JPS6111650A - Ion selective detector - Google Patents

Ion selective detector

Info

Publication number
JPS6111650A
JPS6111650A JP59132641A JP13264184A JPS6111650A JP S6111650 A JPS6111650 A JP S6111650A JP 59132641 A JP59132641 A JP 59132641A JP 13264184 A JP13264184 A JP 13264184A JP S6111650 A JPS6111650 A JP S6111650A
Authority
JP
Japan
Prior art keywords
electrode
hollow fiber
reference electrode
porous hollow
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59132641A
Other languages
Japanese (ja)
Inventor
Tokihiko Masuzawa
増沢 時彦
Yoshitaka Kageyama
義隆 景山
Chiyuki Nagatsuma
長妻 千幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP59132641A priority Critical patent/JPS6111650A/en
Publication of JPS6111650A publication Critical patent/JPS6111650A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To measure even a slight amt. of a specimen liquid in an ion selective electrode having a reference electrode and metallic indicating electrode by consisting of a reference electrode of an electrode sealed together with a gelated electrolyte into the hollow part of a porous hollow fiber. CONSTITUTION:One end of the electrode 1 is connected to a sheathed lead wire 5. An electrical insulating layer 4 is provided together with the wire 5 and the electrode part 1. The electrode 1 and the gelated electrolyte 2 are packed into the hollow part of the porous hollow fiber 3. Since the fine pores of the porous hollow yarn are made liquid connecting part by covering at least the reference electrode of the electrode 1 with the porous hollow yarn, the liquid connecting part is made to have a large area. The electrode is thus made smaller and even if the specimen liquid is correspondingly smaller in amt., the data having substantially high accuracy is obtd. The indicating electrode is denoted by 9, the reference electrode by 10, the specimen liquid by 8 and a potentiometer by 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微量の被検液でも測定可能な電位差法によるイ
オン選択性検知器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion-selective detector using a potentiometric method that is capable of measuring even a trace amount of a sample liquid.

〔従来の技術〕[Conventional technology]

溶液中のイオンのイオン活量や濃度を測定するには対象
物に応じて参照電極等の形状1寸法等異なるが、銀/酸
化銀等の電極が液絡部を有する容器内に電解質液ととも
に封入されてなる参照電極と指示電極とを被検液中に浸
漬し、両電極間の電位差を測定する方法が一般的に用い
られる。測定において安定した電位差を測定するためK
は液絡部は被検液と電解質の混合が少なく、かつ電気的
接続が充分可能である必要がある。
To measure the ionic activity and concentration of ions in a solution, the shape and dimensions of the reference electrode etc. differ depending on the target object, but an electrode such as silver/silver oxide is placed together with an electrolyte solution in a container with a liquid junction. A commonly used method is to immerse a sealed reference electrode and indicator electrode in a test liquid and measure the potential difference between the two electrodes. K to measure a stable potential difference during measurement
The liquid junction must have minimal mixing of the test liquid and electrolyte, and must be capable of sufficient electrical connection.

従来より該液絡部としては電極先端が収納された容器の
下部に開口部を設け、そこに素焼板。
Conventionally, as the liquid junction part, an opening is provided at the bottom of a container in which the electrode tip is housed, and a clay plate is placed in the opening.

グラスフィルター等の多孔質板をはめこんだもの°、上
記開口部を小さくしてオープンの状態にしたもの、スリ
ガラス等のすり合わせ部分な液絡部にするもの等がある
There are those in which a porous plate such as a glass filter is fitted, those in which the opening is made smaller so that it is in an open state, and those in which the liquid junction is made of ground glass or the like.

一方、生化学検査、稀少液の分析等で侵襲の小さなセン
サ、微量被検液の分析に対する要望もつよいが、従来の
参照電極ではこれを満足させることはできず、参照電極
を微小化しようとしても上記の構造のものは容器の構造
あるいは素焼板、グラスフィルタ等の微小化、装着が困
難なことから微小化に限界があった。また微小化ができ
たとしても液絡部がそれに応じて非常に小さくなるため
電解液と被検液の接触面積不足から電極の内部抵抗が大
きくなり測定が困難になるため微小化された参照電極は
要望されながらも実用化されていない現状にある。
On the other hand, there are demands for less invasive sensors for biochemical tests, analysis of dilute liquids, etc., and for analysis of minute amounts of test liquid, but conventional reference electrodes cannot satisfy these needs, and efforts are being made to miniaturize reference electrodes. However, in the case of the above-mentioned structure, there is a limit to miniaturization due to the difficulty in miniaturizing and mounting the structure of the container, the unglazed plate, the glass filter, etc. Furthermore, even if miniaturization is possible, the liquid junction will be correspondingly very small, and the internal resistance of the electrode will increase due to the lack of contact area between the electrolyte and the test liquid, making measurement difficult. Although this is desired, it has not yet been put into practical use.

〔発明の目的〕[Purpose of the invention]

本発明の目的はこのような状況に鑑み、生化学検査、環
境管理等向けにイオン活量、濃度を測定するための、微
量の被検液でも測定可能なイオン選択性電極を提供する
ことにある。
In view of this situation, an object of the present invention is to provide an ion-selective electrode capable of measuring even a trace amount of a sample liquid for measuring ion activity and concentration for biochemical tests, environmental management, etc. be.

〔発明の構成〕[Structure of the invention]

即ち本発明の要旨は参照電極と金属指示電極とを有する
イオン選択性電極において参照電極がゲル化電解質とと
もに多孔質中空繊維の中空部に封入された電極からなる
ことを特徴とするイオン選択性検知器にある。
That is, the gist of the present invention is an ion-selective detection electrode having a reference electrode and a metal indicator electrode, wherein the reference electrode is comprised of an electrode enclosed in a hollow part of a porous hollow fiber together with a gelled electrolyte. It's in the container.

本発明において参照電極に用いる電極とじては銀/塩化
銀電極が好ましく用いられるが、通常参照電極として用
い得るものであればどのような電極も用いることができ
る。該電極は径30μm乃至5龍のものが好ましく用い
られる。もちろんこの範囲以外のものも用いることがで
きるが径が太くなるとその径に応じて微量検液での測定
が困難になり、これより細くなると作成及び取扱いが困
難になる傾向にある。電解質は電極を構成する素材との
かおあいで適宜選択されるがKCI 、 K、804.
 NaC1、Nat804等を用いることができる。電
解質をゲル化させるためには寒天、各種多糖類等の天然
物、ポリアクリルアミド等の合成高分子等ゲル化能を有
し、測定対象とするイオンや妨害イオンを含有しないも
のであればどのようなものも用い得る。電解質濃度は飽
和溶液となっていることが好ましい。
In the present invention, a silver/silver chloride electrode is preferably used as the reference electrode, but any electrode that can normally be used as a reference electrode can be used. The electrode preferably has a diameter of 30 μm to 5 μm. Of course, diameters outside this range can also be used, but as the diameter becomes larger, it becomes difficult to measure using a trace amount of test solution, and as the diameter becomes smaller, it tends to become difficult to prepare and handle. The electrolyte is appropriately selected depending on the material constituting the electrode.KCI, K, 804.
NaCl, Nat804, etc. can be used. To gel the electrolyte, use agar, natural products such as various polysaccharides, synthetic polymers such as polyacrylamide, etc., as long as they have gelling ability and do not contain the ions to be measured or interfering ions. can also be used. The electrolyte concentration is preferably a saturated solution.

本発明においては電解質をゲル化させることにより中空
繊維から電解質が洩れ出ることが少いという特徴がある
The present invention is characterized in that by gelling the electrolyte, leakage of the electrolyte from the hollow fibers is reduced.

本発明において用いられる多孔質中空繊維としては該電
極とゲル化電解質を収納できるものであればどのような
ものも用いられる。
Any porous hollow fiber can be used as long as it can accommodate the electrode and gelled electrolyte.

生体挿入用に用いる場合には120℃温熱滅菌に耐えら
れるものであることが好ましく、この素材の例としては
ポリテトラフルオロエチレン、ポリスルホン、ポリイミ
ド、セルロース。
When used for insertion into a living body, it is preferable that the material can withstand thermal sterilization at 120°C, and examples of this material include polytetrafluoroethylene, polysulfone, polyimide, and cellulose.

耐熱変性ポリエチレン等を挙げることができるまた、多
孔質中空繊維は使用にあたっては親水性である必要があ
り、素材自体が親水性であるか、素材自体が疎水性の場
合は親水化されている必要がある。
Examples include heat-resistant modified polyethylene, etc. In addition, porous hollow fibers must be hydrophilic when used, and the material itself must be hydrophilic, or if the material itself is hydrophobic, it must be made hydrophilic. There is.

多孔質中空糸としては壁膜の透過性をガス透過性で示し
た場合10’ A’/771” ・hr・0.5 at
m以上であることが好ましい。
As a porous hollow fiber, when the permeability of the wall membrane is expressed as gas permeability, it is 10'A'/771"・hr・0.5 at
It is preferable that it is more than m.

指示電極としては例えば酸化パラジウム、酸化イリジウ
ム、アンチモン等を用いることができる。
As the indicator electrode, for example, palladium oxide, iridium oxide, antimony, etc. can be used.

次に本発明の参照電極の作成方法、構成を図面を用いて
さらに詳しく説明する。
Next, the method and structure of the reference electrode of the present invention will be explained in more detail with reference to the drawings.

第1図は本発明の1実施態様である参照電極の縦断面図
を示し、第2図は参照電極と金属指示電極を用いるイオ
ン濃度測定の概念図を示す。
FIG. 1 shows a longitudinal cross-sectional view of a reference electrode that is one embodiment of the present invention, and FIG. 2 shows a conceptual diagram of ion concentration measurement using a reference electrode and a metal indicator electrode.

第3図は参照電極と指示電極とを一体化したイオン選択
性検知器例の縦断面図を示す。第4図は水素イオン濃度
の測定例である。
FIG. 3 shows a longitudinal cross-sectional view of an example of an ion-selective detector in which a reference electrode and an indicator electrode are integrated. FIG. 4 is an example of measurement of hydrogen ion concentration.

電極1の一端をあらかじめシース付きリード線5と接続
する。接続部はリード線5、電極部1ともに電気絶縁層
4を設けであることが好ましい。電気絶縁層4としては
例えばポリテトラフルオロエチレン、ポリエチレン、ポ
リプロピレン等が好ましく用いられるがこれに限定され
るものではない。この電極1とゲル化電解質2とを多孔
質中空繊維3の中空部分に詰める。この場合電極1はそ
の全体が中空繊維3の中空部に入るようにする。次いで
多孔質中空繊維3のリード線側の端6を電気絶縁層4を
包囲するように密閉する。多孔質中空繊維3の他端7も
密閉する。この端7は電極挿入前に密閉してあってもよ
い。この密閉法は電気絶縁性の樹脂等を。
One end of the electrode 1 is connected to a sheathed lead wire 5 in advance. Preferably, both the lead wire 5 and the electrode section 1 are provided with an electrically insulating layer 4 at the connection section. As the electrical insulating layer 4, for example, polytetrafluoroethylene, polyethylene, polypropylene, etc. are preferably used, but the material is not limited thereto. This electrode 1 and gelled electrolyte 2 are packed into the hollow portion of the porous hollow fiber 3. In this case, the entirety of the electrode 1 is inserted into the hollow portion of the hollow fiber 3. Next, the end 6 of the porous hollow fiber 3 on the lead wire side is sealed so as to surround the electrical insulating layer 4. The other end 7 of the porous hollow fiber 3 is also sealed. This end 7 may be sealed before electrode insertion. This sealing method uses electrically insulating resin, etc.

用いてもよく、多孔質中空繊維が熱可塑性樹脂からなる
場合は融着でもよい。このようにして液絡部分が多孔質
中空繊維3の多孔質中空糸のみで形成された参照電極が
得られる。
Alternatively, if the porous hollow fibers are made of thermoplastic resin, fusion bonding may be used. In this way, a reference electrode in which the liquid junction portion is formed only of the porous hollow fibers of the porous hollow fibers 3 is obtained.

〔実施例〕〔Example〕

以下に実施例を用いて本発明をさらに詳しく説明する。 The present invention will be explained in more detail below using Examples.

実施例1 鈴木等(分析化学30巻11号722〜726頁(19
81))の方法に準じて直径80μmの銀線(長さ8 
crtt )から銀/塩化銀電極を作成した。即ち0.
5Nの塩化ナトリウム水溶液と0.5Nの硝酸銀水溶液
を調製した。直径80μmの鋼線を塩化ナトリウム水溶
液と硝酸銀水溶液に交互に浸漬することを繰返した。1
0回程度で全体が黒くなり、表面に塩化銀が塗着した銀
線かもなる電極1が得られた。これを約3時間乾燥した
。ついで該電極1の一端にリード線5を接続し、接続部
を完全にカバーするようにポリエチレンからなる絶縁層
4で被覆した。別途4N塩化カリウム水溶液を寒天を用
いてゲル化させて調製したゲル化電解質2とともに該電
極を一端7をシリコンゴムで密閉した後膜面をエタノー
ルで親水化した内径200μm、長さ8crrLの多孔
質ポリプロピレン中空繊維3(KPF;商品名、三菱レ
イヨン(株)製)の中空部に挿入し、前記絶縁層4が中
空繊維3の端に位置するようにした。その状態で中空繊
維の両端6,7をシリコンゴムで密閉して参照電極10
を得た。
Example 1 Suzuki et al. (Analytical Chemistry Vol. 30, No. 11, pp. 722-726 (19
A silver wire with a diameter of 80 μm (length 8
A silver/silver chloride electrode was made from (Crtt). That is, 0.
A 5N aqueous sodium chloride solution and a 0.5N aqueous silver nitrate solution were prepared. A steel wire with a diameter of 80 μm was repeatedly immersed in an aqueous sodium chloride solution and an aqueous silver nitrate solution. 1
After about 0 cycles, the entire surface became black, and an electrode 1 consisting of a silver wire coated with silver chloride was obtained. This was dried for about 3 hours. Next, a lead wire 5 was connected to one end of the electrode 1, and the connected portion was covered with an insulating layer 4 made of polyethylene so as to completely cover the connected portion. A porous material with an inner diameter of 200 μm and a length of 8 crrL was made by sealing one end 7 with silicone rubber and making the membrane surface hydrophilic with ethanol. It was inserted into the hollow part of a polypropylene hollow fiber 3 (KPF; trade name, manufactured by Mitsubishi Rayon Co., Ltd.) so that the insulating layer 4 was located at the end of the hollow fiber 3. In this state, both ends 6 and 7 of the hollow fiber are sealed with silicone rubber, and the reference electrode 10 is
I got it.

一方指示電極としては直径80μm、長さ10αのパラ
ジウム線の酸化処理を施し、酸化パラジウム膜を形成さ
せて作成した指示電極9の一端にリード線を接続し、参
照電極用電極1と同様にポリエチレンからなる絶縁層を
形成した。
On the other hand, as an indicator electrode, a lead wire was connected to one end of an indicator electrode 9 made by oxidizing a palladium wire with a diameter of 80 μm and a length of 10 α to form a palladium oxide film. An insulating layer was formed.

指示電極9と参照電極10を被検液に浸漬し、それぞれ
の電極に接線したリード線の間に抵抗12を入れ、電位
差計によって両電極間に発生した電位差を読み取った。
The indicator electrode 9 and the reference electrode 10 were immersed in the test liquid, a resistor 12 was inserted between the lead wires tangential to each electrode, and the potential difference generated between the two electrodes was read with a potentiometer.

種々のpHの被検液を調製し、これを測定して得られた
出力電位差をpH値に対・してプロットしたところ、第
4図に示すように60 mV/pl’l  となり、理
論値とほぼ一致した傾きを得た。
When test solutions with various pH values were prepared and the resulting output potential difference was plotted against the pH value, it was 60 mV/pl'l as shown in Figure 4, which is the theoretical value. We obtained a slope that was almost consistent with that.

また、容器を小型にすることにより1ゴの被検液でも測
定できた。
In addition, by making the container smaller, it was possible to measure even one test liquid.

実施例2 より小型のイオン選択性検知器を得るべく第3図に示し
た検知器を作成した。
Example 2 In order to obtain a smaller ion-selective detector, a detector shown in FIG. 3 was created.

即ち、実施例1と同様に酸化処理した直径80μm、長
さIQcmの酸化パラジウム指示電極9を作成し、一端
にリード線5を接続、指示電極9他端約5朋を残しリー
ド線の一部を含めポリテトラフルオロエチレンチューブ
をかぶせ、これを収縮させることにより絶縁層13を形
成した。
That is, a palladium oxide indicator electrode 9 having a diameter of 80 μm and a length of IQ cm was prepared in the same manner as in Example 1, and the lead wire 5 was connected to one end, leaving about 5 mm at the other end of the indicator electrode 9. The insulating layer 13 was formed by covering the tube with a polytetrafluoroethylene tube and shrinking the tube.

一方実施例1と同様にして作成し、一端にリード線を接
続し、接続部に絶縁層を設けた直径80μ 、長さ8c
mの銀/塩化銀電極1を得た。
On the other hand, it was made in the same manner as in Example 1, with a lead wire connected to one end and an insulating layer provided at the connection part, with a diameter of 80 μm and a length of 8 cm.
A silver/silver chloride electrode 1 of m was obtained.

該電極1と指示電極9を4N塩化カリウムの寒天液2と
ともに内径300μ、長さ8CrrLのあらかじめ親水
化処理した多孔質ポリエチレン中空繊維3 (EHF 
;商品名、三菱レイヨン@)製)の中空部に詰め、指示
電極の先端約1のが中空繊維3の外に出て、かつ両電極
のリード線接続部を被覆した絶縁部が該中空繊維3の他
端に位置イるようにした。
The electrode 1 and the indicator electrode 9 were connected together with a 4N potassium chloride agar solution 2 to a porous polyethylene hollow fiber 3 (EHF) with an inner diameter of 300 μm and a length of 8 CrrL that had been previously treated to make it hydrophilic.
; product name, made by Mitsubishi Rayon @)), the tip of the indicator electrode (approx. I placed it at the other end of 3.

この状態で中空繊維の両端をシリコンゴムで密封してイ
オン選択性検知器を得た。
In this state, both ends of the hollow fiber were sealed with silicone rubber to obtain an ion-selective detector.

各電極につながるリード線の間に実施例1と同様に抵抗
と電位差計を並列につなぎ、pHの異なる種々の被検液
を用いてpHと出力電位の相関を調べたところ59.5
 mV/ pHの傾きとなり理論式とほぼ一致した。
A resistor and a potentiometer were connected in parallel between the lead wires connected to each electrode as in Example 1, and the correlation between pH and output potential was investigated using various test solutions with different pH values.
The slope of mV/pH was almost consistent with the theoretical formula.

このイオン選択性検知器は被検液量が0.5 dと小量
でも充分精度をもって測定できた。
This ion-selective detector was able to measure with sufficient accuracy even when the amount of sample liquid was as small as 0.5 d.

〔効果〕〔effect〕

本発明のイオン選択性電極は少なくとも参照電極を多孔
質中空糸で被覆し、多孔質中空糸の微細孔を液絡部にし
たため液絡部を大きな面積とすることが可能となり、し
たがって電極を小さくしてそれに伴ない被検液が少なく
ても充分精度の高いデータが得られるという特徴を有す
る。
In the ion-selective electrode of the present invention, at least the reference electrode is covered with a porous hollow fiber, and the micropores of the porous hollow fiber are used as the liquid junction, so the liquid junction can have a large area, and the electrode can therefore be made small. Therefore, it has the characteristic that data with sufficiently high accuracy can be obtained even with a small amount of sample liquid.

また、ガラスフィルターや素焼等脆い材料を使用してい
ないため取扱いが容易となり、既存の多孔質膜を用い得
るため安価に作成できるという優れた検知器である。
In addition, it is an excellent detector that is easy to handle because it does not use fragile materials such as glass filters or unglazed ceramics, and can be manufactured at low cost because it can use existing porous membranes.

さらに小型されたことにより生体の血管内に直接挿入し
、常時測定することも可能となっている。
Furthermore, due to its miniaturization, it is now possible to insert it directly into the blood vessels of a living body and perform constant measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様である参照電極の縦断面図を
示し、第2図はイオン濃度測定の概念図を示し、第3図
は参照電極と指示電極を一体化したイオン選択性検知器
の縦断面図を示す。 第4図は水素イオン濃度の測定例である。 1:電極、2ニゲル化電解質、3:多孔質中空繊維、4
:絶縁層、5:リード線、6,7:多孔質中空繊維端の
密閉部、8:被検液、9:指示電極、10:参照電極、
11:抵抗、】2;電位差計、13:絶縁層 葬、1図 地3凹
Fig. 1 shows a longitudinal cross-sectional view of a reference electrode that is an embodiment of the present invention, Fig. 2 shows a conceptual diagram of ion concentration measurement, and Fig. 3 shows an ion-selective detection that integrates a reference electrode and an indicator electrode. A longitudinal cross-sectional view of the vessel is shown. FIG. 4 is an example of measurement of hydrogen ion concentration. 1: Electrode, 2 Nigelling electrolyte, 3: Porous hollow fiber, 4
: insulating layer, 5: lead wire, 6, 7: sealed part at the end of porous hollow fiber, 8: test liquid, 9: indicator electrode, 10: reference electrode,
11: Resistance, ]2; Potentiometer, 13: Insulating layer, 1 figure, 3 concave

Claims (1)

【特許請求の範囲】 1、参照電極と金属指示電極とを有するイオン選択性検
知器において参照電極が両端を密封された多孔質中空繊
維の中空部にゲル化電解質とともに封入された電極から
なることを特徴とするイオン選択性検知器。 2、さらに、該中空繊維内にある部分はすべて絶縁被覆
され、中空繊維外に出た先端部分に被覆を有さない指示
電極も該中空繊維中空部に挿入されていることを特徴と
する特許請求の範囲第1項記載のイオン選択性検知器。
[Claims] 1. In an ion-selective detector having a reference electrode and a metal indicator electrode, the reference electrode consists of an electrode sealed together with a gelled electrolyte in the hollow part of a porous hollow fiber whose both ends are sealed. An ion selective detector featuring: 2. Further, a patent characterized in that the entire portion inside the hollow fiber is coated with insulation, and an indicator electrode whose tip portion protruding outside the hollow fiber is not coated is also inserted into the hollow portion of the hollow fiber. An ion selective detector according to claim 1.
JP59132641A 1984-06-27 1984-06-27 Ion selective detector Pending JPS6111650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132641A JPS6111650A (en) 1984-06-27 1984-06-27 Ion selective detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132641A JPS6111650A (en) 1984-06-27 1984-06-27 Ion selective detector

Publications (1)

Publication Number Publication Date
JPS6111650A true JPS6111650A (en) 1986-01-20

Family

ID=15086073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132641A Pending JPS6111650A (en) 1984-06-27 1984-06-27 Ion selective detector

Country Status (1)

Country Link
JP (1) JPS6111650A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290954A (en) * 1987-05-22 1988-11-28 Terumo Corp Gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290954A (en) * 1987-05-22 1988-11-28 Terumo Corp Gas sensor

Similar Documents

Publication Publication Date Title
US3957612A (en) In vivo specific ion sensor
US4197853A (en) PO2 /PCO2 sensor
US3498899A (en) Electrochemical electrode assembly
US4536274A (en) pH and CO2 sensing device and method of making the same
US3719576A (en) Electrode for measuring co2 tension in blood and other liquid and gaseous environments
CA1324418C (en) Reference electrode
US8961758B2 (en) Ion-selective electrode
US3911901A (en) In vivo hydrogen ion sensor
US3709810A (en) Hydrogen ion selective sensor and electrode therefor
US5011588A (en) Ion selective dip electrode assembly
JPS6351503B2 (en)
JPH04343065A (en) Biosensor
US4981567A (en) Lithium-salt reference half-cell for potentiometric determinations
JPS6111650A (en) Ion selective detector
US20050115833A1 (en) Self-condensing pH sensor
GB1568644A (en) Combination electrode assemblies
JPH0371661B2 (en)
US9863908B2 (en) Low drift ion selective electrode sensors
JPH0416216Y2 (en)
US5013421A (en) Ion-selective electrodes
GB2089997A (en) Replaceable junctions for reference electrodes
JP2741509B2 (en) Ion sensor
JPS6162855A (en) Electrode for measuring concentration of electrochemically active substance
CA2313795A1 (en) Sensor devices and analytical method
EP0582636B1 (en) Solid-state Reference Elektrode for a Ceramic Sensor