JPS61117003A - Highly hard material type tool and manufacturing method thereof - Google Patents

Highly hard material type tool and manufacturing method thereof

Info

Publication number
JPS61117003A
JPS61117003A JP23816584A JP23816584A JPS61117003A JP S61117003 A JPS61117003 A JP S61117003A JP 23816584 A JP23816584 A JP 23816584A JP 23816584 A JP23816584 A JP 23816584A JP S61117003 A JPS61117003 A JP S61117003A
Authority
JP
Japan
Prior art keywords
hardness
hardness material
tool
joining
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23816584A
Other languages
Japanese (ja)
Other versions
JPH0712566B2 (en
Inventor
Masaaki Ikebe
池辺 政昭
Katsuya Yamamoto
勝也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAN ALLOY KOGYO KK
Original Assignee
SAN ALLOY KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAN ALLOY KOGYO KK filed Critical SAN ALLOY KOGYO KK
Priority to JP59238165A priority Critical patent/JPH0712566B2/en
Publication of JPS61117003A publication Critical patent/JPS61117003A/en
Publication of JPH0712566B2 publication Critical patent/JPH0712566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To make improvements in strength, abrasion resistance and tenacity, by constituting it in a way of putting a work part consisting of a highly hard material and a support part consisting of a highly strength material solidly together by means of homogeneous joining via a joining surface, in case of a press metal mold punch or the like. CONSTITUTION:A punch tip molding part 1, manufactured with a sintered hard alloy or ceramics composed of more than one type of a carbide, a nitride, a carbon nitride, boride and a silicide of periodic table 4a, 5a, 6a group metals and more than one type of bond metals of Fe, Co, Ni, etc., and a punch shank part 2 are vacuum-brazed at a joining surface via a brazing material 11 of Cu, Ni systems, etc., and then high temperature hydrostatic pressure applied homogeneous joining takes place. And, otherwise, they are joined together together by means of vacuum hot press homogeneous joining, electron beam welding, cam cell type HIP homogeneous joining, vacuum hot press joining, etc. With this constitution, abrasion resistance, strength and tenacity are all improvable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高硬度材料(周期率表4a 、Sa 、6a
族金属の炭化物、窒化物、炭窒化物、硼化物または硅化
物の1種以上と結合金属(主としてF e、 Co。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is applicable to high-hardness materials (periodic table 4a, Sa, 6a
One or more of group metal carbides, nitrides, carbonitrides, borides, or silicides and a combined metal (mainly Fe, Co.

Ni)の1種以上とからなる超硬合金、または、セラミ
クス)からなる加工部と高強度材料(工具鋼、特殊鋼等
)からなる支持部とを接合して一体化した工具に関する
The present invention relates to a tool in which a processing part made of cemented carbide made of one or more types of Ni) or ceramics) and a support part made of a high-strength material (tool steel, special steel, etc.) are joined and integrated.

(従来技術) 工具には、強度、耐摩耗性、靭性等の性質がすぐれてい
ることが必要である。工具用の素材としては、高強度材
料(工具鋼、特殊鋼等の工具に適した鋼)や高硬度材料
(超硬合金やセラミクス)が用いられる。前者は、靭性
にすぐれ、後者は、硬度(耐摩耗性)にすぐれている、
靭性と硬度との両特性にすぐれた材料を得ることは、本
質的に困難である。従来の工具は、工具鋼、特殊鋼等の
加工品であるか、もしくは、超硬合金による一体成形品
であり、耐摩耗用、耐衝撃用、切削用その他の用途に応
じて素材が選択されてきた。なお、さらに表面硬化処理
法により鋼の表面に硬化層を形成し、靭性と硬度との両
特性にすぐれた工具が製造される。
(Prior Art) Tools are required to have excellent properties such as strength, wear resistance, and toughness. As materials for tools, high-strength materials (tool steel, special steel, and other steels suitable for tools) and high-hardness materials (cemented carbide and ceramics) are used. The former has excellent toughness, and the latter has excellent hardness (wear resistance).
It is inherently difficult to obtain a material with excellent properties of both toughness and hardness. Conventional tools are either processed products of tool steel, special steel, etc., or are integrally molded products of cemented carbide, and the material is selected depending on the purpose of wear resistance, impact resistance, cutting, etc. It's here. In addition, a hardened layer is further formed on the surface of the steel by a surface hardening treatment method, and a tool with excellent properties in both toughness and hardness is manufactured.

工具の一例として、冷間鍛造、温間鍛造、熱間鍛造用の
プレス金型用ポンチの製造について説明する。工具鋼、
特殊鋼等の素材を切削加工等でポンチ形状に加工し、靭
性及び硬度をもたせるための熱処理(800〜1260
℃焼入と100〜570’C焼戻し)後、仕上研磨加工
する、もしくは、素材を切削加工等で仕上加工し、次に
、耐摩耗性の一層の向上をはかる目的で、工具表面にC
VD法で硬化層を形成する表面硬化処理法を施し、その
後、熱処理(800〜1260℃焼入とioo〜570
℃焼戻し)を行なう、CVD処理による被覆硬化層は高
硬度であり、かつ、鉄系材料との親和性が劣ることによ
り、その摩擦抵抗が減少する作用がある。
As an example of a tool, manufacturing of a press die punch for cold forging, warm forging, and hot forging will be described. tool steel,
Materials such as special steel are processed into punch shapes by cutting, etc., and heat treated to give them toughness and hardness (800 to 1260
C hardening and tempering at 100 to 570 C), finish polishing or finish cutting the material, and then add C to the tool surface to further improve wear resistance.
A surface hardening treatment method is applied to form a hardened layer using the VD method, and then heat treatment (quenching at 800-1260°C and ioo-570°C
The hardened coating layer formed by CVD treatment (tempering) has high hardness and has poor affinity with iron-based materials, thereby reducing its frictional resistance.

(発明の解決すべき問題点) 従来の工具は、工具鋼、特殊鋼等の加工品であるか、も
しくは、超硬合金による一体成型品であるため、使用の
際に、素材の特性による不具合が生じろ。たとえば、従
来の素材(工具鋼、特殊鋼等)によるプレス金型用ポン
チの欠点は、鍛造の際にポンチ先端部(加工部)に高い
繰返し圧縮応力。
(Problems to be solved by the invention) Conventional tools are either processed products of tool steel, special steel, etc., or are integrally molded products of cemented carbide, so when used, problems due to the characteristics of the materials occur. will occur. For example, the disadvantage of punches for press molds made of conventional materials (tool steel, special steel, etc.) is that the tip of the punch (processed part) undergoes high repeated compressive stress during forging.

熱衝撃、被鍛造材との摩擦等を受けるので、ポンチ先端
部において、強度不足、硬度不足、材料偏析等によるた
て割れ、横割れ、剥離、永久変形。
As it is subjected to thermal shock, friction with the material to be forged, etc., the tip of the punch may suffer from vertical cracks, horizontal cracks, peeling, and permanent deformation due to insufficient strength, insufficient hardness, material segregation, etc.

折損、摩耗等の損傷が生じ易いことである。一方、従来
法に上る表面硬化処理を施したプレス金型用ポンチは、
その母材となる工具鋼等が鍛造初期段階にて鍛造時応力
により塑性変形を生じ、そのため表面硬化層にクラック
を生じ鍛造の進行とともに硬化層に剥離を発生させるた
め摩耗や焼付が生じ易い6 したがって、被覆硬化層の
すぐれた耐摩耗性を十分に生り化きれず、所望する工具
寿命が得られず、金型交換等の工程ロスが生じていた。
Damage such as breakage and abrasion is likely to occur. On the other hand, punches for press molds that have been subjected to surface hardening treatment that goes beyond conventional methods,
The base material, such as tool steel, undergoes plastic deformation due to stress during forging in the initial stage of forging, which causes cracks in the surface hardened layer and causes peeling of the hardened layer as forging progresses, resulting in easy wear and seizure6. Therefore, the excellent wear resistance of the hardened coating layer cannot be fully realized, the desired tool life cannot be obtained, and process losses such as mold replacement occur.

また、工具鋼母材の熱処理時の焼入状態のバラツキによ
り、同一の鍛造条件にてもその工具寿命に大きな差が生
じていた。
Furthermore, due to variations in the quenching state of the tool steel base material during heat treatment, there were large differences in tool life even under the same forging conditions.

超硬合金材料は、高硬度ではあるが、工具鋼等と比較し
て脆いため、超硬合金材料からなるプレス金型用ポンチ
は、精度のよいプレス機(戒を用いて引張や曲げ応力が
生じないような応力状態条件でなければ使用できず、使
用条件が非常に制約されていた。
Although cemented carbide materials have high hardness, they are brittle compared to tool steels, etc. Therefore, punches for press molds made of cemented carbide materials are manufactured by using a precision press machine (Kai) to reduce tensile and bending stress. It cannot be used unless the stress state conditions do not occur, and the conditions of use are very restricted.

本発明の目的は、強度、耐摩耗性、II性のいずれにも
すぐれた工具とその製造方法とを提供することである。
An object of the present invention is to provide a tool that is excellent in strength, wear resistance, and II properties, and a method for manufacturing the same.

(問題点を解決するための手段) 本発明では、高硬度材料である超硬合金等と、高強度材
料である工具鋼等を接合して両材料の長所を生かすこと
によ1)、材料選択上の制約という問題点を解決する。
(Means for solving the problem) In the present invention, by joining a high-hardness material such as cemented carbide and a high-strength material such as tool steel to take advantage of the advantages of both materials, 1) the material Solve the problem of selection constraints.

本発明に係る高硬度材料接合型工具は、被加工物に接触
して加工を行なう加工部とこの加工部を支持する支持部
とが、接合面を介して一体に拡散接合され、上記の加工
部が高硬度材料からなり、上記の支持部が高強度材料か
らなり、必要ならば、さらに、上記の加工部の表面と、
上記の支持部の表面のうち少なくとも加工部表面に連続
する部分とが硬化層で被覆される。
In the high-hardness material welding type tool according to the present invention, a machining part that contacts a workpiece to perform machining and a support part that supports this machining part are integrally diffusion-bonded via a joint surface, and the above-mentioned machining is possible. part is made of a high-hardness material, the support part is made of a high-strength material, and if necessary, the surface of the processed part,
At least a portion of the surface of the support portion that is continuous with the surface of the processed portion is coated with a hardened layer.

また、本発明に係る高硬度材料接合工具の製造方法は、
加工部素材の接合すべき面とこれに対向する支持部素材
の接合すべき面との間に拡散素材を介在させて固定し、
次に、加圧下でこの拡散素材の全部を上記の両面を通し
て拡散させ、加工部素材と支持部素材とを接合面で直接
に拡散接合させ高硬度材料からなる加工部と高強度材料
からなる支持部とが接合面を介して一体に拡散接合され
る高硬度材料接合型工具を製造する6 (作 用) 本発明に係る高硬度材料接合工具においては、高い耐摩
耗性、硬度等を要求される加工部は高硬度材料を用い、
高い靭性′が要求される支持部には高強度材料を用いる
ことにより、両材料の長所が生かされる。
Furthermore, the method for manufacturing a high-hardness material welding tool according to the present invention includes:
A diffusion material is interposed and fixed between the surface of the processed part material to be joined and the opposing surface of the support part material to be joined,
Next, all of this diffusion material is diffused through both surfaces under pressure, and the processed part material and the support part material are directly diffusion-bonded at the bonding surfaces, with the processed part made of a high-hardness material and the support made of a high-strength material. (Function) The tool for welding high-hardness materials according to the present invention is required to have high wear resistance, hardness, etc. The processing part uses high hardness material,
By using a high-strength material for the support part that requires high toughness, the advantages of both materials can be utilized.

また、本発明に係る高硬度材料接合型工具の製造方法に
おいては、加圧下で拡散素材を加工部と支持部とに拡散
させて、加工部と支持部とを一体に拡散接合する。
Further, in the method for manufacturing a high-hardness material joining type tool according to the present invention, a diffusion material is diffused into the processing portion and the support portion under pressure to integrally diffusion bond the processing portion and the support portion.

(実施例) 以下、添付の図面を用いて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図(、)〜(d)には、プレス金型用ポンチの断面
を示す。製造に際し、そのポンチ形状、金型。
FIGS. 1(a) to (d) show a cross section of a punch for a press die. During manufacturing, the punch shape and mold.

鍛造品形状、鍛造材料、計算応力等から接合位置と接合
面形状とを設計し、高い耐摩耗性、耐熱性。
The joint position and joint surface shape are designed based on the shape of the forged product, forging material, calculated stress, etc., resulting in high wear resistance and heat resistance.

圧縮強さが要求されるポンチ先端成形部1には高硬度材
料(超硬合金、セラミックス)を、強靭性が要求される
ポンチシャンク部2には高強度材料(工具鋼等)を適用
する。両接合部材1,2は、仕上加工代を含めた寸法に
て用意し、接合面3の粗度は100μ翰以下とする。こ
こで、(a)、(c)、(d)は打抜き用ポンチである
。なお、(c)+ (d)の打抜き用ポンチにおいては
、接合面を広くするrこめ、接合面3が凹状または円錐
状になっている。一方、(b)は絞り加工用ポンチであ
り、ポンチ先端部1゛ の長さを、他のポンチの長さに
比べて長くして、被加工材と接触する周囲部分の耐摩耗
性の向上を図っている。
A high-hardness material (cemented carbide, ceramics) is used for the punch tip molding part 1, which requires compressive strength, and a high-strength material (tool steel, etc.) is used for the punch shank part 2, which requires strong toughness. Both joining members 1 and 2 are prepared with dimensions including finishing machining allowance, and the roughness of the joint surface 3 is 100 μm or less. Here, (a), (c), and (d) are punches for punching. In addition, in the punch for punching (c) + (d), the joint surface 3 is concave or conical to widen the joint surface. On the other hand, (b) is a punch for drawing, and the length of the punch tip is made longer than the length of other punches to improve the wear resistance of the surrounding area that comes into contact with the workpiece. We are trying to

接合の際は、接合面3は、酸洗脱脂等によ1)表面酸化
物その池の不純物を洗浄除去し、次に、両部材1,2を
組合せ、以下に説明する接合方法のいずれかを実施する
。最後に、最終形状品の成形加工を行なう。
When bonding, the bonding surface 3 is cleaned and removed by 1) impurities such as surface oxides by pickling and degreasing, and then both members 1 and 2 are combined and bonded using one of the bonding methods described below. Implement. Finally, the final shaped product is molded.

次に、第2図〜第5図を参照して、接合方法を説明する
Next, the joining method will be explained with reference to FIGS. 2 to 5.

■ 真空ろう付性(第2図参照) (a)先端部(高硬度材料)1とシャンク部(工具用#
4)2との間の接合部にCu系、もしくはNi系その池
のろう材11を任意厚さにて装入上(b)所定温度にて
数分〜数十分間真空ろう付し、(c)高温静水圧加圧(
HIP)拡散接合(800〜1200℃、200〜10
00気圧)もしくは真空ホットプレス拡散接合(800
〜1200℃、200〜1000気圧)を行なう6ただ
し、ろう材11の厚さは、ろう材11が面接合母材1,
2中に完全に拡散浸透し、接合後に両接合部材1,2間
に単相では存在しえない厚さを選択する。また、ろう材
11は、拡散接合過程において両接合部材1.2と脆い
中間化合物を形成するものであってはならない。
■ Vacuum brazing properties (see Figure 2) (a) Tip part (high hardness material) 1 and shank part (tool #
4) Charge a Cu-based or Ni-based brazing filler metal 11 to an arbitrary thickness into the joint between 2 and 2, and (b) vacuum braze at a predetermined temperature for several minutes to several tens of minutes. (c) High temperature isostatic pressurization (
HIP) diffusion bonding (800-1200℃, 200-10
00 atm) or vacuum hot press diffusion bonding (800 atm)
~1200°C, 200~1000 atm) 6 However, the thickness of the brazing filler metal 11 is as follows:
The thickness is selected such that it completely diffuses and penetrates into the bonding members 1 and 2, and cannot exist in a single phase between the bonding members 1 and 2 after bonding. Furthermore, the brazing filler metal 11 must not form a brittle intermediate compound with both joining members 1.2 during the diffusion joining process.

(■ 電子ビーム溶接法(第3図参照)(a)先端部(
高硬度材料)1とシャンク部(高強度材料)2との間の
接合部に任意厚さのN1等のインサートメタル112を
装入し、または先端部1とシャンク部2との両接合面を
直接に接触させ、(b)接合部の周縁部13を電子ビー
ム溶接して、接合面を真空密封し、(c)次に、両部材
1,2をHIP拡散接合(1000−1300℃、20
0〜1000気圧)もしくは真空ホットプレス拡散接合
(1000〜1300°C,200〜too。
(■ Electron beam welding method (see Figure 3) (a) Tip (
Insert an insert metal 112 such as N1 of an arbitrary thickness into the joint between the high-hardness material) 1 and the shank part (high-strength material) 2, or (b) electron beam welding of the peripheral edge 13 of the joint part to vacuum seal the joint surfaces; (c) then HIP diffusion bonding (1000-1300°C, 20°C) of both members 1 and 2;
0-1000 atm) or vacuum hot press diffusion bonding (1000-1300°C, 200-too much).

気圧)で接合する。但し、インサートメタル12は、接
合過程において、両接合部材1,2と脆い中間化合物を
形成するものであってはならない。
Atmospheric pressure). However, the insert metal 12 must not form a brittle intermediate compound with both joining members 1 and 2 during the joining process.

■カプセル方式HIP拡散接合法(第4図参照)(a)
先端部(高硬度材料)1とシャンク部(高強度材料)2
との間の接合部に任意厚さのN1等のインサートメタル
12を装入し、または先端部1とシャンク部2との両接
合面を直接に接触させ、(b)これをアルミナ粉末等の
圧媒粒子14ととらに軟鋼製カプセル15中に真空密封
し、(c)HIP拡散接合(1000〜1300℃、2
00〜1000気圧)を行なう。(カプセル方式HIP
については、特開昭55−163699号公報参照)。
■Capsule method HIP diffusion bonding method (see Figure 4) (a)
Tip part (high hardness material) 1 and shank part (high strength material) 2
(b) Insert an insert metal 12 of N1 or the like of arbitrary thickness into the joint between The pressure medium particles 14 and the tiger were vacuum-sealed in a mild steel capsule 15, and (c) HIP diffusion bonding (1000 to 1300°C, 2
00 to 1000 atm). (Capsule method HIP
For details, see Japanese Patent Application Laid-open No. 163699/1983).

■ 真空ホットブレ又法(@5図参照)(、)先端部(
高硬度材料)1と/セフ2部(高強度材料)2との間の
接合部に任意厚さのNi等のインサートメタル12を装
入し、または先端部1とシャンク部2との両接合面を直
接に接触させ、(b)これに、真空ホットプレス拡散接
合(1000〜1300℃、200〜1000気圧)を
行なう。
■ Vacuum hot blurring method (@see figure 5) (,) tip (
Insert metal 12 such as Ni of any thickness into the joint between the high-hardness material) 1 and the second part (high-strength material) 2, or join both the tip part 1 and the shank part 2. The surfaces are brought into direct contact, and (b) vacuum hot press diffusion bonding (1000-1300°C, 200-1000 atm) is performed thereon.

)う さらに、必要ならば、耐摩耗性を向上させるため
に上記の接合方法を実施した後、硬化層が被覆される。
) Furthermore, if necessary, a hardened layer is applied after carrying out the above bonding method in order to improve the wear resistance.

すなわち、プレス金型用ポンチ表面 。In other words, the punch surface for press molds.

1:cVD処El(800−1200℃)ニヨリ硬化層
が析出被覆される。この硬化層としては、遷移金属の各
種炭化物、窒化物、炭窒化物、硼化物もしくは硅化物と
、A、9.Y、Zr等の酸化物との一方または双方の単
層、複層または複々層を被覆する。
1: cVD treated El (800-1200° C.) A hardened layer is deposited and coated. This hardened layer includes various carbides, nitrides, carbonitrides, borides, or silicides of transition metals, A, 9. A single layer, multiple layers, or multiple layers of Y, Zr, etc. are coated with one or both of the oxides.

■ さらに、表面硬化層の安定化及び硬化層のポンチ母
材への拡散による十分な密着強度を得るために、上記の
プレス金型用ポンチにHIP拡散処理(800〜120
0°C1200〜1000気圧)が実施される。
■ Furthermore, in order to stabilize the surface hardened layer and obtain sufficient adhesion strength by diffusing the hardened layer to the punch base material, the above press mold punch was subjected to HIP diffusion treatment (800 to 120
0°C and 1200 to 1000 atmospheres).

なお、超硬合金同志あるいは超硬合金と池の金属類とを
、必要ならばメタルシールな介して、HIPにより結合
させる方法は、特開昭48−75443号公報に開示さ
れているが、上記の方法■においては、電子ビーム溶接
工程を介している点で異っている。   、 以下に実施例を記述する。各実施例とも、ポンチ形状、
接合位置、接合面形状、接合部材お上び鍛造条件は、全
て同一条件である。第6図(a)、(b)は、それぞれ
、本実施例のプレス金型用ポンチの正面図と側面図であ
る。先端部1は、超硬合金63〜G4からなり、シャン
ク部2はハイス5KH55からなる。
Note that a method for bonding cemented carbide alloys or cemented carbide and metals by HIP, if necessary through a metal seal, is disclosed in Japanese Patent Application Laid-Open No. 75443/1982, but the method described above is Method (2) is different in that it involves an electron beam welding process. , Examples are described below. In each example, the punch shape,
The joint position, joint surface shape, joint member size, and forging conditions were all the same. FIGS. 6(a) and 6(b) are a front view and a side view, respectively, of the press die punch of this embodiment. The tip portion 1 is made of cemented carbide 63 to G4, and the shank portion 2 is made of high speed steel 5KH55.

下記の(A)〜(D)は、ポンチの先端部1とシャンク
部2との拡散接合方法及び接合条件を示す。
The following (A) to (D) show a diffusion bonding method and bonding conditions between the tip portion 1 and the shank portion 2 of the punch.

(A)Niべ一人ろう材使用→真空ろう付(100G−
1200℃、10°’Torr以下)−HIP拡散接合
(1100℃以下、200〜5 t) 0気圧)→仕上
加工 (B)  インサートメタル(Ni材厚さ0.05〜0
.1mm1使用→電子ビ一ム溶接→HIP拡散接合(1
100〜1300’C1200〜1000気圧)→仕上
加工 (C)  カプセル方式HIP拡散接合(1100〜1
300°C1200〜1000気圧)→仕上加工 (D)  真空ホットプレス拡散接合<1100〜13
00℃、200−1000気圧)→仕上加工 また、下記の例1〜例3は、ポンチ処理条件を示す。
(A) Using Ni base brazing material → vacuum brazing (100G-
1200℃, 10°'Torr or less) - HIP diffusion bonding (1100℃ or less, 200 to 5 tons) 0 atm) → Finishing (B) Insert metal (Ni material thickness 0.05 to 0
.. Use 1mm1 → Electron beam welding → HIP diffusion bonding (1
100~1300'C1200~1000 atm) → Finishing (C) Capsule method HIP diffusion bonding (1100~1
300°C 1200-1000 atm) → Finishing (D) Vacuum hot press diffusion bonding <1100-13
00° C., 200-1000 atm) → Finishing Further, Examples 1 to 3 below show punch processing conditions.

(例1)ポンチを熱処理後、研磨仕上する。(Example 1) A punch is polished and finished after heat treatment.

(例2)ポンチをCVD処理(800〜1200℃)に
より、TiC被覆層を数μ論析出させ、その後熱処理す
る。
(Example 2) A punch is subjected to CVD treatment (800 to 1200° C.) to deposit a TiC coating layer of several μm, and then heat treated.

(例3)ポンチをCVD処理(800〜1200’C)
により、TiC被覆層を数μm析出させ、HIP拡散処
理(1000℃以下、500気圧以下)を行ない、その
後熱処理する。
(Example 3) CVD treatment of punch (800-1200'C)
A TiC coating layer is deposited to a thickness of several micrometers, followed by HIP diffusion treatment (1000° C. or lower, 500 atmospheres or lower), followed by heat treatment.

上記のように接合と処理を施したプレス金型用ポンチを
用いて冷間鍛造を行なった。被鍛造材は、325C焼鈍
材である。表は、こうして作製したポンチ1個当りの製
作個数を示す。比較のため、従来法によるポンチを、ハ
イスを素材として加工し、TiCの表面硬化層を形成し
て作製し、同様に冷間鍛造に用いた。表の数値より明ら
かなように本実施例のポンチの工具に命は、数十倍〜石
倍に増加した。また、表面硬化処理を施した例2は、表
面硬化処理を施こさない例1に比べて、工具寿命は2倍
近くにのび、そして、さらにHIP拡散処理を施した例
3の工具寿命は、例2よりもさらに長くなっている。
Cold forging was performed using a press die punch that had been bonded and treated as described above. The material to be forged is a 325C annealed material. The table shows the number of punches produced in this way. For comparison, a conventional punch was produced by processing high speed steel as a material and forming a TiC surface hardening layer, and similarly used for cold forging. As is clear from the values in the table, the life of the punch tool of this example increased by several tens of times to a stone. In addition, the tool life of Example 2, which was subjected to surface hardening treatment, was nearly twice as long as that of Example 1, which was not subjected to surface hardening treatment, and the tool life of Example 3, which was further subjected to HIP diffusion treatment, was It is even longer than Example 2.

表 ポンチ1ヶ当り製作個数 以上の実施例のチップは、先端部1に超硬合金を用いた
が、その代りにCBN焼結体等のセラミクスを用いて支
持部との接合処理をするようにしてもよい。(鋼とセラ
ミクスとのHIPによる拡散接合が可能であることは、
すでに知らハでいる6)この場合も、同様に工具寿命が
著しくのびた。
In the tip of the example in which the number of pieces manufactured per punch is higher than that in the table, cemented carbide was used for the tip 1, but instead, ceramics such as a CBN sintered body were used for joining with the support part. It's okay. (The fact that HIP diffusion bonding between steel and ceramics is possible is
6) In this case as well, the tool life was significantly extended.

なお、以上の接合方法は、プレス金型のみならず、打抜
パンチ絞り9曲げ成形パンチ等の冷間塑性加工パンチ等
の工具全般について適用される。
Note that the above joining method is applied not only to press molds but also to tools in general, such as cold plastic working punches such as punch punches, drawing 9 bending punches, and the like.

切削工具である四角型と三角型の切削チップについての
実施例を、それぞれ、第7図(a)、(b)に示す。四
角形又は三角形の支持部(工具用の鋼からなる)21.
31の加工面22.32側の各角部23,23.・・・
; 33,33.・・・に、超硬合金を上に記したのと
同様な方法で拡散接合し、処理する。本実施例において
も、工具寿命は従来の切削チップに比べて著しくのびた
Examples of square and triangular cutting tips, which are cutting tools, are shown in FIGS. 7(a) and 7(b), respectively. Square or triangular support (made of tool steel) 21.
Each corner 23, 23.31 on the machined surface 22.32 side. ...
; 33, 33. . . . The cemented carbide is diffusion bonded and treated in the same manner as described above. Also in this example, the tool life was significantly extended compared to the conventional cutting tip.

(発明の効果) 本発明により、下記の理由で従来型ポンチと比較して工
具寿命は数十倍程度に大巾に増大する。
(Effects of the Invention) According to the present invention, the tool life is significantly increased by several tens of times compared to a conventional punch for the following reasons.

高硬度材料組織は工具鋼等と比較して微小クラックの発
生伝播を抑制する傾向を有し、かつ、靭性がHIP処理
により向上しているため、酎割れ性ら向上する。さらに
加工部(ポンチ先端部等)の高硬度材料の塑性変形量が
小さいことにより、先端部応力分布の変化が抑制され、
そのため、支持部(ポンチシャンク部等)に発生する曲
げ応力等も低減する。この長寿命化のため、金型交換等
の工程ロスも大巾に減少するため、生産性が大巾に向上
する。
The high-hardness material structure has a tendency to suppress the generation and propagation of microcracks compared to tool steel, etc., and the toughness is improved by HIP treatment, so the cracking resistance is improved. Furthermore, because the amount of plastic deformation of the high-hardness material in the processed part (punch tip, etc.) is small, changes in the stress distribution at the tip are suppressed.
Therefore, bending stress generated in the support portion (punch shank portion, etc.) is also reduced. Due to this longer life, process losses such as mold replacement are greatly reduced, and productivity is greatly improved.

また、同様の理由で鍛造品精度も飛躍的に向上する。な
ぜな1超硬合金は高硬度材料であり、繊維上の特性から
耐摩耗性、圧縮強度が高く、熱衝撃に対しても安定であ
り、工具鋼等と比較して鍛造時の繰返し応力による摩耗
や塑性変形量が小さいためである。
Furthermore, for the same reason, the precision of forged products is also dramatically improved. Why 1: Cemented carbide is a high-hardness material, has high wear resistance and compressive strength due to its fiber properties, is stable against thermal shock, and is less susceptible to repeated stress during forging than tool steel etc. This is because the amount of wear and plastic deformation is small.

さらに、このことにより、従来鍛造後に切削加工を必要
としていた製品に対して、後加工工程を省略できる。
Furthermore, this allows the post-processing process to be omitted for products that conventionally required cutting after forging.

本発明により、用途と使用条件によって接合部位と接合
方法を変えることにより、最も効果的な工具を得ること
ができる。
According to the present invention, the most effective tool can be obtained by changing the joining location and joining method depending on the application and usage conditions.

さらに、従来法では塑性加工不可能な形状品をも加工で
きる工具が製造できる。
Furthermore, it is possible to manufacture tools that can process products with shapes that cannot be plastically worked using conventional methods.

高硬度材料母材に表面硬化処理を施した工具は、母材の
塑性変形が小さいこと及びは材が熱処理に対して非常に
安定していることによる相乗的な効果によって、従来法
に比較してその耐摩耗性を飛躍的に向上することができ
る。
Tools that have been surface-hardened on a high-hardness material base material are superior to conventional methods due to the synergistic effect of small plastic deformation of the base material and extremely stable material against heat treatment. As a result, its wear resistance can be dramatically improved.

表面硬化処理後のHIP拡散処理は、被覆硬化層の母材
への拡散を促進することにより母材との密着強度を向上
させる。このため、硬化層の剥離可能性は減少し、耐摩
耗性はさらに向上し、工具寿命が最低30倍〜100倍
程度にまで高められる。
The HIP diffusion treatment after the surface hardening treatment improves the adhesion strength with the base material by promoting diffusion of the hardened coating layer into the base material. Therefore, the possibility of peeling of the hardened layer is reduced, the wear resistance is further improved, and the tool life is increased by at least 30 to 100 times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)、(c)、(d)はそれぞれ本発
明に係るプレス金型用ポンチの接合位置と接合面形状の
1例を示す断面図である。 第2図(a)、(b)、(c)は、真空ろう付後に接合
する方法の説明図である。 第3図(a)、(b)、(c)は、電子ビーム溶接後に
接合する方法の説明図である。 第4図(a)、(b)は、カプセル方式HIP拡散接合
法の説明図である。 第5図(a)、(b)は、真空ホットプレス拡散接合法
の説明図である。 第fJfl(a)、(b)は、夫々プレス金型用ポンチ
の実施例の正面図と側面図である。 第7図(a)、(b)は、夫々切削チップの実施例の斜
視図である。 1・・・加工部、 2・・・支持部、 3・・・接合面
、11・・・ろう材、   12・・・インサートメタ
Iし、13・・・電子ビーム溶接部、  14・・・圧
媒粒子、15・・・カプセル、      21・・・
支持部、22・・・加工面、   23.23.・・・
・・・角部、31・・・支持部、   32・・・加工
面、33.33.33・・・角部。 特 許 出 願 人 サン70イエ業株式会社代  理
  人 弁理士 前出 葆 ばか2名第2図 宵3図 第4図 第sm 第61!1
FIGS. 1(a), (b), (c), and (d) are cross-sectional views showing an example of the joint position and joint surface shape of the press die punch according to the present invention, respectively. FIGS. 2(a), (b), and (c) are explanatory diagrams of a method of joining after vacuum brazing. FIGS. 3(a), (b), and (c) are explanatory diagrams of a method of joining after electron beam welding. FIGS. 4(a) and 4(b) are explanatory diagrams of the capsule type HIP diffusion bonding method. FIGS. 5(a) and 5(b) are explanatory views of the vacuum hot press diffusion bonding method. Nos. fJfl(a) and (b) are a front view and a side view, respectively, of an example of a punch for a press die. FIGS. 7(a) and 7(b) are perspective views of embodiments of the cutting tip, respectively. DESCRIPTION OF SYMBOLS 1... Processing part, 2... Support part, 3... Joint surface, 11... Brazing metal, 12... Insert metal I, 13... Electron beam welding part, 14... Pressure medium particles, 15...capsules, 21...
Support part, 22...processed surface, 23.23. ...
... Corner part, 31... Support part, 32... Machining surface, 33.33.33... Corner part. Patent Applicant: Sun 70 Yegyo Co., Ltd. Agent: Patent Attorney: Two Idiots, Figure 2, Evening 3, Figure 4, SM No. 61!1

Claims (12)

【特許請求の範囲】[Claims] (1)被加工物に接触して加工を行なう加工部とこの加
工部を支持する支持部とが接合面を介して一体に拡散接
合され、上記の加工部が高硬度材料からなり、上記の支
持部が高強度材料からなる高硬度材料接合型工具。
(1) A processing part that contacts and processes a workpiece and a support part that supports this processing part are diffusion bonded together via a bonding surface, and the processing part is made of a high-hardness material, and the A high-hardness material joining type tool whose support part is made of high-strength material.
(2)特許請求の範囲第1項に記載された高硬度材料接
合型工具において、 上記の高硬度材料が超硬合金であり、かつ、上記の高強
度材料が工具用の鋼であることを特徴とする高硬度材料
接合型工具。
(2) In the high-hardness material bonded tool described in claim 1, the high-hardness material is cemented carbide, and the high-strength material is steel for tools. High hardness material joining type tool.
(3)特許請求の範囲第1項に記載された高硬度材料接
合型工具において、 上記の高硬度材料がセラミクスであり、かつ、上記の高
強度材料が工具用の鋼であることを特徴とする高硬度材
料接合型工具。
(3) The high-hardness material bonded tool described in claim 1, characterized in that the high-hardness material is ceramics, and the high-strength material is steel for tools. A tool for joining high-hardness materials.
(4)被加工物に接触して加工を行なう加工部とこの加
工部を支持する支持部とが接合面を介して一体に拡散接
合され、上記の加工部が高硬度材料からなり、上記の支
持部が高強度材料からなり、さらに、上記の加工部の表
面と、上記の支持部の表面のうち少なくとも加工部表面
に連続する部分とが硬化層で被覆される高硬度材料接合
型工具。
(4) The machining part that contacts and processes the workpiece and the support part that supports this machining part are integrally diffusion bonded via the joint surface, and the said machining part is made of a high-hardness material, and the A high-hardness material joining type tool, wherein the support portion is made of a high-strength material, and further, the surface of the processed portion and at least a portion of the surface of the support portion that is continuous with the surface of the processed portion are coated with a hardened layer.
(5)特許請求の範囲第4項に記載された高硬度材料接
合型工具において、 上記の高硬度材料が超硬合金であり、かつ、上記の高強
度材料が工具用の鋼であることを特徴とする高硬度材料
接合型工具。
(5) In the high-hardness material joining type tool described in claim 4, the above-mentioned high-hardness material is a cemented carbide, and the above-mentioned high-strength material is steel for tools. High hardness material joining type tool.
(6)特許請求の範囲第4項に記載された高硬度材料接
合型工具において、 上記の高硬度材料がセラミクスであり、かつ、上記の高
強度材料が工具用の鋼であることを特徴とする高硬度材
料接合型工具。
(6) The high-hardness material bonded tool described in claim 4, characterized in that the high-hardness material is ceramics, and the high-strength material is steel for tools. A tool for joining high-hardness materials.
(7)高硬度材料からなる加工部と高強度材料からなる
支持部とが接合面を介して一体に拡散接合される高硬度
材料接合型工具の製造方法において、加工部素材の接合
すべき面とこれに対向する支持部素材の接合すべき面と
の間に拡散素材を介在させて固定し、次に、加圧下でこ
の拡散素材の全部を上記の両面を通して拡散させ、加工
部素材と支持部素材とを接合面で直接に拡散接合させる
高硬度材料接合型工具の製造方法。
(7) In a method for manufacturing a high-hardness material joining type tool in which a processing part made of a high-hardness material and a support part made of a high-strength material are integrally diffusion-bonded via a joining surface, the surface of the material of the processing part to be joined A diffusion material is interposed and fixed between the opposing surface of the support part material to be joined, and then all of this diffusion material is diffused through both surfaces under pressure to bond the processing part material and the support part together. A method for manufacturing a high-hardness material bonding tool that directly diffusion-bonds parts and materials at the bonding surface.
(8)特許請求の範囲第7項に記載された高硬度材料接
合型工具の製造方法において、 上記の高硬度材料が超硬合金であり、かつ、上記の高強
度材料が工具用の鋼であることを特徴とする高硬度材料
接合型工具の製造方法。
(8) In the method for manufacturing a high-hardness material bonded tool described in claim 7, the high-hardness material is a cemented carbide, and the high-strength material is steel for tools. A method for manufacturing a high-hardness material joining type tool.
(9)特許請求の範囲第7項に記載された高硬度材料接
合型工具の製造方法において、 上記の高硬度材料がセラミクスであり、かつ、上記の高
強度材料が工具用の鋼であることを特徴とする高硬度材
料接合型工具の製造方法。
(9) In the method for manufacturing a high-hardness material bonded tool as set forth in claim 7, the high-hardness material is ceramics, and the high-strength material is steel for tools. A method for manufacturing a high-hardness material joining type tool characterized by:
(10)特許請求の範囲第7項に記載された高硬度材料
接合型工具の製造方法において、 上記の加圧が高温静水圧加圧によりなされることを特徴
とする高硬度材料接合型工具の製造方法。
(10) A method for manufacturing a tool bonded to a high hardness material as set forth in claim 7, wherein the pressurization is performed by high temperature isostatic pressure. Production method.
(11)特許請求の範囲第7項に記載された高硬度材料
接合型工具の製造方法において、 上記の高温静水圧加圧が、カプセル方式高温静水圧加圧
であることを特徴とする高硬度材料接合型工具の製造方
法。
(11) A method for manufacturing a high-hardness material joining type tool according to claim 7, wherein the high-temperature isostatic pressurization is capsule-type high-temperature isostatic pressurization. A method of manufacturing a material joining type tool.
(12)特許請求の範囲第7項に記載された高硬度材料
接合型工具の製造方法において、 上記の加圧が真空ホットプレス加工によりなされること
を特徴とする高硬度材料接合型工具の製造方法。
(12) In the method for manufacturing a high-hardness material bonding type tool as set forth in claim 7, the above-mentioned pressurization is performed by vacuum hot pressing. Method.
JP59238165A 1984-11-12 1984-11-12 Method for manufacturing high hardness material joining type tool Expired - Fee Related JPH0712566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59238165A JPH0712566B2 (en) 1984-11-12 1984-11-12 Method for manufacturing high hardness material joining type tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59238165A JPH0712566B2 (en) 1984-11-12 1984-11-12 Method for manufacturing high hardness material joining type tool

Publications (2)

Publication Number Publication Date
JPS61117003A true JPS61117003A (en) 1986-06-04
JPH0712566B2 JPH0712566B2 (en) 1995-02-15

Family

ID=17026149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59238165A Expired - Fee Related JPH0712566B2 (en) 1984-11-12 1984-11-12 Method for manufacturing high hardness material joining type tool

Country Status (1)

Country Link
JP (1) JPH0712566B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125602A (en) * 1986-11-12 1988-05-28 Sumitomo Electric Ind Ltd Hard alloy for tool
EP0741116A1 (en) * 1995-05-02 1996-11-06 PLANSEE Aktiengesellschaft Process for manufacturing of components with high thermal load capability
CN105142828A (en) * 2013-03-15 2015-12-09 山特维克知识产权股份有限公司 Method of joining sintered parts of different sizes and shapes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250907A (en) * 1975-10-23 1977-04-23 Masahide Funai Tool attached with super hard alloy and process for producing the tool
JPS5473389A (en) * 1977-11-22 1979-06-12 Sumitomo Electric Ind Ltd Complex cutting tool
JPS555567A (en) * 1978-06-29 1980-01-16 Nissan Motor Co Ltd Timer for vehicle
JPS563152A (en) * 1979-06-13 1981-01-13 Mitsubishi Metal Corp Soldering and cutting tool with surface-covered hard alloy metal tip
JPS591104A (en) * 1982-06-24 1984-01-06 Sumitomo Electric Ind Ltd Composite sintered tool and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250907A (en) * 1975-10-23 1977-04-23 Masahide Funai Tool attached with super hard alloy and process for producing the tool
JPS5473389A (en) * 1977-11-22 1979-06-12 Sumitomo Electric Ind Ltd Complex cutting tool
JPS555567A (en) * 1978-06-29 1980-01-16 Nissan Motor Co Ltd Timer for vehicle
JPS563152A (en) * 1979-06-13 1981-01-13 Mitsubishi Metal Corp Soldering and cutting tool with surface-covered hard alloy metal tip
JPS591104A (en) * 1982-06-24 1984-01-06 Sumitomo Electric Ind Ltd Composite sintered tool and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125602A (en) * 1986-11-12 1988-05-28 Sumitomo Electric Ind Ltd Hard alloy for tool
EP0741116A1 (en) * 1995-05-02 1996-11-06 PLANSEE Aktiengesellschaft Process for manufacturing of components with high thermal load capability
CN105142828A (en) * 2013-03-15 2015-12-09 山特维克知识产权股份有限公司 Method of joining sintered parts of different sizes and shapes
CN105142828B (en) * 2013-03-15 2017-10-24 山特维克知识产权股份有限公司 The method for engaging the sintered component of different sizes and shapes
US10265813B2 (en) 2013-03-15 2019-04-23 Sandvik Intellectual Property Method of joining sintered parts of different sizes and shapes

Also Published As

Publication number Publication date
JPH0712566B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JP3309344B2 (en) Manufacturing method of gear with center hole
US1887372A (en) Cutting and forming tools, implements, and the like
EP1751324B1 (en) Sputter targets and methods of forming same by rotary axial forging
TWI450974B (en) Tools with a thermo-mechanically modified working region and methods of forming such tools
WO2004039517A1 (en) Mold for casting and method of surface treatment thereof
KR20000016002A (en) Complex roll for rolling steel tape of thin cold rolling and production method thereof
CN113088968B (en) Multi-material gradient composite high-toughness wear-resistant steel and preparation method thereof
GB1577180A (en) Method of press-forming a composite article
KR20100095779A (en) Manufacturing method for cemented carbide to steel dissimilar joint rolling dies and cemented carbide to steel dissimilar joint rolling dies using the same
CN101683745A (en) Joined article and die for forming honeycomb structure
JPS61117003A (en) Highly hard material type tool and manufacturing method thereof
KR100587495B1 (en) Wear resistant wc-co-steel or fe-tic-steel joining body and the manufacturing method thereof
JPH073306A (en) High-strength sintered hard alloy composite material and production thereof
JPH04287807A (en) Manufacture of tappet for engine
JPS61206540A (en) Joining type tool
JPH081268A (en) Forging tool having graded function and its production
JPH05161924A (en) Ceramic tool for burring
RU60014U1 (en) ELECTROEROSIVE COATING DEFORMATION TOOL
KR20100054067A (en) Method of manufacturing axisymmetric parts with surface layers
JPS62127139A (en) High hardness material junction type tool
JPS6213280A (en) High hard material joining type tool
JPH0452180B2 (en)
JP2810706B2 (en) Mold manufacturing method
JP2023048965A (en) Die for trimming, its manufacturing method, and manufacturing method of trimmed article
JPH03291112A (en) Guide roller for rolling and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees