JPS61116996A - Controller of synchronous motor - Google Patents
Controller of synchronous motorInfo
- Publication number
- JPS61116996A JPS61116996A JP59236264A JP23626484A JPS61116996A JP S61116996 A JPS61116996 A JP S61116996A JP 59236264 A JP59236264 A JP 59236264A JP 23626484 A JP23626484 A JP 23626484A JP S61116996 A JPS61116996 A JP S61116996A
- Authority
- JP
- Japan
- Prior art keywords
- synchronous motor
- frequency converter
- commutation
- current
- intermittent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
- H02P25/024—Synchronous motors controlled by supply frequency
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Inverter Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は、同期電動機の可変速制岨を行なうサイリスタ
モータドライブシステムの低速領域の運転特性を改善す
ることができる同期型Ie撮の制御装置に関するもので
ある。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a control device for a synchronous Ie camera that can improve the operating characteristics in the low speed region of a thyristor motor drive system that performs variable speed control of a synchronous motor. It is something.
[発明の技術的背景とその問題点]
サイリスタモータドライブシステムは同期電動機を可変
速運転するモータドライブシステムとして各分野に採用
されている。特に同期電動機の逆起電圧を利用してサイ
リスタモータのインバータの負荷転流を行なうため、主
回路構成が簡単で主回路の高電圧化も容易で高効率運転
ができるため、大容量電動機の可変速運転に最適である
。このサイリスタモータドライブシステムの構成例を第
3図に示す。[Technical background of the invention and its problems] Thyristor motor drive systems are employed in various fields as motor drive systems that operate synchronous motors at variable speeds. In particular, since the back electromotive voltage of the synchronous motor is used to commutate the load of the inverter of the thyristor motor, the main circuit configuration is simple, the voltage of the main circuit can be easily increased, and high efficiency operation is possible. Ideal for variable speed operation. An example of the configuration of this thyristor motor drive system is shown in FIG.
この図で、11は入力交流III、12は整流器、13
は直流リアクトル、14はインバータ、15は同期電動
機、16は速度基準設定器、17は同期電動機15の界
磁、の位置を検出する位置検出器、18は速度制御器、
19は電流制御器、2oは電流検出器、21は位相制御
器、22はβ制園器S23は電流断続指令器である。第
3図のサイリスタモータドライブシステムは公知のドラ
イブシス°テムであるが、概要を次に説明する。入力交
流電源11の交流電力を整流器12によって直流電力に
変換し、この直流電力を直流リアクトル13で平滑化し
、インバータ14で直流電力を可変周波数の交流電力に
逆変換する。この逆変換した交流電力を同期電動機15
に供給して同期電動!115を可変速運転する。交流電
動機15の運転速度は速度基準設定器16で設定し、こ
の速度基準の信号と位置検出器17で検出した同期電動
機15の運転速度信号を速度制御器18で比較制御し、
速度制御器18で電流基準を出力する。この電流基準信
号と電流検出器20の検出信号をN流制御器19で比較
制御し、位相制御器21を介して整流器12の出力する
直流電力を調整する。この直流電力を増加すれば同期電
動1115は発生トルクが増加し増速し、直流電力を減
少すれば同様に同期電動機15は減速する。同期電動機
15は位置検出器17によって界磁の位置を検出し、β
制御器22にこの位置信号を入力し、β制御器22はこ
の位置信号によってインバータ14の負荷転流タイミン
グを制御し、インバータ14は同期電動機) ”°
°″″:1iJIllJJlrfi″′″ii; *
’ir h l 56以上説明の方法で同期電動機15
の速度制御を行なうが、同期電動機15の低速領域では
逆起電圧が低いため、インバータ14は低速運転領域で
前記する負荷転流を行なうことができない。このため、
このような低速運転領域では位置検出器17の位置検出
信号に対応したインバータ14の転流タイミングごとに
電流断続指令器23によって電流制御器19を制御し、
これにより整流器12の出力する直流電流を零に制御し
、インバータ14の電流も転流タイミングごとに零にし
て、順次このような動作を(り返しながら同期電動機1
5を加速する。このような転流方法をサイリスタモータ
ドライブシステムでは断続始動と呼び、定格速度の約1
0%速度以下で断続始動を一般的に使用している。In this figure, 11 is the input AC III, 12 is the rectifier, and 13 is the input AC III.
14 is a DC reactor, 14 is an inverter, 15 is a synchronous motor, 16 is a speed reference setter, 17 is a position detector that detects the position of the field of the synchronous motor 15, 18 is a speed controller,
19 is a current controller, 2o is a current detector, 21 is a phase controller, 22 is a β control device S23 is a current intermittent command device. The thyristor motor drive system shown in FIG. 3 is a known drive system, and its outline will be explained next. AC power from an input AC power source 11 is converted into DC power by a rectifier 12, smoothed by a DC reactor 13, and inversely converted into variable frequency AC power by an inverter 14. This inversely converted AC power is transferred to the synchronous motor 15.
Synchronous electric supply! 115 is operated at variable speed. The operating speed of the AC motor 15 is set by a speed reference setting device 16, and the speed reference signal and the operating speed signal of the synchronous motor 15 detected by the position detector 17 are compared and controlled by a speed controller 18.
A speed controller 18 outputs a current reference. This current reference signal and the detection signal of the current detector 20 are compared and controlled by the N-current controller 19, and the DC power output from the rectifier 12 is adjusted via the phase controller 21. If the DC power is increased, the generated torque of the synchronous motor 1115 will increase and the speed will increase, and if the DC power is decreased, the synchronous motor 15 will similarly decelerate. The synchronous motor 15 detects the position of the field by the position detector 17, and β
This position signal is input to the controller 22, and the β controller 22 controls the load commutation timing of the inverter 14 based on this position signal, and the inverter 14 is a synchronous motor).
°″″:1iJIllJJlrfi″′″ii; *
'ir h l 56 Synchronous motor 15 using the method described above
However, since the back electromotive force is low in the low speed region of the synchronous motor 15, the inverter 14 cannot perform the load commutation described above in the low speed operation region. For this reason,
In such a low speed operation region, the current controller 19 is controlled by the current intermittent command 23 at each commutation timing of the inverter 14 corresponding to the position detection signal of the position detector 17,
As a result, the DC current output from the rectifier 12 is controlled to zero, the current of the inverter 14 is also made zero at each commutation timing, and such operations are sequentially performed (repeatedly, the synchronous motor 1
Accelerate 5. This type of commutation method is called intermittent starting in thyristor motor drive systems, and it
Intermittent starting is commonly used below 0% speed.
この断続始動時の直流リアクトル13を流れる直流電流
波形を第4図(a)に、この時の同期型!!1機15の
発生トルクを第4図(b)に図示する。Figure 4(a) shows the DC current waveform flowing through the DC reactor 13 during this intermittent start. ! The generated torque of one aircraft 15 is illustrated in FIG. 4(b).
同期電動8115の始動直後のように運転速度が低い時
には、直流N流を零に絞っている期間は相対的に無視で
きる。例えば第4図(a)で時刻r11 qよ
り時刻t12まで直流電流1dlを流し、時刻t12よ
り時刻t21まで直流電流を零にする。また時刻t21
より時刻t22まで直流電流rd1を流す。同様に順次
電流を継続させながら同期電動機15を加速していき、
時刻t51より時刻t52まで直流電流を流し、時刻t
52より時刻t61まで直流N流を零にする。さらに同
期電動機15が加速して所定の運転速度になる時刻t8
1でインバータ14が負荷転流に切換るから直流電流は
連続的になる。この断続始動時直流電流を零にする時刻
t12より時刻t21までと時刻t52より時刻t61
までの時間はインバータ14の条件で決るから一定であ
る。従って時刻t11より時刻t21までと、時刻t5
1より時刻t61までとの平均′Il流を比較すると後
者の期間の方が大幅に直流電流の平均値が少なくなる。When the operating speed is low, such as immediately after the synchronous electric motor 8115 is started, the period during which the DC N flow is reduced to zero can be relatively ignored. For example, in FIG. 4(a), 1 dl of DC current is passed from time r11q to time t12, and the DC current is made zero from time t12 to time t21. Also time t21
Then, the DC current rd1 is caused to flow until time t22. Similarly, the synchronous motor 15 is accelerated while the current is continued in sequence,
A DC current is applied from time t51 to time t52, and at time t
The DC N current is made zero from 52 to time t61. The synchronous motor 15 further accelerates and reaches a predetermined operating speed at time t8.
1, the inverter 14 switches to load commutation, so the DC current becomes continuous. During this intermittent start, the DC current is made zero from time t12 to time t21 and from time t52 to time t61.
The time it takes is determined by the conditions of the inverter 14, so it is constant. Therefore, from time t11 to time t21 and time t5
Comparing the average 'Il current from 1 to time t61, the average value of the DC current is significantly smaller in the latter period.
従って同期電動機15の発生トルクは直流電流の平均値
に対応するから、第4図(1))の如く同期電動機15
の運転速度が上昇するほど低下する。Therefore, since the torque generated by the synchronous motor 15 corresponds to the average value of the DC current, the synchronous motor 15
decreases as the operating speed increases.
この時整流器13の出力電流の立上りを直流リアクトル
13が抑制しようとするから、同期電動機15の運転速
度が上昇するに従って益々この傾向が激しくなる。従っ
て時刻t11付近に比較して時刻t81付近では急速に
前記発生トルクが大幅に低下する。At this time, since the DC reactor 13 tries to suppress the rise of the output current of the rectifier 13, this tendency becomes more severe as the operating speed of the synchronous motor 15 increases. Therefore, the generated torque rapidly decreases to a large extent around time t81 compared to around time t11.
以上の如く動作する従来のサイリスタモータドライブシ
ステムでは、次に述べる技術的問題があった。The conventional thyristor motor drive system that operates as described above has the following technical problems.
(1) 断続始動中には前記のごとく、同期電動機1
5の発生トルクが太き(脈動し、トルクリップルが急増
し、同期電動115を含む機械系に悪影響を与える。(1) During intermittent starting, as mentioned above, the synchronous motor 1
The generated torque of No. 5 is large (pulsates), and the torque ripple rapidly increases, which adversely affects the mechanical system including the synchronous electric motor 115.
(2) この断続始動領域で発生トルクリップルが大
幅に減少する結果なめらかな始動、加速ができない。(2) In this intermittent starting region, the generated torque ripple is significantly reduced, making smooth starting and acceleration impossible.
[発明の目的]
本発明は前記の従来技術の欠点に鑑みてなされたもので
、従来断続始動が行なわれていた低速領域で、同期電動
機の発生トルクリップルを減少させ、なめらかな運転を
行なうにとができる同期電動機の制御装置を提供するこ
とを目的としている。[Object of the Invention] The present invention has been made in view of the above-mentioned drawbacks of the prior art.It is an object of the present invention to reduce the torque ripple generated by a synchronous motor and to achieve smooth operation in the low speed range where intermittent starting has conventionally been performed. The purpose of the present invention is to provide a control device for a synchronous motor that can perform the following steps.
[発明の概要]
本発明では断続始動が行なわれていた低速領域では、従
来の負荷転流を行なう周波数変換装置と並列に強制転流
の周波数変換装置を接続して、断続始動中は両方の周波
数変換装置を運転する。これにより同期電動機に供給す
る電機子電流波形を改善して、同期電動機の発生トルク
リップルの増大と発生トルクの減少を抑制する。前記′
j!機子電子電流善方法としては、次の方法がある。[Summary of the Invention] In the present invention, in the low speed range where intermittent starting is performed, a forced commutation frequency converting device is connected in parallel with a conventional frequency converting device that performs load commutation, and both of the devices are connected during intermittent starting. Operate frequency conversion equipment. This improves the armature current waveform supplied to the synchronous motor, thereby suppressing an increase in the torque ripple generated by the synchronous motor and a decrease in the generated torque. Said'
j! The following methods are available to improve the machine electron current.
(1) 負荷転流を行なう周波数変換装置の断続始動
による電機子電流の不足分を強制転流の周波数変換装置
より電流を供給して波形補正を行なう。(1) Waveform correction is performed by supplying current from a forced commutation frequency converter to compensate for the shortfall in armature current due to intermittent starting of a frequency converter that performs load commutation.
(′2 前記両方の周波数変換装置を並列運転してN流
波形改善を行なう。('2) Both frequency converters are operated in parallel to improve the N-stream waveform.
(3断続始動領域では強制転流の周波数変換装置のみを
運転する。(3) In the intermittent start region, only the forced commutation frequency converter is operated.
[発明の実施例]
本発明の一実施例を第1図に示す。この図で第)
3図8同0番号8符ヒ各0路構成要8は・従来の第3図
と同一機能であり、ここでは説明を省略する。この図で
、24は整流器、25は直流リアクトル、26はフィル
タコンデンサ、27はインバータ、100は負荷転流を
行なう周波数変換装置、200は強制転流を行なう周波
数変換装置である。[Embodiment of the Invention] An embodiment of the present invention is shown in FIG. (in this figure)
3, 8, 0, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, and 8. In this figure, 24 is a rectifier, 25 is a DC reactor, 26 is a filter capacitor, 27 is an inverter, 100 is a frequency converter that performs load commutation, and 200 is a frequency converter that performs forced commutation.
第1図において、整流器24は入力交流N源11の交流
電力を直流電力に順変換し、直流リアクトル25とフィ
ルタコンデンサ26で平滑化する。この直流電力はイン
バータ27によって再び交流電力に変換される。インバ
ータ27は強制転流回路による転流を行なうか、大電力
用トランジスタなどのような自己消弧形電力変換素子を
使用して転流を行なう強制転流インバータである。負荷
転流を行なう周波政変換装[100は前記の断続始動領
域を越える運転領域では常時主体的に運転され、前記の
如く同J!電動機15を可変速制御する。他方前記の断
続始動領域を中心に強制転流を行なう周波数変換装置2
00は運転される。この様子を第2図を使用して説明す
る。In FIG. 1, a rectifier 24 converts the AC power of the input AC N source 11 into DC power, which is smoothed by a DC reactor 25 and a filter capacitor 26. This DC power is converted back into AC power by the inverter 27. The inverter 27 is a forced commutation inverter that performs commutation using a forced commutation circuit or using a self-extinguishing power conversion element such as a high-power transistor. The frequency converter [100] that performs load commutation is always actively operated in the operating range exceeding the above-mentioned intermittent start range, and as mentioned above, the frequency converter [100] The electric motor 15 is controlled at variable speed. On the other hand, there is a frequency conversion device 2 that performs forced commutation mainly in the intermittent starting region.
00 is driven. This situation will be explained using FIG. 2.
第2図において、(a)は負荷転流を行なう周波政変換
装ai ooの出力電流波形、(b)は強制転流を行な
う周波数変換装置200の出力電流波形、(C)は同期
電動機15に供給される電機子電流波形を図示している
。前記するように同期電動機15の断続始動を行なう時
、負荷転流を行なう周波数変換装置100の出力電流波
形は120°方形波から転流タイミングごとに電流波形
が欠ける。強制転流を行なう周波数変換装置200は前
記するインバータ14の転流のタイミングごとに運転し
、このインバータ14の転流によって同M’Rm機15
の電流が不足する分を第2図(b)に図示するように供
給する。図示するようにN流インパルスをインバータ2
7より供給することは、インバータ27が前記のように
強制転流方式であるため容易である。この結果、同期電
動機15に供給される電機子電流は第2図(C)に図示
するように12o°方形波電流に波形改善できる。In FIG. 2, (a) is the output current waveform of the frequency converter ai oo that performs load commutation, (b) is the output current waveform of the frequency converter 200 that performs forced commutation, and (C) is the output current waveform of the synchronous motor 15. The armature current waveform supplied to the is illustrated. As described above, when the synchronous motor 15 is started intermittently, the output current waveform of the frequency converter 100 that performs load commutation changes from a 120° square wave to a current waveform at each commutation timing. The frequency converter 200 that performs forced commutation is operated at each timing of commutation of the inverter 14, and the M'Rm machine 15 is operated by the commutation of the inverter 14.
The insufficient current is supplied as shown in FIG. 2(b). As shown in the figure, N flow impulses are transferred to inverter 2
7 is easy because the inverter 27 is of the forced commutation type as described above. As a result, the waveform of the armature current supplied to the synchronous motor 15 can be improved to a 12° square wave current as shown in FIG. 2(C).
同期電動機15の断続始動中、負荷転流方式の周波数変
換装置100と、強制転流方式の周波数変換装置200
を前記のように運転すると、同期電1ilJl115の
電機子電流波形が改善され、断続始動中の同期電動機1
5の発生トルクの減少や発生トルクリップルの増大を抑
制できる。During intermittent starting of the synchronous motor 15, the load commutation type frequency conversion device 100 and the forced commutation type frequency conversion device 200
When operated as described above, the armature current waveform of the synchronous motor 1ilJl115 is improved, and the synchronous motor 1 during intermittent starting
It is possible to suppress the decrease in the generated torque and the increase in the generated torque ripple.
[他の実施例]
本発明では負荷転流方式の周波政変換装5i 100と
、強制転流方式の周波数変換装置200の運転方法を第
2図に図示する方法のみに限定するものではなく、次の
方法としても良い。[Other Embodiments] In the present invention, the method of operating the load commutation type frequency converter 5i 100 and the forced commutation type frequency converter 200 is not limited to the method illustrated in FIG. You can also use the following method.
(1)断続始動領域では、強制転流を行なう周波数変換
装置200を、負荷転流を行なう周波数変換装置100
と並列運転し、同期電動機15に供給する電機子電流波
形を120°方形波電流波形より改善する。(1) In the intermittent start region, the frequency converter 200 that performs forced commutation is replaced by the frequency converter 100 that performs load commutation.
The armature current waveform supplied to the synchronous motor 15 is improved from the 120° square wave current waveform.
(′2J 断続始動領域では、強制転流を行なう周波
数変換装置200のみを運転して、同期電動機15に供
給する電機子電流波形を120°方形波電流波形より改
善する。('2J In the intermittent start region, only the frequency converter 200 that performs forced commutation is operated to improve the armature current waveform supplied to the synchronous motor 15 from the 120° square wave current waveform.
本発明の他の実施例としては、強制転流方式の周波数変
換装置200の出力に閤械的または電気的な開閉器を設
けて、断続始動領域を越える同期電動数15の運転領域
では、強制転流方式の周波数変換装置200を切離すよ
うにしても良い。このようにシステム構成すれば、強制
転流方式の周波数変換装置200は、電圧定格が同期電
動機15の約1/10以下で良いため、コンパクトで経
済的なシステムを構成できる。As another embodiment of the present invention, a mechanical or electrical switch is provided at the output of the frequency converter 200 of the forced commutation type, so that the forced The commutation type frequency converter 200 may be separated. With this system configuration, the forced commutation type frequency converter 200 can have a voltage rating of about 1/10 or less of that of the synchronous motor 15, so that a compact and economical system can be configured.
その他、強制転流方式の周波数変換装置100は、負荷
転流方式の周波数変換装置200の過電圧抑制回路とし
て高速運転領域で使用しても良い。In addition, the forced commutation frequency converter 100 may be used as an overvoltage suppression circuit of the load commutation frequency converter 200 in a high-speed operation region.
強制転流方式の周波数変換装置100は、第1図に図示
するような回路構成に限定するものではなく、交流→交
流変換の周波数変換装置であっても良い。また負荷転流
方式の周波数変換装置200が6パルスか12パルス構
成か、負荷転流を行なうため電機子電流がどの程度位相
を進めているかなどの構成を限定するものではない。The forced commutation type frequency conversion device 100 is not limited to the circuit configuration shown in FIG. 1, and may be a frequency conversion device of AC to AC conversion. Furthermore, there are no limitations on the configuration, such as whether the load commutation type frequency converter 200 has a 6-pulse or 12-pulse configuration, or how far the phase of the armature current is advanced in order to perform load commutation.
その池水発明の要旨を変換しない範囲において1、
各種の変形例を構成できる。1, within the scope of not changing the gist of the pond water invention;
Various variations can be constructed.
〃 [発明の効果]
本発明によれば、コンパクトで経済的な強制転流方式の
周波数変換装置を、負荷転流方式の周波数変換装置と断
続運転領域で並列的に運転し、この運転領域で同期電動
機の電機子電流波形を改善し、同期電動機の発生トルク
リップルの増加と、発生トルクの減少を抑制できる同期
電動機の制御装置を提供できる。[Effects of the Invention] According to the present invention, a compact and economical forced commutation frequency converter is operated in parallel with a load commutation frequency converter in an intermittent operation region, and It is possible to provide a control device for a synchronous motor that can improve the armature current waveform of the synchronous motor and suppress an increase in torque ripple generated by the synchronous motor and a decrease in generated torque.
第1図は本発明の一実施例を示すブロック図、第2図は
本発明の実施例によるif流流形形示した図、第3図は
従来の同期電動機の制御IH置のプロッタ図、第4図は
第3図の低速領域の直流電流と発生トルクの波形図であ
る。
11・・・入力交流電源、12・・・整流器、13・・
・直流リアクトル、14・・・インバータ、15・・・
同期電動機、16・・・速度基準、17・・・位相検出
器、18・・・速度制御器、19・・・電流制御器、2
0・・・電流検出器、21・・・位相制御器、22・・
・β制御器、23・・・電流断続指令器、24・・・整
流器、25・・・直流リアクトル、26・・・フィルタ
コンデンサ、27・・・イ 4ンバータ、10o
・・・負荷転流方式の周波数変換装置、200・・・強
制転流方式の周波数変換装置。
第1ml1
第2M
第3図
第4 図FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing an IF flow pattern according to an embodiment of the present invention, and FIG. 3 is a plotter diagram of a conventional synchronous motor control IH setting. FIG. 4 is a waveform diagram of the DC current and generated torque in the low speed region of FIG. 3. 11... Input AC power supply, 12... Rectifier, 13...
・DC reactor, 14... Inverter, 15...
Synchronous motor, 16... Speed reference, 17... Phase detector, 18... Speed controller, 19... Current controller, 2
0... Current detector, 21... Phase controller, 22...
・β controller, 23... Current intermittent command device, 24... Rectifier, 25... DC reactor, 26... Filter capacitor, 27... A 4 inverter, 10o
...Load commutation type frequency conversion device, 200...Forced commutation type frequency conversion device. 1ml 1 2M Figure 3 Figure 4
Claims (1)
に進み位相の電機子電流を供給する負荷転流方式の周波
数変換装置と並列的に強制転流方式の周波数変換装置を
設けて、前記同期電動機の低速運転領域で、前記強制転
流方式の周波数変換装置を低速運転領域で、連続的また
は断続的に運転することを特徴とする同期電動機の制御
装置。A forced commutation frequency converter is provided in parallel with a load commutation frequency converter that discriminates the terminal voltage phase of the synchronous motor and supplies an armature current of an advanced phase during power running operation, and A control device for a synchronous motor, characterized in that the forced commutation type frequency converter is operated continuously or intermittently in a low speed operation region of the motor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59236264A JPS61116996A (en) | 1984-11-09 | 1984-11-09 | Controller of synchronous motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59236264A JPS61116996A (en) | 1984-11-09 | 1984-11-09 | Controller of synchronous motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61116996A true JPS61116996A (en) | 1986-06-04 |
JPH0586152B2 JPH0586152B2 (en) | 1993-12-10 |
Family
ID=16998202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59236264A Granted JPS61116996A (en) | 1984-11-09 | 1984-11-09 | Controller of synchronous motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61116996A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0886371A1 (en) * | 1997-06-20 | 1998-12-23 | Alcatel | Method to control parallel connected converters to supply an asynchronous motor and corresponding circuit |
-
1984
- 1984-11-09 JP JP59236264A patent/JPS61116996A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0886371A1 (en) * | 1997-06-20 | 1998-12-23 | Alcatel | Method to control parallel connected converters to supply an asynchronous motor and corresponding circuit |
US6078162A (en) * | 1997-06-20 | 2000-06-20 | Alcatel | Method for operating parallel DC-linked AC converters for feeding an asynchronous motor and circuitry for carrying out the method |
Also Published As
Publication number | Publication date |
---|---|
JPH0586152B2 (en) | 1993-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1293529C (en) | Ac motor drive apparatus | |
US4763237A (en) | DC/AC/DC Power conversion system including parallel transformers | |
JPS5920275B2 (en) | Electric motor control device | |
JPS61128788A (en) | Controlling method for synchronous motor | |
US4908563A (en) | Method and device for braking a squirrel-cage motor | |
JPS61116996A (en) | Controller of synchronous motor | |
US5652699A (en) | High-voltage and high-power stabilized DC power supply using modified sine wave output 3-phase inverter | |
US3984752A (en) | Electrical valve circuit apparatus | |
US3863119A (en) | Commutatorless motor apparatus | |
JP2003306273A (en) | Elevator control device | |
CN219802181U (en) | Voltage regulating system of variable-frequency three-stage generator | |
JPH0746846A (en) | Three-phase rectifier | |
JPH10295079A (en) | Multi-shaft power supply circuit of transistor inverter device and its unit circuit | |
JPH0724475B2 (en) | Synchronous motor control method | |
JPS54105714A (en) | Controller for induction motor | |
JPH0158759B2 (en) | ||
SU1492445A1 (en) | Two-motor electric drive | |
JPH0763233B2 (en) | Synchronous motor control method | |
ES8501183A1 (en) | Method and device for controlling a variable speed asynchronous motor fed by a current converter. | |
JPS6010516B2 (en) | AC motor drive device | |
Osman | Solid-State Variable Speed Drives | |
JP2549101B2 (en) | Power converter | |
JPS59117471A (en) | Operation control system for current type inverter | |
RU2017318C1 (en) | Method of forming of three-phase voltage fed to asynchronous motor supplied from single-phase network | |
JP2003098287A (en) | Electric power system for internal pump |