JPH0763233B2 - Synchronous motor control method - Google Patents

Synchronous motor control method

Info

Publication number
JPH0763233B2
JPH0763233B2 JP59181828A JP18182884A JPH0763233B2 JP H0763233 B2 JPH0763233 B2 JP H0763233B2 JP 59181828 A JP59181828 A JP 59181828A JP 18182884 A JP18182884 A JP 18182884A JP H0763233 B2 JPH0763233 B2 JP H0763233B2
Authority
JP
Japan
Prior art keywords
synchronous motor
current
time
rectifier
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59181828A
Other languages
Japanese (ja)
Other versions
JPS6162387A (en
Inventor
昭生 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59181828A priority Critical patent/JPH0763233B2/en
Publication of JPS6162387A publication Critical patent/JPS6162387A/en
Publication of JPH0763233B2 publication Critical patent/JPH0763233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、負荷転流を行なうサイリスタモータドライブ
システムの低速領域の運転特性を改善することができる
同期電動機の制御方法に関するものである。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a synchronous motor control method capable of improving operating characteristics in a low speed region of a thyristor motor drive system that performs load commutation.

[発明の技術的背景とその問題点] サイリスタモータドライブシステムは同期電動機を可変
速運転するモータドライブシステムとして各分野に採用
されている。特に同期電動機の逆起電圧を利用してサイ
リスタモータのインバータの負荷転流を行なうため、主
回路構成が簡単で主回路の高電圧化も容易で高効率運転
ができるため、大容量電動機の可変速運転に最適であ
る。このサイリスタモータドライブシステムの構成例を
第3図に示す。
[Technical Background of the Invention and Problems Thereof] Thyristor motor drive systems are used in various fields as motor drive systems for variable speed operation of synchronous motors. In particular, load commutation of the inverter of the thyristor motor is performed using the back electromotive force of the synchronous motor, so the main circuit configuration is simple, the high voltage of the main circuit is easy, and highly efficient operation is possible. Ideal for variable speed driving. An example of the configuration of this thyristor motor drive system is shown in FIG.

この図で、11は入力交流電源、12は整流器、13は直流リ
アクトル、14はインバータ、15は同期電動機、16は速度
基準、17は同期電動機15の界磁の位置を検出する位置検
出器、18は速度制御器、19は電流制御器、20は電流検出
器、21は位相制御器、22はβ制御器、23は電流断続指令
器である。第3図のサイリスタモータドライブシステム
は公知のドライブシステムであるが、概要を次に説明す
る。入力交流電源11の交流電力を整流器12によって直流
電力に変換し、この直流電力を直流リアクトル13で平滑
化し、インバータ14で直流電力を可変周波数の交流電力
に逆変換する。この逆変換した交流電力を同期電動機15
に供給して同期電動機15を可変速運転する。同期電動機
15の運転速度は速度基準16で設定し、この速度基準16の
信号と位置検出器17で検出した同期電動機15の運転速度
信号を速度制御器18で比較制御し、速度制御器18で電流
基準を出力する。この電流基準信号と電流検出器20の検
出信号を電流制御器19で比較制御し、位相制御器21を介
して整流器12の出力する直流電力を調整する。この直流
電力を増加すれば同期電動機15は発生トルクが増加し増
速し、直流電力を減少すれば同様に同期電動機15は減速
する。同期電動機15は位置検出器17によって界磁の位置
を検出し、β制御器22にこの位置信号を入力し、β制御
器22はこの位置信号によってインバータ14の負荷転流タ
イミングを制御し、インバータ14は同期電動機15の逆起
電圧を利用して負荷転流を行なう。
In this figure, 11 is an input AC power supply, 12 is a rectifier, 13 is a DC reactor, 14 is an inverter, 15 is a synchronous motor, 16 is a speed reference, 17 is a position detector that detects the position of the magnetic field of the synchronous motor 15, Reference numeral 18 is a speed controller, 19 is a current controller, 20 is a current detector, 21 is a phase controller, 22 is a β controller, and 23 is a current interrupt commander. The thyristor motor drive system shown in FIG. 3 is a known drive system, the outline of which will be described below. The AC power of the input AC power supply 11 is converted into DC power by the rectifier 12, the DC power is smoothed by the DC reactor 13, and the DC power is inversely converted into AC power of variable frequency by the inverter 14. This inversely converted AC power is applied to the synchronous motor 15
To drive the synchronous motor 15 at a variable speed. Synchronous motor
The operating speed of 15 is set by the speed reference 16, and the operation speed signal of the synchronous motor 15 detected by the signal of this speed reference 16 and the position detector 17 is compared and controlled by the speed controller 18, and the current reference is made by the speed controller 18. Is output. The current controller 19 compares and controls the current reference signal and the detection signal of the current detector 20, and the DC power output from the rectifier 12 is adjusted via the phase controller 21. If this DC power is increased, the generated torque of the synchronous motor 15 increases and the speed is increased, and if the DC power is decreased, the synchronous motor 15 is similarly decelerated. The synchronous motor 15 detects the position of the magnetic field by the position detector 17, inputs this position signal to the β controller 22, and the β controller 22 controls the load commutation timing of the inverter 14 by this position signal, Reference numeral 14 performs load commutation using the counter electromotive voltage of the synchronous motor 15.

以上説明したように同期電動機15の速度制御を行なう
が、同期電動機15の低速領域では逆起電圧が低いため、
インバータ14は低速運転領域で前記する負荷転流を行な
うことができない。このため、このような低速運転領域
では位置検出器17の位置検出信号に対応したインバータ
14の転流タイミングごとに電流断続指令器23によって電
流制御器19を制御し、これにより整流器12の出力する直
流電流を零に制御し、インバータ14の電流も転流タイミ
ングごとに零にして、順次このような動作をくり返しな
がら同期電動機15を加速する。このような転流方法をサ
イリスタモータドライブシステムでは断続始動と呼び、
定格速度の約10%速度以下で断続始動を一般的に使用し
ている。
Although the speed control of the synchronous motor 15 is performed as described above, since the counter electromotive voltage is low in the low speed region of the synchronous motor 15,
The inverter 14 cannot perform the load commutation described above in the low speed operation region. Therefore, in such a low speed operation region, the inverter corresponding to the position detection signal of the position detector 17
The current controller 19 is controlled by the current interrupting command device 23 for each commutation timing of 14, thereby controlling the DC current output by the rectifier 12 to zero, and the current of the inverter 14 is also zero at each commutation timing. The synchronous motor 15 is accelerated while sequentially repeating such operations. This kind of commutation method is called intermittent start in the thyristor motor drive system,
Intermittent start is commonly used at speeds below about 10% of rated speed.

この断続始動時の直流リアクトル13を流れる直流電流波
形を第4図(a)に、この時の同期電動機15の発生トル
クを第4図(b)に図示する。同期電動機15の始動直後
のように運転速度が低い時には、直流電流を零に絞って
いる期間は相対的に無視できる。例えば第4図(a)で
時刻t11より時刻t12まで直流電流Id1を流し、時刻t12よ
り時刻t21まで直流電流を零にする。また時刻t21より時
刻t22まで直流電流Id1を流す。同様に順次電流を継続さ
せながら同期電動機15を加速していき、時刻t51より時
刻t52まで直流電流を流し、時刻t52より時刻t61まで直
流電流を零にする。さらに同期電動機15が加速して所定
の運転速度になる時刻t81でインバータ14が負荷転流に
切換るから直流電流は連続的になる。この断続始動時直
流電流を零にする時刻t12より時刻t21までと時刻t52よ
り時刻t61までの時間はインバータ14の条件で決るから
一定である。従って時刻t11より時刻t21までと、時刻t5
1より時刻t61までとの平均電流を比較すると後者の期間
の方が大幅に直流電流の平均値が少なくなる。
The waveform of the DC current flowing through the DC reactor 13 at the time of intermittent start is shown in FIG. 4 (a), and the torque generated by the synchronous motor 15 at this time is shown in FIG. 4 (b). When the operating speed is low, such as immediately after the synchronous motor 15 is started, the period in which the DC current is reduced to zero can be relatively ignored. For example, in FIG. 4A, the direct current Id1 is supplied from time t11 to time t12, and the direct current is made zero from time t12 to time t21. Further, the direct current Id1 is supplied from time t21 to time t22. Similarly, the synchronous motor 15 is accelerated while continuing the current in sequence, the direct current is passed from time t51 to time t52, and the direct current is made zero from time t52 to time t61. Furthermore, the inverter 14 switches to load commutation at time t81 at which the synchronous motor 15 accelerates to reach a predetermined operating speed, so that the DC current becomes continuous. The time from time t12 to time t21 and time t52 to time t61 at which the DC current at the intermittent start is zero is constant because it is determined by the condition of the inverter 14. Therefore, from time t11 to time t21, time t5
Comparing the average currents from 1 to time t61, the average value of the DC current is significantly smaller in the latter period.

従って同期電動機15の発生トルクは前記する直流電流の
平均値に対応するから、第4図(b)の如く同期電動機
15の運転速度が上昇するほど低少する。この時整流器12
の出力電流の立上りを直流リアクトル13が抑制しようと
するから、同期電動機15の運転速度が上昇するに従って
益々この傾向が激しくなる。従って時刻t11付近に比較
して時刻t81付近では急速に前記発生トルクが大幅に低
下する。
Therefore, since the torque generated by the synchronous motor 15 corresponds to the average value of the direct current described above, as shown in FIG.
As the driving speed of 15 increases, it decreases. Rectifier 12 at this time
Since the DC reactor 13 tries to suppress the rise of the output current of the above, this tendency becomes more and more intense as the operating speed of the synchronous motor 15 increases. Therefore, the generated torque is drastically reduced in the vicinity of time t81 as compared with in the vicinity of time t11.

以上の如く動作する従来のサイリスタモータドライブシ
ステムでは、次に述べる技術的問題があった。
The conventional thyristor motor drive system that operates as described above has the following technical problems.

同期電動機15の発生トルクが第4図(b)に図示するよ
うに減少する結果、同期電動機15の運転速度の上昇とと
もに同期電動機15およびその負荷の加速がむずかしくな
る。この結果低速運転領域でも比較的大きな負荷反抗ト
ルクを有する化学産業の押出機などをサイリスタモータ
ドライブシステムで駆動しようとすると、インバータ14
が断続始動より負荷転流に切換る付近でスムーズな運転
や加速ができない問題点があった。
As a result of the torque generated by the synchronous motor 15 decreasing as shown in FIG. 4B, the operating speed of the synchronous motor 15 increases and the acceleration of the synchronous motor 15 and its load becomes difficult. As a result, if a thyristor motor drive system is used to drive an extruder or the like in the chemical industry that has a relatively large load reaction torque even in the low-speed operation range, the inverter 14
However, there was a problem that smooth operation and acceleration could not be performed in the vicinity of switching from intermittent start to load commutation.

[発明の目的] 本発明は前述の従来の欠点を除去するためになされたも
ので、断続始動中の同期電動機発生トルクの減少を防止
することができる同期電動機の制御方法を提供すること
を目的としている。
An object of the present invention is to eliminate the above-mentioned conventional drawbacks, and an object of the present invention is to provide a method for controlling a synchronous motor that can prevent a decrease in torque generated by the synchronous motor during intermittent start. I am trying.

[発明の概要] 断続始動中に同期電動機の発生トルクが減少する原因
は、断続始動されてから時間の経過に伴って前述直流電
流の平均値が低下するためである。本発明では、インバ
ータが負荷転流できない同期電動機の低速領域で断続始
動する時、整流器の入力電流を検出して各断続期間にお
ける整流器の出力電流の平均値を求め、この各断続期間
の電流平均値が一定の大きさになるように断続始動中の
電流基準信号の制限値を同期電動機の運転速度上昇と共
に所定の関係で増加させて整流器の出力電流のピーク値
を順次大きくすることにより、同期電動機の発生トルク
を平均化することを特徴とするものである。
[Summary of the Invention] The reason why the torque generated by the synchronous motor decreases during intermittent start is that the average value of the DC current decreases with the lapse of time after intermittent start. In the present invention, when the inverter intermittently starts in the low speed region of the synchronous motor in which load commutation cannot be performed, the input current of the rectifier is detected to obtain the average value of the output current of the rectifier in each intermittent period, and the current average of each intermittent period. Synchronous by increasing the peak value of the output current of the rectifier sequentially by increasing the limit value of the current reference signal during intermittent start so that the value becomes a constant value with a predetermined relationship as the operating speed of the synchronous motor increases. It is characterized in that the torque generated by the electric motor is averaged.

[発明の実施例] 本発明の一実施例を第1図に示す。この図で第3図と同
一番号を付した回路構成要素は同一機能の回路構成要素
のためここでは説明を省く。
Embodiment of the Invention An embodiment of the present invention is shown in FIG. In this figure, the circuit components given the same numbers as in FIG. 3 are circuit components having the same function, and therefore their explanation is omitted here.

第1図において、インバータ14が同期電動機15を断続始
動する時、電流制限器24は、電流検出器20を介して整流
器12の入力電流を検出して、整流器12の出力する直流電
流の平均値を演算する。前記直流電流の平均値は断続始
動中常時演算され、インバータ14が断続始動より負荷転
流に切換る時刻t81の時点のタイミングは電流断続指令
器23より入力される。電流制限器24は速度制御器18の出
力する電流基準信号の大きさを制限できる。同期電動機
15が断続始動中に運転速度を上昇すると、電流制限器24
によって整流器12の出力する直流電流の平均値を時々刻
々と演算し、この平均値の値を一定の大きさ、又は所定
の大きさ以上とするように電流制限器24によって前記電
流基準信号の大きさを増加させる。
In FIG. 1, when the inverter 14 intermittently starts the synchronous motor 15, the current limiter 24 detects the input current of the rectifier 12 via the current detector 20 and the average value of the DC current output by the rectifier 12. Is calculated. The average value of the DC current is constantly calculated during the intermittent start, and the timing at time t81 when the inverter 14 switches from the intermittent start to the load commutation is input from the current interrupt commander 23. The current limiter 24 can limit the magnitude of the current reference signal output by the speed controller 18. Synchronous motor
If 15 increases operating speed during intermittent start, current limiter 24
The average value of the direct current output by the rectifier 12 is calculated moment by moment, and the magnitude of the current reference signal is regulated by the current limiter 24 so that the average value becomes a certain magnitude or a predetermined magnitude or more. Increase the size.

本発明の前記する実施例を従来方式の第4図と対比する
ため第2図を使用して説明する。第2図(a)は直流電
流波形、第2図(b)は同期電動機15の発生トルクを図
示している。時刻t11より時刻t81側が同期電動機15の運
転速度が大きい方である。従って前記直流電流が零とな
る時刻t12と時刻t21までの期間と、時刻t52より時刻t61
までの期間は等しいから、相対的に前記直流電流が流れ
る期間は時刻t11より時刻t12までの方が時刻t51より時
刻t52までよりも大きい。その為直流電流の波高値Id1と
Id5が等しいのが従来であるが、本発明では電流制限器2
4の作用で、直流電流の波高値Id1>Id5に前記電流制限
器24の作用で制御する。このように同期電動機15の運転
速度の上昇とともに断続始動中は前記電流基準信号の制
限値の大きさを順次増加させることによって同期電動機
15の発生トルクの減少を軽減できる。
The above-described embodiment of the present invention will be described with reference to FIG. 2 for comparison with FIG. FIG. 2A shows a DC current waveform, and FIG. 2B shows the torque generated by the synchronous motor 15. The operating speed of the synchronous motor 15 is higher on the time t81 side than the time t11. Therefore, the period from time t12 and time t21 when the DC current becomes zero, and from time t52 to time t61
Are equal to each other, the period in which the DC current flows is relatively longer from time t11 to time t12 than from time t51 to time t52. Therefore, the peak value of DC current Id1
Conventionally, Id5 is equal, but in the present invention, the current limiter 2
By the action of 4, the peak value Id1> Id5 of the direct current is controlled by the action of the current limiter 24. In this way, the synchronous motor is increased by increasing the operating speed of the synchronous motor 15 and sequentially increasing the limit value of the current reference signal during intermittent start.
It is possible to reduce the decrease in the generated torque of 15.

本発明の実施例で説明するように同期電動機15の発生ト
ルクの減少を軽減できるから、同期電動機15の負荷トル
クが断続始動中に大きくてもスムーズな運転や加速がで
きる。
As described in the embodiments of the present invention, the reduction of the torque generated by the synchronous motor 15 can be reduced, so that smooth operation and acceleration can be performed even if the load torque of the synchronous motor 15 is large during intermittent start.

本発明では一例として第1図の回路構成を示したが、こ
の構成を限定するものではなく、12パルス構成のサイリ
スタモータドライブシステムなどにも本発明の要旨を変
更しない範囲において実施できる。
In the present invention, the circuit configuration shown in FIG. 1 is shown as an example, but the configuration is not limited, and the present invention can be applied to a thyristor motor drive system having a 12-pulse configuration without changing the gist of the present invention.

本発明では時刻t81以降インバータ14が負荷転流に切換
ったあとの前記直流電流の大きさをどう制御するかを限
定するものではなく、整流器12の定格過負荷電流以内に
電流基準信号を制限するものであれば良い。
The present invention does not limit how to control the magnitude of the DC current after the inverter 14 switches to load commutation after time t81, but limits the current reference signal within the rated overload current of the rectifier 12. Anything can be done.

その他、本発明の要旨を変更しない範囲において各種の
変形例を構成できる。
Besides, various modifications can be configured without changing the gist of the present invention.

[発明の効果] 本発明によれば、サイリスタモータドライブシステムが
断続始動より負荷転流に切換るまでの期間、同期電動機
の発生トルクが減少するのを電流制限器の作用で軽減す
ることができる。従って同期電動機の負荷トルクが比較
的大きくてもスムーズな断続始動中の運転や加速が実現
でき、また断続始動より負荷転流に切換った直後の同期
電動機の発生トルクの急変も軽減できる同期電動機の制
御方法を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to reduce the decrease in the torque generated by the synchronous motor by the action of the current limiter during the period from the intermittent start to the switching to the load commutation in the thyristor motor drive system. . Therefore, even if the load torque of the synchronous motor is relatively large, smooth operation and acceleration during intermittent start can be realized, and sudden changes in the torque generated by the synchronous motor immediately after switching to load commutation from intermittent start can be reduced. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図の低速運転領域の直流電流と発生トルクの波形
図、第3図は従来装置のブロック図、第4図は第2図に
対応した従来装置による直流電流と発生トルクの波形を
示した図である。 11…入力交流電源、12…整流器、13…直流リアクトル、
14…インバータ、15…同期電動機、16…速度基準、17…
位置検出器、18…速度制御器、19…電流制御器、20…電
流検出器、21…位相制御器、22…β制御器、23…電流断
続指令器、24…電流制限器。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a waveform diagram of DC current and generated torque in the low speed operation region of FIG. 1, FIG. 3 is a block diagram of a conventional device, and FIG. It is the figure which showed the waveform of the direct current and generated torque by the conventional apparatus corresponding to FIG. 11 ... Input AC power supply, 12 ... Rectifier, 13 ... DC reactor,
14 ... Inverter, 15 ... Synchronous motor, 16 ... Speed reference, 17 ...
Position detector, 18 ... Speed controller, 19 ... Current controller, 20 ... Current detector, 21 ... Phase controller, 22 ... β controller, 23 ... Current interruption commander, 24 ... Current limiter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】交流電力を整流器で直流電力に変換し、こ
れを再び負荷転流方式のインバータで逆変換して同期電
動機を駆動する同期電動機の制御方法において、前記イ
ンバータが負荷転流できない同期電動機の低速領域で断
続始動する時、前記整流器の入力電流を検出して各断続
期間における整流器の出力電流の平均値を求め、この各
断続期間の電流平均値が一定の大きさになるように断続
始動中の電流基準信号の制限値を同期電動機の運転速度
上昇と共に所定の関係で増加させて前記整流器の出力電
流のピーク値を順次大きくすることにより、前記同期電
動機の発生トルクを平均化することを特徴とする同期電
動機の制御方法。
1. A method of controlling a synchronous motor in which alternating current power is converted into direct current power by a rectifier, and this is again converted by a load commutation type inverter to drive a synchronous motor. When the motor is intermittently started in the low speed region, the input current of the rectifier is detected to obtain the average value of the output current of the rectifier in each intermittent period, and the average value of the current in each intermittent period is set to a constant magnitude. The limiting value of the current reference signal during intermittent start is increased in a predetermined relationship as the operating speed of the synchronous motor is increased to sequentially increase the peak value of the output current of the rectifier, thereby averaging the torque generated by the synchronous motor. A method for controlling a synchronous motor, comprising:
JP59181828A 1984-08-31 1984-08-31 Synchronous motor control method Expired - Fee Related JPH0763233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59181828A JPH0763233B2 (en) 1984-08-31 1984-08-31 Synchronous motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59181828A JPH0763233B2 (en) 1984-08-31 1984-08-31 Synchronous motor control method

Publications (2)

Publication Number Publication Date
JPS6162387A JPS6162387A (en) 1986-03-31
JPH0763233B2 true JPH0763233B2 (en) 1995-07-05

Family

ID=16107526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59181828A Expired - Fee Related JPH0763233B2 (en) 1984-08-31 1984-08-31 Synchronous motor control method

Country Status (1)

Country Link
JP (1) JPH0763233B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818192A (en) * 1995-08-04 1998-10-06 The Boeing Company Starting of synchronous machine without rotor position of speed measurement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564117A (en) * 1979-06-22 1981-01-17 Seiko Epson Corp Spectacle frame
JPS57168315A (en) * 1981-04-08 1982-10-16 Hitachi Ltd Electric current controller of electric power converter
JPS5872372A (en) * 1981-10-26 1983-04-30 Hitachi Ltd Current controlling for power converter
JPS5947294U (en) * 1982-09-21 1984-03-29 東洋電機製造株式会社 Current control circuit for commutatorless motor

Also Published As

Publication number Publication date
JPS6162387A (en) 1986-03-31

Similar Documents

Publication Publication Date Title
JPS5920275B2 (en) Electric motor control device
JPS61128788A (en) Controlling method for synchronous motor
GB1329596A (en) Improved electric driving system
EP0144161B1 (en) Control system for an ac motor
KR100817116B1 (en) Apparatus and method thereof for suppressing inertia load
JPH0763233B2 (en) Synchronous motor control method
JPH0724475B2 (en) Synchronous motor control method
JP2845093B2 (en) AC electric vehicle control device
JP2001103774A (en) Variable speed controller for induction motor
JP2001238455A (en) Multiple power converter
JPH0586152B2 (en)
JPH06245565A (en) Regenerative controller for voltage-type inverter
JPS6268080A (en) Control circuit for inverter
JPS61258677A (en) Controlling method for voltage type inverter
JPH0591793A (en) Inverter device
JPS6059979A (en) Synchronizing signal detecting circuit
JPH0158759B2 (en)
JPH04317501A (en) Controller for ac electric vehicle
JPS63148880A (en) Control device for inverter in service interruption
JP2005086959A (en) Linear motor drive unit
SU613469A1 (en) Device for dynamic braking of induction motor with phase-wound rotor
JPH0568386A (en) Inverter for synchronous motor
JPS63314193A (en) Method of controlling flux of motor
JPS5918956B2 (en) Control method of current source inverter
JPS6130991A (en) Controller of voltage type inverter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees