JPS6111650B2 - - Google Patents

Info

Publication number
JPS6111650B2
JPS6111650B2 JP54055057A JP5505779A JPS6111650B2 JP S6111650 B2 JPS6111650 B2 JP S6111650B2 JP 54055057 A JP54055057 A JP 54055057A JP 5505779 A JP5505779 A JP 5505779A JP S6111650 B2 JPS6111650 B2 JP S6111650B2
Authority
JP
Japan
Prior art keywords
gas
exhaust gas
water
sulfur
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54055057A
Other languages
Japanese (ja)
Other versions
JPS55147132A (en
Inventor
Teruo Watabe
Kazuhiko Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP5505779A priority Critical patent/JPS55147132A/en
Publication of JPS55147132A publication Critical patent/JPS55147132A/en
Publication of JPS6111650B2 publication Critical patent/JPS6111650B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 本発明は排ガス中のSO2をイオウに還元する方
法に関するものであつて、さらに詳しくはSO2
有排ガスを炭素質粒が存在する還元反応器に導入
するに先立つて、水洗浄した後脱湿することを内
容とするSO2含有排ガスの前処理方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reducing SO 2 in exhaust gas to sulfur, and more specifically, before introducing SO 2 -containing exhaust gas into a reduction reactor in which carbonaceous particles are present, The present invention relates to a pretreatment method for SO 2 -containing exhaust gas, which includes washing with water and then dehumidifying it.

石炭、コークスなどの炭素質粒を使用してSO2
をイオウに還元する方法は、SO2含有排ガスの乾
式脱硫法の一つとして古くから利用されている。
この方法では排ガス中のSO2が比較的高濃度であ
ることが一般に好ましい。従つて、石炭ボイラー
からの排ガスの如く、SO2濃度が比較的低い排ガ
スを上記の還元法で処理する場合には、活性炭な
どの吸着剤を収めた排煙脱硫装置で排ガス中の
SO2を予め濃縮してから、これを還元反応器に供
給する方法が採られている。
SO 2 using carbonaceous particles such as coal and coke
The method of reducing SO 2 to sulfur has been used for a long time as a dry desulfurization method for exhaust gas containing SO 2 .
A relatively high concentration of SO 2 in the exhaust gas is generally preferred in this method. Therefore, when treating exhaust gas with a relatively low SO 2 concentration, such as exhaust gas from a coal boiler, using the above reduction method, the exhaust gas is removed using a flue gas desulfurization device containing an adsorbent such as activated carbon.
A method has been adopted in which SO 2 is concentrated in advance and then supplied to the reduction reactor.

ところで、炭素質粒を還元剤とするSO2の還元
法としては、反応系に水蒸気を殆ど存在させるこ
となく約900〜1300℃の温度で行なう古典的な方
法と、水蒸気の存在下に1150〜1550〓(約621〜
約843℃)の温度で行なう方法が知られている
が、現在では比較的低温度で還元反応が遂行でき
る点で、後者の方法が主に利用されている。この
方法では還元反応器に供給するSO2含有ガスに水
蒸気を付加的に混合するのが通例であるため、上
記した排煙脱硫装置から還元反応器に送られるガ
スに、15〜40%程度の水分が含まれていることは
従来全く問題にされていない。
By the way, as methods for reducing SO 2 using carbonaceous particles as a reducing agent, there are two methods: the classical method, which is carried out at a temperature of about 900 to 1300 °C without almost any water vapor in the reaction system, and the classical method, which is carried out at a temperature of about 1150 to 1550 °C in the presence of water vapor. 〓(approximately 621~
A method is known in which the reduction reaction is carried out at a temperature of about 843° C., but the latter method is currently mainly used because the reduction reaction can be carried out at a relatively low temperature. In this method, it is customary to additionally mix water vapor with the SO2- containing gas supplied to the reduction reactor, so approximately 15 to 40% of the gas sent from the flue gas desulfurization equipment to the reduction reactor is Conventionally, the presence of water has not been a problem at all.

しかしながら、比較的低温度でSO2をイオウに
還元できる上記の還元法を、本発明者が追試した
ところでは、この還元法でも比較的高温度で実施
する古典的な方法と同様、反応系内に水蒸気が存
在しない方がSO2の還元に際して硫化水素の副生
を抑制でき、従つて、イオウ生成率の向上を図れ
るとの知見を得た。また、排煙脱硫装置から排出
されるSO2含有ガスも含めて、還元反応器で従来
処理されているSO2含有排ガスは、一般にハロゲ
ン化物やアンモニウム塩や硫酸塩を同伴してお
り、これらは還元反応器のみならず、当該反応器
に後続するイオウ凝縮器などに悪影響を及ぼすた
め、還元反応器への導入に先立つてSO2含有排ガ
スから上記の不純物を予め除去しておくことが好
ましい。
However, when the present inventors tried the above-mentioned reduction method, which can reduce SO 2 to sulfur at a relatively low temperature, it was found that this reduction method, like the classical method that is carried out at a relatively high temperature, caused a loss in the reaction system. It was found that the absence of water vapor in the SO 2 reduction can suppress the by-product of hydrogen sulfide, and therefore improve the sulfur production rate. In addition, SO 2 -containing exhaust gas that is conventionally treated in a reduction reactor, including SO 2 -containing gas discharged from flue gas desulfurization equipment, generally contains halides, ammonium salts, and sulfates. It is preferable to remove the above-mentioned impurities from the SO 2 -containing exhaust gas in advance before introducing it into the reduction reactor, since it has an adverse effect not only on the reduction reactor but also on the sulfur condenser and the like following the reactor.

本発明はこれらの知見を具現化したものであつ
て、その特徴とするところは、SO2含有排ガスを
炭素質粒の移動床が存在する反応器に導入して、
700〜900℃の温度範囲で排ガス中のSO2を蒸気状
イオウに還元する方法に於て、SO2含有排ガスを
反応器に導入するに先立つて、その排ガスを水洗
浄した後、脱湿することにある。
The present invention embodies these findings, and is characterized by introducing SO 2 -containing exhaust gas into a reactor in which a moving bed of carbonaceous particles exists,
In the method of reducing SO 2 in exhaust gas to vaporized sulfur in the temperature range of 700 to 900°C, the exhaust gas containing SO 2 is washed with water and then dehumidified before being introduced into the reactor. There is a particular thing.

以下、実施例にて本発明をさらに詳しく説明す
ると、第1図は石炭ボイラー排ガス中のSO2を排
煙脱硫装置で濃縮後、本発明の方法に従つてイオ
ウに還元する場合の、フローシートを示す。第1
図に於て、石炭ボイラーからの排ガスはライン1
を通つて活性炭などの吸着剤を収めた排煙脱硫装
置2に供給される。脱硫装置2に於ては排ガス中
のSO2を一旦吸着剤に吸着させた後、これを脱離
させるという操作で排ガス中のSO2が濃縮され、
ライン1を流れるガスよりも高濃度でSO2を含有
するガスが、排煙脱硫装置2からライン3に排出
される。ライン3の排煙脱硫装置排出ガスは通常
200〜400℃の温度にあつて、これにはハロゲン化
物、アンモニウム塩、硫酸塩などの不純物が同伴
されるのが通例である。
Hereinafter, the present invention will be explained in more detail with reference to Examples. Fig. 1 is a flow sheet in which SO 2 in coal boiler exhaust gas is concentrated in a flue gas desulfurization equipment and then reduced to sulfur according to the method of the present invention. shows. 1st
In the figure, the exhaust gas from the coal boiler is in line 1.
The gas is supplied to a flue gas desulfurization device 2 containing an adsorbent such as activated carbon. In the desulfurization equipment 2, the SO 2 in the exhaust gas is concentrated by adsorbing the SO 2 in the exhaust gas onto an adsorbent and then desorbing it.
Gas containing SO 2 at a higher concentration than the gas flowing through line 1 is discharged from flue gas desulfurization device 2 to line 3 . Line 3 flue gas desulfurization equipment exhaust gas is normal
At temperatures of 200 to 400°C, impurities such as halides, ammonium salts, and sulfates are usually entrained.

本発明の方法によれば、排煙脱硫装置からライ
ン3に排出されたSO2含有ガスがまず水洗塔4に
導入される。水洗塔4ではライン5から塔内に供
給される洗浄水とSO2含有ガスとが接触せしめら
れ、この接触によつてSO2含有ガス中の水溶性不
純物は洗浄水に移行し、SO2含有ガス自体は徐冷
される。水溶性不純物が溶けた洗浄水は水洗塔4
の底部からライン6を介して貯槽7に送られる。
貯槽内の洗浄液はライン9からのメイクアツプ水
と共に、ポンプ8及びライン5を介して水洗塔内
に散水される。そして洗浄能力が低下した洗浄廃
液は貯槽7からライン10に取り出され、水処理
後メイクアツプ水として使用される。
According to the method of the present invention, the SO 2 -containing gas discharged from the flue gas desulfurization device into the line 3 is first introduced into the water washing tower 4 . In the water washing tower 4, the washing water supplied into the tower from the line 5 is brought into contact with the SO 2 -containing gas, and through this contact, the water-soluble impurities in the SO 2 -containing gas are transferred to the washing water, and the SO 2 -containing gas is transferred to the washing water. The gas itself is slowly cooled. Washing water containing dissolved water-soluble impurities is sent to the washing tower 4.
from the bottom via line 6 to storage tank 7.
The cleaning liquid in the storage tank is sprayed into the washing tower together with make-up water from line 9 via pump 8 and line 5. The cleaning waste liquid whose cleaning ability has decreased is taken out from the storage tank 7 to the line 10 and used as makeup water after water treatment.

水洗塔4で洗浄冷却されたSO2含有ガスは、塔
頂部からライン11に取り出されて脱湿器12に
供給される。この実施例で使用される脱湿器12
は一種の多管式熱交換器であつて、垂直に配置さ
れた多数本のパイプ内をSO2含有ガスが通過し、
ライン13から供給され、ライン14から排出さ
れる冷却媒はパイプの管外側を通過する。冷却媒
との間接的熱交換により管内側を通過するSO2
有ガスは冷却されるため、ガス中の水分(水蒸
気)は凝縮してガスから分離され、この凝縮水は
脱湿塔12の塔底からライン15を介して貯槽7
に送られる。こうして脱湿器12に送られたSO2
含有ガスは水分数%以下に除湿され、温度0℃〜
数℃で脱湿器12からライン16に取り出され
る。
The SO 2 -containing gas washed and cooled in the water washing tower 4 is taken out from the top of the tower into a line 11 and supplied to a dehumidifier 12 . Dehumidifier 12 used in this example
is a type of shell-and-tube heat exchanger, in which SO2- containing gas passes through many vertically arranged pipes.
The coolant supplied from line 13 and discharged from line 14 passes through the outside of the pipe. The SO2 - containing gas passing through the inside of the tube is cooled by indirect heat exchange with the coolant, so moisture (water vapor) in the gas is condensed and separated from the gas, and this condensed water is sent to the dehumidification tower 12. Storage tank 7 via line 15 from the bottom
sent to. SO 2 thus sent to the dehumidifier 12
The contained gas is dehumidified to less than a few percent moisture, and the temperature is 0℃~
It is taken out from the dehumidifier 12 into the line 16 at a temperature of several degrees Celsius.

冷却脱湿されたライン16内のSO2含有ガス
は、次いて間接加熱器17で200℃〜400℃に加熱
され、しかる後還元反応器18に導入される。還
元反応器18は無煙炭の移動床を有し、約800℃
〜840℃の温度に保持されている。この移動床と
の接触によりガス中のSO2は蒸気状イオウに還元
され、蒸気状イオウを含む反応器流出物はライン
19に取り出された後、常法通り、イオウ凝縮器
(図示なし)などを具えたイオウ回収系で処理さ
れる。
The cooled and dehumidified SO 2 -containing gas in the line 16 is then heated to 200° C. to 400° C. in an indirect heater 17 and then introduced into the reduction reactor 18 . The reduction reactor 18 has a moving bed of anthracite and is heated to approximately 800°C.
It is maintained at a temperature of ~840℃. Contact with this moving bed reduces the SO 2 in the gas to vaporous sulfur, and the reactor effluent containing vaporous sulfur is taken off to line 19 and then sent to a sulfur condenser (not shown) in the conventional manner. Processed with a sulfur recovery system equipped with

第2図は第1図に示した実施例に於ける還元反
応温度とイオウ収率との関係(曲線A参照)と、
ライン3を流れるSO2含有ガスを水洗塔4及び脱
湿器12に通すことなく還元反応器18に直接供
給した場合の還元反応温度とイオウ収率との関係
(曲線B参照)を示すグラフである。図示の通
り、還元反応器に導入されるSO2含有ガスを予め
脱湿しておくことにより、脱湿しない場合に比較
してイオウ収率を10%程度向上させることができ
る。
Figure 2 shows the relationship between reduction reaction temperature and sulfur yield in the example shown in Figure 1 (see curve A),
This is a graph showing the relationship between the reduction reaction temperature and the sulfur yield (see curve B) when the SO 2 -containing gas flowing through the line 3 is directly supplied to the reduction reactor 18 without passing through the water washing tower 4 and the dehumidifier 12. be. As shown in the figure, by dehumidifying the SO 2 -containing gas introduced into the reduction reactor in advance, the sulfur yield can be improved by about 10% compared to the case without dehumidification.

また本発明はSO2含有ガスの脱湿工程を有して
いるが故に、その前段でガスを水洗浄することが
でき、この水洗浄によつてガス中の不純物が除去
されるため、従来の如くガス中の不純物によつて
還元反応器、イオウ凝縮器などが悪影響を受ける
ことがない。
In addition, since the present invention includes a dehumidification process for SO 2 -containing gas, the gas can be washed with water before the dehumidification process, and impurities in the gas are removed by this water washing, which is different from the conventional method. Thus, the reduction reactor, sulfur condenser, etc. are not adversely affected by impurities in the gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すフローシー
ト、第2図は還元反応温度とイオウ収率との関係
を示すグラフである。 2;排煙脱硫装置、4;水洗塔、7;洗浄水貯
槽、8;ポンプ、12;脱湿器、17;間接加熱
器、18;還元反応器。
FIG. 1 is a flow sheet showing an example of the present invention, and FIG. 2 is a graph showing the relationship between reduction reaction temperature and sulfur yield. 2; flue gas desulfurization device, 4; water washing tower, 7; washing water storage tank, 8; pump, 12; dehumidifier, 17; indirect heater, 18; reduction reactor.

Claims (1)

【特許請求の範囲】[Claims] 1 SO2含有排ガスを炭素質粒の移動床が存在す
る反応器に導入して、700〜900℃の温度範囲で排
ガス中のSO2を蒸気状イオウに還元する方法に於
て、SO2含有排ガスを反応器に導入するに先立つ
て、水洗浄した後、脱湿することを特徴とする排
ガス中のSO2をイオウに還元する方法。
1 In a method for reducing SO 2 in the exhaust gas to vaporized sulfur in a temperature range of 700 to 900°C by introducing the SO 2 -containing exhaust gas into a reactor in which a moving bed of carbonaceous particles exists, the SO 2 -containing exhaust gas A method for reducing SO 2 in exhaust gas to sulfur, which comprises washing with water and dehumidifying SO 2 before introducing it into a reactor.
JP5505779A 1979-05-04 1979-05-04 Method for reducing so2 in waste gas to sulfur Granted JPS55147132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5505779A JPS55147132A (en) 1979-05-04 1979-05-04 Method for reducing so2 in waste gas to sulfur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5505779A JPS55147132A (en) 1979-05-04 1979-05-04 Method for reducing so2 in waste gas to sulfur

Publications (2)

Publication Number Publication Date
JPS55147132A JPS55147132A (en) 1980-11-15
JPS6111650B2 true JPS6111650B2 (en) 1986-04-04

Family

ID=12988041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5505779A Granted JPS55147132A (en) 1979-05-04 1979-05-04 Method for reducing so2 in waste gas to sulfur

Country Status (1)

Country Link
JP (1) JPS55147132A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647730U (en) * 1979-09-20 1981-04-28
JPH0716580B2 (en) * 1985-10-15 1995-03-01 住友重機械工業株式会社 Dry flue gas desulfurization method

Also Published As

Publication number Publication date
JPS55147132A (en) 1980-11-15

Similar Documents

Publication Publication Date Title
US5756058A (en) Process for purifying sulfur oxides-containing gas
US2729543A (en) Removal of sulfur dioxide from gases containing the same
KR101839225B1 (en) Method for purification of coke oven gas and device for purification of coke oven gas
WO2021232692A1 (en) Method for low temperature adsorption and desulfurization of flue gas
US3905783A (en) Method of purifying an air or gas flow of vaporous or gaseous impurities adsorbable in filters
JPS6111650B2 (en)
JPS60106532A (en) Regeneration of adsorbent for boron trichloride
JP2001081479A (en) Method and apparatus for purifying coke oven gas
US4135891A (en) Purifying exhaust gases containing organic and inorganic materials
US3880617A (en) Process for preparing purified coke oven gas
US5607594A (en) Process for purifying an aqueous methyldiethanolamine solution
US4206187A (en) Process for removing sulfur dioxide from gas
JPS60168514A (en) Treatment of solvent-containing gas
JP2000079320A (en) Advanced treatment of exhaust gas from incinerator
JP5094020B2 (en) Method for treating ammonia-containing exhaust gas
US1972883A (en) Recovery of elemental sulphur
JPH0693274A (en) Treatment of waste liquor from desulfurization and decynization of coke oven gas
JPH0824818B2 (en) Exhaust gas purification method
JPH05184862A (en) Method for selective cleaning and removal of h2s
JPH0521008B2 (en)
US3607003A (en) Method of removing acetone and acidic gases from gaseous mixtures
JPS5864117A (en) Dry stack-gas desulfurization process
JPS63256117A (en) Method for removing water soluble impurity incorporated in gas containing high-concentration sulfur compound
JPS59150536A (en) Regeneration of activated carbon for desulfurization
SU586120A1 (en) Method of purifying gaseous elemental sulphur from arsenic