool feeding device is decreased in proportion to this rate of decrease, it is possible to always obtain a feed rate that is synchronized with the rotational speed of the main spindle.

r、実施例 次に、この発明の実施例について図面によって説明する
。第1図は、この発明を実施した精密工作機械1の全体
図である。先づ、この機械の構造及び機能について説明
する。機台3に、主軸5が軸承7によって回転自在に支
承され、この主軸5の一端には素材W又は工具を把持す
るコレットチャック9等が取り付けてあり、他端には、
フライホイール11が取り付けである。また、主軸の中
央部にはこの発明の主軸の一定回転角を検出するフォト
センサ13が設けである。機台3に支承されたブラケッ
ト15には、回転軸17が回転自在に支承されており、
この回転軸17に取り付けられたプーリ19は、機台3
に装着された駆動モータ21に取り付けられたプーリ2
3と、ベルト25によって連結されている。
r.Example Next, an example of the present invention will be described with reference to the drawings. FIG. 1 is an overall view of a precision machine tool 1 embodying the present invention. First, the structure and function of this machine will be explained. A main shaft 5 is rotatably supported on the machine base 3 by a bearing 7, and a collet chuck 9 for gripping a material W or a tool is attached to one end of the main shaft 5, and a collet chuck 9 or the like for gripping a material W or a tool is attached to the other end.
The flywheel 11 is attached. Further, a photosensor 13 for detecting a constant rotation angle of the main shaft according to the present invention is provided at the center of the main shaft. A rotating shaft 17 is rotatably supported on a bracket 15 supported on the machine base 3.
The pulley 19 attached to this rotating shaft 17 is connected to the machine base 3.
Pulley 2 attached to drive motor 21 attached to
3 and is connected by a belt 25.

前記の回転軸17と主軸5が対向した位置に、主軸5へ
回転を伝達又は遮断自在なりラッチ装置   ′127
が取り付けである。
A latch device is provided at a position where the rotating shaft 17 and the main shaft 5 face each other, and is capable of transmitting or blocking rotation to the main shaft 5 '127
is the installation.

機台3の上面には、ガイド29に沿って移動自在なスラ
イド31が設けてあり、このスライド31には、複数の
工具又は素材を支持するホルダ33が取り付けであるa
、jffffラスライド31具送り装置35によって駆
動される。
A slide 31 that is movable along the guide 29 is provided on the top surface of the machine base 3, and a holder 33 that supports a plurality of tools or materials is attached to this slide 31.
, jffffraslide 31 is driven by a tool feeding device 35.

この機械は、前記のように構成されているので、クラッ
チ装置27を入れた状態でモータ21を駆動し、フライ
ホイール11に充分な回転エネルギを蓄えた後、クラッ
チ装置27を切り、モータ21を停止ずれば、クラッチ
装置より左側部分は停止し、振動が極めて少ない状態と
なり、精密加工を行なうことができるものである。
Since this machine is configured as described above, the motor 21 is driven with the clutch device 27 engaged, and after storing sufficient rotational energy in the flywheel 11, the clutch device 27 is disengaged and the motor 21 is driven. If the clutch device is stopped, the portion to the left of the clutch device will stop, creating a state where vibrations are extremely low and precision machining can be performed.

この発明は、このような機械において、主軸の回転と同
期した工具送り速度を得るための方法を提供するもので
、例えば主軸に設けたフォトセンサ13(回転角検出装
置)等により、主軸の回転状態を検出し、主軸と同期し
た工具送り速度を得るものである。第2図にこの方法の
一例をブロック図で示しである。即ち、主軸に設けられ
たフォトセンサ13により、主軸の一定回転角毎に出力
されるパルス信号Tと、パルス発振装置37により出力
される前記パルスより遥かに高い一定周波数のパルスF
を計数装置39に入力し、主軸の一定回転角に要する時
開下に含まれるパルスFの数Nを計数する。Nは主軸の
回転数に逆比例するものである。
The present invention provides a method for obtaining a tool feed rate that is synchronized with the rotation of the spindle in such a machine. It detects the condition and obtains a tool feed rate that is synchronized with the spindle. An example of this method is shown in block diagram form in FIG. That is, the photo sensor 13 provided on the main shaft outputs a pulse signal T at every fixed rotation angle of the main shaft, and the pulse signal F has a constant frequency much higher than the pulse output from the pulse oscillator 37.
is input into the counting device 39, and the number N of pulses F included in the time required for a constant rotation angle of the main shaft is counted. N is inversely proportional to the rotation speed of the main shaft.

このNは主軸の一定回転角毎に求められ、主軸回転数減
少割合演算装@41においで直前のものとの比r’Ja
−+/Nrnが演算され、その出力は、工具送り速度制
御装置43において、例えばステップモータ等からなる
工具送り装置35を駆動するパルスの周波数を前記の比
Nm−+/N…に比例して減少させる。このようにして
、工具送り装置は、主軸の回転に同期して送られる。工
具送り装置がDCモータ等からなる場合には、モータの
印加電圧をNm−+/Nmに比例して減少させればよい
This N is obtained for each constant rotation angle of the spindle, and the ratio r'Ja to the previous one is calculated in the spindle rotation speed reduction rate calculation unit @41.
-+/Nrn is calculated, and its output is determined by the tool feed speed control device 43, which adjusts the frequency of the pulses that drive the tool feed device 35, which consists of, for example, a step motor, in proportion to the ratio Nm-+/N... reduce In this way, the tool feeder is fed in synchronization with the rotation of the spindle. If the tool feeding device is composed of a DC motor or the like, the voltage applied to the motor may be reduced in proportion to Nm-+/Nm.

工具送り装置に用いられるモータ等は小形であり、振動
は少ない。この発明は、主軸の一定回転角に要する時間
をパルスの数によって計数し、主軸の回転数(速度)を
算定し、回転数(速度)の減少割合によって、工具の送
り速度を制御したものであるが、一定時間内における主
軸の回転数を計数し、以下同じように回転数の減少割合
によって工具の送り速度を制御する口ともできる。
The motor used in the tool feeder is small and generates little vibration. In this invention, the time required for a constant rotation angle of the spindle is counted by the number of pulses, the rotation speed (speed) of the spindle is calculated, and the feed rate of the tool is controlled based on the reduction rate of the rotation speed (speed). However, it can also be used to count the number of revolutions of the main spindle within a certain period of time, and then control the feed rate of the tool based on the rate of decrease in the number of revolutions.

9、発明の効果 以上の説明から理解されるように、この発明は特許請求
の範囲に記載の構成を備えているので、簡単な方法でフ
ライホイール効果を利用した精密加工機械の精度を低下
させないで、主軸と同期した送り方法を提供することが
できる。
9. Effects of the Invention As understood from the above explanation, this invention has the structure set forth in the claims, so it is a simple method that does not reduce the accuracy of precision processing machines that utilize the flywheel effect. This makes it possible to provide a feeding method that is synchronized with the spindle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、フライホイール効果を利用した精密工作機械
の全体図、第2図は、この発明の実施例を示すブロック
図である。 図面中の主要部分を表わす符号の説明 1・・・精密工作機械   3・・・機台5・・・主軸
       11・・・フライホイール13・・・フ
ォトセンサ  27・・・クラッチ装置35・・・工具
送り装置  37・・・パルス発振装置39・・・計数
装置 41・・・主軸向転数減少割合演算装置43・・・工具
送り速度制御装置 萼i 、7 手続ネ甫正書(自発) 昭和60年外用3日 特許庁長官  志  賀    学  殿1、事件の表
示   特願昭用59−237621号2、発明の名称
   同期送り方法 代表者  天 「1  満 明 5、補正の対象 (1)  明m店 6、補正の内容 (1)  明!ll書第6頁第7行目に、「直前」とあ
るのを、 「クラッチ引きはなし直後」と補正する。 (2)  同第6頁第8行目、同頁第11行目および同
頁第15行目に、 rNm−+/NmJ とあるのを、 r N11l−o /Nm J と補正する。 以上
FIG. 1 is an overall view of a precision machine tool that utilizes the flywheel effect, and FIG. 2 is a block diagram showing an embodiment of the present invention. Explanation of symbols representing main parts in the drawings 1...Precision machine tool 3...Machine base 5...Main shaft 11...Flywheel 13...Photo sensor 27...Clutch device 35... Tool feeding device 37...Pulse oscillation device 39...Counting device 41...Spindle direction rotational speed reduction rate calculation device 43...Tool feed speed control device Calyx i, 7 Procedures manual (self-proposal) Showa Manabu Shiga, Commissioner of the Japan Patent Office for External Use in 19601, Indication of the case, Japanese Patent Application No. 59-237621, 2, Title of the invention, Representative of the synchronized feeding method, Tian ``1 Man Ming5, Subject of amendment (1) Ming. Store 6, contents of correction (1) In the 7th line of page 6 of the Akira!ll book, the phrase ``immediately before'' is corrected to ``immediately after the clutch is not pulled.'' (2) In the 8th line of the 6th page, the 11th line of the same page, and the 15th line of the same page, rNm-+/NmJ is corrected to rN11l-o/NmJ. that's all

Claims (1)

【特許請求の範囲】[Claims] 回転角検出装置により主軸の一定回転角を連続的に検出
し、一定周波数のパルス発信装置と計数装置により、前
記一定回転角に要する時間を、前記パルス発振器のパル
ス数によつて計数し、これに基づいて、主軸の回転数の
減少割合を演算し、工具送り装置の送り速度を前記主軸
回転数の減少割合に比例して制御することを特徴とする
フライホイール効果を利用した精密加工機械の同期送り
方法。
A rotation angle detection device continuously detects a constant rotation angle of the main shaft, and a constant frequency pulse generator and a counting device count the time required for the constant rotation angle by the number of pulses of the pulse oscillator. A precision processing machine utilizing a flywheel effect, characterized in that the rate of decrease in the rotational speed of the spindle is calculated based on the rate of decrease in the rotational speed of the spindle, and the feed rate of a tool feeding device is controlled in proportion to the rate of decrease in the rotational speed of the spindle. Synchronous sending method.
JP23762184A 1984-11-13 1984-11-13 Synchronous feed Pending JPS61117049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23762184A JPS61117049A (en) 1984-11-13 1984-11-13 Synchronous feed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23762184A JPS61117049A (en) 1984-11-13 1984-11-13 Synchronous feed

Publications (1)

Publication Number Publication Date
JPS61117049A true JPS61117049A (en) 1986-06-04

Family

ID=17018030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23762184A Pending JPS61117049A (en) 1984-11-13 1984-11-13 Synchronous feed

Country Status (1)

Country Link
JP (1) JPS61117049A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127801A (en) * 1986-11-17 1988-05-31 Toyoda Mach Works Ltd Method and device for working spindle with inertial rotation
EP0557530A1 (en) * 1991-09-12 1993-09-01 Fanuc Ltd. Numerical control device
JPH0724670A (en) * 1993-07-14 1995-01-27 Sumitomo Metal Ind Ltd Tightening method for oil well tube screw coupling
CN102626788A (en) * 2011-02-02 2012-08-08 东芝机械株式会社 Machine tool and method of controlling the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4119992Y1 (en) * 1966-06-09 1966-09-20
JPS5344768U (en) * 1976-09-21 1978-04-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4119992Y1 (en) * 1966-06-09 1966-09-20
JPS5344768U (en) * 1976-09-21 1978-04-17

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127801A (en) * 1986-11-17 1988-05-31 Toyoda Mach Works Ltd Method and device for working spindle with inertial rotation
EP0557530A1 (en) * 1991-09-12 1993-09-01 Fanuc Ltd. Numerical control device
US5404308A (en) * 1991-09-12 1995-04-04 Fanuc Ltd. Numerical control (NC) device to control feed speed of tool based on speed of spindle and amount of change of spindle speed
JPH0724670A (en) * 1993-07-14 1995-01-27 Sumitomo Metal Ind Ltd Tightening method for oil well tube screw coupling
CN102626788A (en) * 2011-02-02 2012-08-08 东芝机械株式会社 Machine tool and method of controlling the same
US9102027B2 (en) 2011-02-02 2015-08-11 Toshiba Kikai Kabushiki Kaisha Machine tool and method of controlling the same

Similar Documents

Publication Publication Date Title
JPS61117049A (en) Synchronous feed
EP0394459B1 (en) Device for confirming the tap operation in the rigid tapping
JPS6399124A (en) Machine for lapping two spiral bevel type gear
US4708544A (en) Machine tool controller
US4314492A (en) Apparatus for the out-of-round machining of workpieces
GB2216294A (en) Synchronous operation control system for numerically controlled machine
US5001408A (en) Control device for indexing rotor on balancing machine
JP2587096B2 (en) Intermittent drive of endless belt
CN217512867U (en) Double-motor cooperative machining lathe
JPS60127907A (en) Control method of cutting in boring machine
GB859341A (en) Improvements in or relating to drives for the electrode in electro-erosively operating machine tools
JP2854425B2 (en) Spindle synchronous control device
JPH03213245A (en) Control device for machine tool
JPH0123212B2 (en)
JP3409348B2 (en) Differential synchronous phase device
JP2623604B2 (en) Slicer cutting feeder
JPH07299656A (en) Tapping device
SU404577A1 (en) DEVICE FOR AUTOMATIC CONTROL OF CUTTING SPEED ON LATHE MACHINES
JP3167315B2 (en) Absolute position detector for NC machine
RU8298U1 (en) LOG OUTDOOR DEVICE
JPS6228171A (en) Complex nc grinder
JPS60127909A (en) Control method and its device of cutting in boring machine
JPS62236603A (en) Numerically controlled lathe
SU78555A1 (en) Gear shaping machine for cutting non-circular gear wheels by running
SU1220843A1 (en) Apparatus for working cylindrical articles