JPS61116638A - Gas regulator - Google Patents
Gas regulatorInfo
- Publication number
- JPS61116638A JPS61116638A JP59237275A JP23727584A JPS61116638A JP S61116638 A JPS61116638 A JP S61116638A JP 59237275 A JP59237275 A JP 59237275A JP 23727584 A JP23727584 A JP 23727584A JP S61116638 A JPS61116638 A JP S61116638A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- flow path
- component
- flow rate
- dilution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D11/00—Control of flow ratio
- G05D11/02—Controlling ratio of two or more flows of fluid or fluent material
- G05D11/13—Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
- G05D11/139—Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring a value related to the quantity of the individual components and sensing at least one property of the mixture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/10—Mixing gases with gases
- B01F23/19—Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means
- B01F23/191—Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means characterised by the construction of the controlling means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、ガス分析装置の目盛校正等に用いる標準ガス
を調製する標準ガス発生機等のガス調製装置に係り、特
に、#、量の自己診断機能を備えたガス調製装置に関す
る。Detailed Description of the Invention <Industrial Application Field> The present invention relates to a gas preparation device such as a standard gas generator for preparing standard gas used for scale calibration of gas analyzers, etc. This invention relates to a gas preparation device equipped with a self-diagnosis function.
〈従来の技術〉
従来、所定濃度の標準ガスを調製する標準ガス発生機は
、例えば第4図に示すように購成されている。即ち、D
Lは図外の希釈ガス源に接続された希釈ガス光路、CL
は図外の成分ガス源に接続された成分ガス流路、61.
62は電磁弁の如きストップバルブ、63.64はマス
フローメータとバルブとから成るマス70−コントロー
ラで、このようなマスフローコントローラは例えば特公
昭59−41126号公報に開示されるように、公知で
ある。Mは希釈ガス流路DLと成分ガス流路SLとの接
続点に形成されるガス混合部で、希釈ガスDGと成分ガ
スCGが混合される。SLはガス混合部Mの下流側の標
準ガス流路、Bは被試験装置としてのガス分析装置であ
る。そして、希釈ガス流路DLの希釈ガス流量をQD、
成分ガス流路CL希釈された標準ガスSGが標準ガス流
路SLを介してガス分析装置Bに供給される。<Prior Art> Conventionally, a standard gas generator for preparing a standard gas of a predetermined concentration has been purchased as shown in FIG. 4, for example. That is, D
L is a dilution gas optical path connected to a dilution gas source not shown, CL
61. is a component gas flow path connected to a component gas source not shown.
Reference numeral 62 indicates a stop valve such as a solenoid valve, and 63 and 64 indicate a mass 70-controller consisting of a mass flow meter and a valve. Such a mass flow controller is known, for example, as disclosed in Japanese Patent Publication No. 59-41126. . M is a gas mixing section formed at a connection point between the diluent gas flow path DL and the component gas flow path SL, where the dilution gas DG and the component gas CG are mixed. SL is a standard gas flow path on the downstream side of the gas mixing section M, and B is a gas analyzer as a device under test. Then, the dilution gas flow rate of the dilution gas flow path DL is QD,
The standard gas SG diluted in the component gas flow path CL is supplied to the gas analyzer B via the standard gas flow path SL.
ところで、上記の如く調製される校正用標準ガスSGの
濃度はガス分析装置Bに対して最適のものでなければな
らず、従って精度よく濃度制御される必要があるが、各
マスフローコントローラ63゜64が互いに独立して制
御される従来装置にあっては、経時変化に基づくマスフ
ローコントローラ63゜翁の劣化等による性能の低下を
自ら検出できない。By the way, the concentration of the calibration standard gas SG prepared as described above must be optimal for the gas analyzer B, and therefore the concentration must be controlled with precision. In a conventional device in which the mass flow controllers 63 and 63 are controlled independently of each other, it is not possible to detect a decrease in performance due to deterioration of the mass flow controller 63 due to changes over time.
そのため、他の標準ガスと比較したシ、標準ガス発生哉
内の各制御機器のレンジの相関を比較するなどして性能
チェックが行なわれるが、前記チェック法においてはガ
ス分析装置Bを用いる必要があシ、前記発生機内のみで
対処できない欠点があった。更に、ガス分析装置Bを用
いて行なうため、該分析装置Bの再現性精度も無視しえ
ず、誤差要因の1つになっていた。Therefore, the performance is checked by comparing it with other standard gases and by comparing the correlation between the ranges of each control device in the standard gas generator, but the above checking method requires the use of gas analyzer B. However, there was a drawback that it could not be dealt with solely within the generator. Furthermore, since the analysis was carried out using gas analyzer B, the reproducibility accuracy of analyzer B could not be ignored and was one of the sources of error.
〈発明が解決しようとする問題点〉
本発明は上述の点に6って、ガス分析装置を介在させな
くても自らマス70−コントローラのチェックを行うこ
とができ、これによって高精度に制御されたガスを調製
することができる信頼性の高いガス調製装置を提供する
ことを目的とする。<Problems to be Solved by the Invention> The present invention solves the above-mentioned point 6 by being able to check the mass 70-controller by itself without intervening a gas analyzer, thereby achieving highly accurate control. The purpose of the present invention is to provide a highly reliable gas preparation device that can prepare gas with high reliability.
く問題点を解決するための手段〉
上述の目的を達成するため、本発明においては、成分ガ
ス流路と希釈ガス流路との接続点より下流側のガス流路
及び前記成分ガス流路に、それぞれマスフローメータと
バルブとから成るマスフローコントローラを設けている
。Means for Solving Problems〉 In order to achieve the above-mentioned object, in the present invention, a gas flow path downstream from a connection point between a component gas flow path and a dilution gas flow path and a component gas flow path are provided. , each equipped with a mass flow controller consisting of a mass flow meter and a valve.
〈実施例〉
以下、本発明の実施例を第1図乃至第3図に基づいて説
明する。<Example> Hereinafter, an example of the present invention will be described based on FIGS. 1 to 3.
第1図は所謂一段希釈を採用した標準ガス発生機の構成
例を示すもので、同図において、DLは図外の希釈ガス
源に接続され希釈ガスDGを流す希釈ガス流路、CLは
図外の成分ガス源に接続され成分ガスCGt−流す成分
ガス流路であり、Mは前記両ガス流路DL、CLの接続
点に設けられるガス混合部である。SLは前記ガス混合
部Mの下流側のガス流路としての標準ガス流路で標準ガ
スSGが流れる。Bはガス分析装置である。Fig. 1 shows an example of the configuration of a standard gas generator that employs so-called one-stage dilution. In the figure, DL is a dilution gas flow path connected to a dilution gas source (not shown) and through which dilution gas DG flows, and CL is a dilution gas flow path (not shown). This is a component gas flow path connected to an external component gas source and through which the component gas CGt flows, and M is a gas mixing section provided at the connection point of both the gas flow paths DL and CL. SL is a standard gas flow path as a gas flow path on the downstream side of the gas mixing section M, through which the standard gas SG flows. B is a gas analyzer.
1.2はそれぞれ希釈ガス流路DL、成分ガス流路CL
に設けられた電磁弁の如きストップバルブ(以下、Sv
と表わす)である。そして、11゜12はそれぞれ成分
ガス流路CL、標準ガス流路SLに設けられた従来周知
のマスフローコントローラ(以下、SECと表わす)で
、マスフローメータとバルブとを組み合わせて成シ、流
量計測と光量制御とを行なうことができる。1.2 are dilution gas flow path DL and component gas flow path CL, respectively.
A stop valve such as a solenoid valve (hereinafter referred to as Sv
). Reference numerals 11 and 12 are conventionally well-known mass flow controllers (hereinafter referred to as SEC) installed in the component gas flow path CL and the standard gas flow path SL, respectively, which are configured by combining a mass flow meter and a valve to measure the flow rate. Light amount control can be performed.
上述のように構成した標準ガス発生機において、成分ガ
スCGを5倍に希釈してガス分析装置Bに供給するには
、例えば5EC11によって成分ガス流路CI、の流量
を200mp分と設定し、他方、5EC12によって標
準ガス流路SLのa量を80omp分と設定すればよい
。In the standard gas generator configured as described above, in order to dilute the component gas CG five times and supply it to the gas analyzer B, for example, the flow rate of the component gas flow path CI is set to 200 mp by 5EC11, On the other hand, the amount a of the standard gas flow path SL may be set to 80 omp using 5EC12.
そして、5EC11、12の計測又は制御に狂いが生じ
てないかを相互にその性能チェック(これをクロスチェ
ックという)するには、SVIのみを閉とした状態で成
分ガスCGを、5V2−8ECII−ガス混合部M−3
EC12の順に流れるようにする。このとき両方の5E
CII、12による流量の計測値が一致しておれば前記
5ECII、12はいずれも正常であると判断できる。In order to mutually check the performance of 5EC11 and 5EC11 and 12 to see if there is any error in their measurement or control (this is called a cross check), with only SVI closed, component gas CG is connected to 5V2-8ECII- Gas mixing part M-3
Make it flow in the order of EC12. At this time, both 5E
If the measured values of the flow rates by CII and 12 match, it can be determined that both the 5ECII and 12 are normal.
又1両方の5ECII、12による計測値に無視し得な
い差があるときはいずれか一方の、又は両方の5ECI
I 、 12に狂いが生じたものと判断することができ
、これに基づき5EC11,12の点検及び取換えを行
なえばよい。In addition, if there is a non-negligible difference between the measured values of both 5ECII and 12, the 5ECI of either one or both.
It can be determined that 5EC11 and 12 are out of order, and based on this, inspection and replacement of 5EC11 and 12 can be carried out.
上述の説明から判るように、上流側に位置する5EC1
1t−流量制御素子並びに流量計測素子として用い、下
流側に位置する5EC12を流量計測素子として、各5
ECII、12における流量を測定することによって、
5ECII、12のクロスチェックを行なうようにして
いるので、ガス調製装置内のみで5EC11、12の性
能チェックを行なうことができる。As can be seen from the above explanation, 5EC1 located on the upstream side
1t - used as a flow rate control element and a flow rate measurement element, with 5EC12 located on the downstream side serving as a flow rate measurement element, each 5
By measuring the flow rate at ECII, 12,
Since the cross-check of 5ECII and 12 is performed, the performance check of 5EC11 and 12 can be performed only within the gas preparation device.
第2図は、本発明の他の実施例を示すもので、成分ガス
流路CLのSVZよりも上流側の点Pにおい工分岐流路
C■、CI、”が接続され、それぞれの分岐i路Cl
、CI、’KSV3と5EC13、Sv4と5EC14
を直列に設けて標準ガス発生機を構成している。FIG. 2 shows another embodiment of the present invention, in which the point P of the component gas flow path CL on the upstream side of the SVZ is connected to the branch flow paths C■, CI, and the respective branches i. Road Cl
, CI, 'KSV3 and 5EC13, Sv4 and 5EC14
are installed in series to form a standard gas generator.
このように分岐流路CI、CL’を設け、5EC11゜
13 、14として流量レンジの異なるものを使用すれ
ば、標準ガスSGとして種々の濃度のものが得られる。By providing branch channels CI and CL' in this manner and using 5EC11°13 and 14 having different flow ranges, standard gases SG of various concentrations can be obtained.
なお、第2図において第1図のものと同様の構成部材に
は同一符号を付してその説明を省略する0
このように構成した標準ガス発生機において各5ECI
I 、 12 、13 、14のクロスチェックを行う
には、仄のようにすればよい。SV2を開き、SVI
、 3 。In Fig. 2, the same components as those in Fig. 1 are given the same reference numerals and their explanations are omitted.
To cross-check I, 12, 13, and 14, do as shown below. Open SV2 and select SVI
, 3.
4を閉じ、成分ガスCGを5V2−8ECII−−Jj
X混合部M−8EC12のj航に流れるようにすると、
前記第1図の実施列において説明したのと同様に、5E
CIl、12のクロスチェックを行なうことができル。4, close component gas CG to 5V2-8ECII--Jj
If the flow is made to flow to the J flight of the X mixing section M-8EC12,
As explained in the implementation column of FIG. 1 above, 5E
CIl, 12 cross-checks can be performed.
又、SV3をtl*、SVI 、 2 、4ヲ閉L:、
、成分力y、 CG ヲSV3−5EC13−5EC1
lO順K(ttLルヨうにすると、5ECII 、 1
3のクロスチェックができるo更K、5V4t−開!、
svt、 2 、3t−閉シ、成分ガスCG ヲ5V4
−8EC14−5EC13)順に流れるようにすると、
5ECL3.14+7)クロスチェックができ。Also, close SV3 tl*, SVI, 2, 4 L:,
, component force y, CG woSV3-5EC13-5EC1
IO order K (ttL Ruyo order, 5ECII, 1
3 cross-check is possible, 5V4t-open! ,
svt, 2, 3t-closed, component gas CG wo5V4
-8EC14-5EC13) If you make it flow in order,
5ECL3.14+7) Can cross check.
これら操作を行なうことにより、5ECII 、 12
、13゜14の性能チェックを行なうことができる。By performing these operations, 5ECII, 12
, 13°14 performance checks can be performed.
第3図は、本発明の更に他の実施例を示すもので、第1
図、第2図に示したものと異なり、成分ガスCGは2回
に亘って希釈される所謂二段希釈を採用した標準ガス発
生機の構成例を示している。FIG. 3 shows still another embodiment of the present invention.
2 shows a configuration example of a standard gas generator that employs so-called two-stage dilution in which the component gas CG is diluted twice.
同図において、DLは希釈ガス流路で、その上流側から
順次、5V31.5EC21、流量計測のみを行なうマ
スフローメータ(以下、SEPと表わす)41、ガス混
合部(以下、第2混合部という)Mzが設けられている
。そして、前記s v31と5EC21との中間点P2
と、第2混合部M2との間にはガス側流路BLが設けら
れており、該ガス側流路BL上には上流側から順に、レ
ギュレータ51.圧力計52.5v34SEF42、ガ
ス混合部(以下、第1混合部という)Ml、5EC23
が設けられている。In the figure, DL is a diluent gas flow path, and sequentially from the upstream side are 5V31.5EC21, a mass flow meter (hereinafter referred to as SEP) 41 that only measures flow rate, and a gas mixing section (hereinafter referred to as second mixing section). Mz is provided. Then, the midpoint P2 between the s v31 and 5EC21
A gas side flow path BL is provided between the gas side flow path BL and the second mixing portion M2, and on the gas side flow path BL, regulators 51 . Pressure gauge 52.5v34SEF42, gas mixing section (hereinafter referred to as the first mixing section) Ml, 5EC23
is provided.
CLは成分ガス流路で、その上流側から順次、5V35
.5EC22,5V36カ設&tラレテオ、9、該成分
カス流路CLの下流端は前記第1混合部M1に接続され
ている。そして、前記希釈ガス流路DLにおけるS V
31の下流側の点P1と、成分ガス流路CLにおける5
v35と5EC22との中間点Psトc’間に、5V3
3を有するジヨイント流路JLが設けられている。CL is a component gas flow path, and sequentially from the upstream side, 5V35
.. 5EC22, 5V36 &tLareteo, 9, the downstream end of the component waste flow path CL is connected to the first mixing section M1. Then, S V in the diluent gas flow path DL
31 downstream point P1 and 5 in the component gas flow path CL.
Between the midpoint Ps and c' between v35 and 5EC22, 5V3
A joint flow path JL having 3 joints is provided.
5LFi前記第2混合部M2の下流側に設けられる標準
ガス流路で、S V32を備えるとともに、ガス出口5
3を有している。このガス出口53は図外のガス分析装
置に接続されている。又詔l混合部M1とSEC’13
との中間点P、とガス排出口54との間にガス排出流路
XI、が設けられ、 24 、37はそれぞれ該流路X
L上に設けられるSEC,SVである。5LFi A standard gas flow path provided on the downstream side of the second mixing section M2, equipped with an SV32 and a gas outlet 5.
It has 3. This gas outlet 53 is connected to a gas analyzer (not shown). Also, the mixed part M1 and SEC'13
A gas exhaust flow path XI is provided between the intermediate point P between the two and the gas exhaust port 54, and 24 and 37 are respectively connected to the flow path X.
SEC and SV provided on L.
前記5V32の下流側の点P5と5V37の下流側の点
P6との間に、標準ガス流路SLにおける標準ガスSG
の圧力を検出し、これを制御するだめの圧力制#鑞路K
Lが設けられてあり、55は圧力計、56は背圧レギュ
レータである。A standard gas SG in the standard gas flow path SL is connected between a point P5 on the downstream side of the 5V32 and a point P6 on the downstream side of the 5V37.
A pressure control system that detects and controls the pressure of
L is provided, 55 is a pressure gauge, and 56 is a back pressure regulator.
なお、前記レギュレータ51は5EC23,24の圧力
を制御するために設けられている。Note that the regulator 51 is provided to control the pressure of the 5ECs 23 and 24.
上述のように構成した標準ガス発生機において、通常、
希釈ガスDGは5V31を経て5EC21において流量
制御され、5EF41で流量測定され、第2混合部M2
に至るが、5v34を開いておくと、金沢ガスDGo一
部はvギzレ−151,5V34.5EF42t−経て
第1混合部M、に至る。In a standard gas generator configured as described above, normally,
The diluent gas DG passes through 5V31, is controlled in flow rate in 5EC21, is measured in flow rate in 5EF41, and is transferred to the second mixing section M2.
However, if 5V34 is left open, a portion of the Kanazawa gas DGo will reach the first mixing part M through the V gear 151, 5V34.5EF42t.
一方、成分カスCGViSv35′f、経テ5EC22
ニオイて流量制御され、第1混合部M1において希釈ガ
スDGと混合し、希釈される。この希釈された第1次希
釈ガスは5EC23,24のバルブの開度によって定め
られる流量比に分流され、S EC23を経た前記第1
次希釈ガスは第2混合部M、において更に希釈ガスDG
と合流し、ここでさらに希釈された後所定濃度の標準ガ
スSGとしてガス出口53からガス分析装置に供給され
る。On the other hand, the component CGViSv35'f, 5EC22
The gas is mixed with the diluent gas DG in the first mixing section M1, and is diluted. This diluted primary dilution gas is divided into flow ratios determined by the opening degrees of the valves of 5EC23 and 5EC24, and the first diluted gas passes through SEC23.
The next dilution gas is further diluted gas DG in the second mixing section M.
There, the standard gas SG is further diluted and supplied from the gas outlet 53 to the gas analyzer as a standard gas SG having a predetermined concentration.
ここで、標準ガスSGの希釈率(D、R)は、SEC2
1、22、23、24の制御流量をそれぞれQl t
Q2 。Here, the dilution rate (D, R) of the standard gas SG is SEC2
The control flow rates of 1, 22, 23, and 24 are respectively Ql t
Q2.
Q3. Q、とすると%次式で表わされる。Q3. If Q, it is expressed by the following formula.
(Ql+Q3) (QS+Q4)
そして、5EC21〜211%5EP41 、42をク
ロスチェックするには次のようにして行なう。(Ql+Q3) (QS+Q4) Then, cross-checking 5EC21 to 211% 5EP41 and 42 is performed as follows.
■ 5V33 、34 、36 、37t−閉り、、5
V31 +32ヲ開イタ状態で、希釈ガスDGを流し、
5EC21で流量制御し、5EF41で流量測定するこ
とにより、5EC21と5EF41のクロスチェックが
できる。■ 5V33, 34, 36, 37t-closed, 5
With V31 +32 open, flow diluent gas DG,
By controlling the flow rate with 5EC21 and measuring the flow rate with 5EF41, cross-checking between 5EC21 and 5EF41 can be performed.
■ 5V31 、34 、35 、37ヲ閉シ、5V3
2 、33 、36ヲ開イた状態で、希釈ガスDGを流
し、5EC22で流量制御し、5EC23で流量測定す
ることにより、 5BC22゜Uのクロスチェックがで
きる。■ 5V31, 34, 35, 37 closed, 5V3
With 2, 33, and 36 open, diluent gas DG is allowed to flow, the flow rate is controlled with 5EC22, and the flow rate is measured with 5EC23, thereby making it possible to cross-check 5BC22°U.
■ 上記■において、5V32を閉じ、S V37全開
いた状態で、希釈ガスDGを流し、S E C22で流
量制御し、5EC24で流量測定することKより、5E
C22,24のクロスチェックができる。■ In above ■, with 5V32 closed and SV37 fully open, diluent gas DG is flowed, the flow rate is controlled with S E C22, and the flow rate is measured with 5EC24. From K, 5E
Can cross-check C22 and C24.
■ 5V33 、36 、37 を閉C,5V32 、
34eFAイに状uテ、希釈ガスDGを流し、5EC2
3で流量制御し、SEP招で流量計測することにより
、 5EC23と5EF42のクロスチェックができる
。■ Close 5V33, 36, 37 C, 5V32,
34eFA A, flow diluent gas DG, 5EC2
By controlling the flow rate with 3 and measuring the flow rate with SEP
, You can cross-check 5EC23 and 5EF42.
■ 上記■において、5V32を閉じ、S V37を開
いた状態で、希釈ガスDGを流し、5EC24で流量制
御し、5EP42で流量計測することにより、5EC2
4と5RFCのクロスチェックができる。■ In above ■, with 5V32 closed and SV37 open, dilution gas DG is flowed, flow rate is controlled with 5EC24, and flow rate is measured with 5EP42.
4 and 5 RFC can be cross-checked.
又、全てのs v31〜37を閉じた状態における5E
C21−24,5EP41 、42に!ける指示値がr
ゼ0J−1?あるかどうか確認することにより、所謂ゼ
ロ点校正をすることができ、これによってより高精度な
標準カス発生機を得ることができる。Also, 5E with all s v31 to 37 closed
C21-24, 5EP41, 42! The indicated value is r
Ze0J-1? By checking whether or not there exists a so-called zero point calibration, it is possible to obtain a standard scum generator with higher accuracy.
なお、本発明は上述した標準ガス発生機のみに限られる
ものではないことは勿論である。It should be noted that the present invention is of course not limited to the above-mentioned standard gas generator.
〈発明の効果ン
以上詳述したように、本発明によれば成分ガスと希釈ガ
スとが混合されるガス混合部より下流側のガス流路及び
成分ガス流路にそれぞれマスフローメータとバルブとか
ら成るマスフローコントローラを設けているので、前記
マスフローコントローラ同士でクロスチェックすること
ができる。従って、従来装置と異なりガス調製装置内の
みで吸能チェックすることができ、別途測定機器や比較
用の標準ガス等を用意しなくてもよい。又、任意にクロ
スチェックを行なうことができるので、との橿ガス調製
装置の信頼性を向上させることができろう<Effects of the Invention> As detailed above, according to the present invention, a mass flow meter and a valve are installed in the gas flow path and the component gas flow path downstream of the gas mixing section where the component gas and diluent gas are mixed, respectively. Since the mass flow controllers are provided, cross-checking can be performed between the mass flow controllers. Therefore, unlike conventional devices, the absorption capacity can be checked only within the gas preparation device, and there is no need to prepare a separate measuring device or standard gas for comparison. In addition, since cross-checks can be performed arbitrarily, the reliability of the gas preparation device can be improved.
第1図は本発明の一実施例を示す構成図、第2図は他の
実施例を示す構成図、第3図は更に他の実施例を示す構
成図、第4図は従来技術を説明するだめの構成図である
。
11 、12 、13 、14 、21 、22 、7
.3 、24・・・マスフローコントローラ(sgc)
、DI、・・・希釈ガス流路、 CL・・・成分ガス
流路、SL・・・ガス流路、M 、 M、 、 M2・
・・ガス混合部、DG・・・希釈ガス、CG・・・成分
ガス。Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 is a block diagram showing another embodiment, Fig. 3 is a block diagram showing still another embodiment, and Fig. 4 explains the prior art. It is a block diagram of a sudame. 11 , 12 , 13 , 14 , 21 , 22 , 7
.. 3, 24...Mass flow controller (SGC)
, DI,... dilution gas flow path, CL... component gas flow path, SL... gas flow path, M, M, , M2・
...Gas mixing section, DG...dilution gas, CG...component gas.
Claims (1)
ガスで希釈して所定濃度のガスを発生させるガス調製装
置において、前記成分ガスと希釈ガスとが混合されるガ
ス混合部より下流側のガス流路及び前記成分ガス流路に
、それぞれマスフローメータとバルブとから成るマスフ
ローコントローラを設けたことを特徴とするガス調製装
置。In a gas preparation device that includes a component gas flow path and a dilution gas flow path and generates a gas with a predetermined concentration by diluting the component gas with a dilution gas, the gas mixing section where the component gas and the dilution gas are mixed is downstream of the gas mixing section. A gas preparation device characterized in that a mass flow controller comprising a mass flow meter and a valve is provided in the side gas flow path and the component gas flow path, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59237275A JPS61116638A (en) | 1984-11-09 | 1984-11-09 | Gas regulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59237275A JPS61116638A (en) | 1984-11-09 | 1984-11-09 | Gas regulator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61116638A true JPS61116638A (en) | 1986-06-04 |
JPH0327059B2 JPH0327059B2 (en) | 1991-04-12 |
Family
ID=17012974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59237275A Granted JPS61116638A (en) | 1984-11-09 | 1984-11-09 | Gas regulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61116638A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04131737A (en) * | 1990-09-22 | 1992-05-06 | Shimadzu Corp | Constant flow rate sampling device |
JPH0629063A (en) * | 1992-05-27 | 1994-02-04 | Nikou Denki Kogyo Kk | F-type connector |
JPH0621174U (en) * | 1992-03-27 | 1994-03-18 | 中島通信機工業株式会社 | Coaxial cable connector |
JP2010107337A (en) * | 2008-10-30 | 2010-05-13 | Funai Electric Advanced Applied Technology Research Institute Inc | Gas generator and sensor evaluation system |
JP2012141292A (en) * | 2010-12-17 | 2012-07-26 | Horiba Stec Co Ltd | Gas concentration adjustment device |
CN107850547A (en) * | 2016-03-28 | 2018-03-27 | 株式会社爱森莱 | Calibrating installation and the gas composition analysis equipment including the calibrating installation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS513737U (en) * | 1974-06-24 | 1976-01-12 | ||
JPS55147146A (en) * | 1979-05-04 | 1980-11-15 | Yokogawa Hokushin Electric Corp | Fluid mixing ratio regulator |
-
1984
- 1984-11-09 JP JP59237275A patent/JPS61116638A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS513737U (en) * | 1974-06-24 | 1976-01-12 | ||
JPS55147146A (en) * | 1979-05-04 | 1980-11-15 | Yokogawa Hokushin Electric Corp | Fluid mixing ratio regulator |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04131737A (en) * | 1990-09-22 | 1992-05-06 | Shimadzu Corp | Constant flow rate sampling device |
JPH0621174U (en) * | 1992-03-27 | 1994-03-18 | 中島通信機工業株式会社 | Coaxial cable connector |
JPH0629063A (en) * | 1992-05-27 | 1994-02-04 | Nikou Denki Kogyo Kk | F-type connector |
JP2010107337A (en) * | 2008-10-30 | 2010-05-13 | Funai Electric Advanced Applied Technology Research Institute Inc | Gas generator and sensor evaluation system |
JP2012141292A (en) * | 2010-12-17 | 2012-07-26 | Horiba Stec Co Ltd | Gas concentration adjustment device |
US9116526B2 (en) | 2010-12-17 | 2015-08-25 | Horiba Stec, Co., Ltd. | Gas concentration controller system |
CN107850547A (en) * | 2016-03-28 | 2018-03-27 | 株式会社爱森莱 | Calibrating installation and the gas composition analysis equipment including the calibrating installation |
JP2018518653A (en) * | 2016-03-28 | 2018-07-12 | アイセンラブ カンパニー,リミテッド | Calibration apparatus and gas component analyzer equipped with the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0327059B2 (en) | 1991-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6412333B2 (en) | Exhaust gas analyzing system | |
EP1864104B1 (en) | Wide range continuous diluter | |
EP1333270A1 (en) | Exhaust emissions analysis system | |
US5648605A (en) | Flowmeter calibration method | |
US20120266687A1 (en) | Exhaust gas sampling device | |
US6370936B1 (en) | Sampling apparatus for exhaust gas | |
US4555931A (en) | Apparatus for measuring or controlling the separation ratio of gas | |
US7565846B2 (en) | Particulate sampler and dilution gas flow device arrangement for an exhaust sampling system | |
JP2009510448A (en) | Engine exhaust dilution sampler | |
US5804695A (en) | Gas dividing method and apparatus | |
US5810928A (en) | Method of measuring gas component concentrations of special material gases for semiconductor, a semiconductor equipment, and an apparatus for supplying special material gases for semiconductor | |
JPS61116638A (en) | Gas regulator | |
US20080190168A1 (en) | Fast Response Proportional Sampling System and Method for Exhaust Gas Analysis | |
US7555928B2 (en) | Exhaust volume measurement device | |
CN107519773A (en) | Big concentration range standard gas distribution meter and its calibration method with calibration | |
JPH11513792A (en) | Stable isotope-analyzer | |
JP4329921B2 (en) | Inspection gas mixing apparatus and mixing method | |
US8650973B2 (en) | Diluter for measuring engine exhaust emissions | |
SU1608459A1 (en) | Gas-analytic system | |
JPH0465967B2 (en) | ||
JPH07151652A (en) | High accuracy gas dilution system | |
JP2526299Y2 (en) | Exhaust gas splitter | |
JPS5863833A (en) | Standard gas generator | |
Katchman et al. | Measurement of total body hemoglobin by bloodless technic | |
JPH0545946Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |