JP2741509B2 - Ion sensor - Google Patents

Ion sensor

Info

Publication number
JP2741509B2
JP2741509B2 JP3080615A JP8061591A JP2741509B2 JP 2741509 B2 JP2741509 B2 JP 2741509B2 JP 3080615 A JP3080615 A JP 3080615A JP 8061591 A JP8061591 A JP 8061591A JP 2741509 B2 JP2741509 B2 JP 2741509B2
Authority
JP
Japan
Prior art keywords
ion
electrode
internal
liquid
sensitive membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3080615A
Other languages
Japanese (ja)
Other versions
JPH04291142A (en
Inventor
隆史 加藤
淳一 徳本
汀 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP3080615A priority Critical patent/JP2741509B2/en
Publication of JPH04291142A publication Critical patent/JPH04291142A/en
Application granted granted Critical
Publication of JP2741509B2 publication Critical patent/JP2741509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は医療計測(臨床検査)、
水質検査、食品工業や化学工業におけるプロセス管理な
どに利用され、特に使い捨て用途に適したイオンセンサ
に関する。
The present invention relates to medical measurement (clinical examination),
The present invention relates to an ion sensor used for water quality inspection, process management in the food industry and the chemical industry, and particularly suitable for disposable use.

【0002】[0002]

【従来の技術】イオンセンサを構成するイオン選択電極
や参照電極としては、電解質溶液を内部に封入した内部
液構造のものが用いられている。この内部液構造のもの
は、精度はすぐれているが、保守・管理が必要であると
共に小型化が困難である。その点を改善するため、内部
液をゲル化等により固化したり、内部液を用いないよう
にする試みとして次の報告がある。特開昭 63−75
551、同63−26566、同62−218850、
同62−47546など。
2. Description of the Related Art As an ion selection electrode and a reference electrode constituting an ion sensor, those having an internal liquid structure in which an electrolyte solution is sealed are used. This internal liquid structure is excellent in accuracy, but requires maintenance and management and is difficult to miniaturize. In order to improve that point, the following reports have been made on attempts to solidify the internal liquid by gelation or the like and to avoid using the internal liquid. JP-A-63-75
551, 63-56666, 62-218850,
62-47546 and the like.

【0003】[0003]

【従来技術の問題点】しかし、ゲル化剤や吸水性樹脂を
用いて内部液をゲル化したもの(特開昭63−2656
6、同62−218850、同62−47546)は、
内部液性状を完全に維持するのは難しく、長期間にわた
る保存においては、測定精度が劣化する。一方、完全に
固体状の電極(特開昭63−75551)では、電位の
精度やその出力電位の安定性(再現性、個体差等)の点
で従来の内部液を用いるものよりは性能が劣る。
However, the internal solution is gelled using a gelling agent or a water-absorbing resin (JP-A-63-2656).
6, 62-218850, 62-47546)
It is difficult to completely maintain the internal liquid properties, and the measurement accuracy deteriorates during long-term storage. On the other hand, a completely solid electrode (JP-A-63-75551) has a higher performance than a conventional electrode using an internal liquid in terms of potential accuracy and stability of output potential (reproducibility, individual difference, etc.). Inferior.

【0004】イオンセンサの用途のひとつとして、血液
や尿中の電解質成分の分析があるが、この場合、センサ
の使い捨て使用が衛生上望ましく、また高い精度と保存
安定性が要求されている。しかし、従来技術において
は、満足すべきセンサが得られていない。
One application of the ion sensor is to analyze electrolyte components in blood or urine. In this case, it is desirable to use the sensor disposably for sanitary purposes, and high accuracy and storage stability are required. However, in the prior art, a satisfactory sensor has not been obtained.

【0005】[0005]

【問題点を解決するための手段】本発明のイオン選択電
極は内部液をイオン感応膜及び内部極から隔離する隔膜
であって外的操作によって前記隔離作用を消失し得るも
のを備えていることを特徴とする。又、参照電極につい
ては、前記イオン感応膜を液絡部に代替すればよい。更
に、こうしたイオン選択電極や参照電極を使用すること
によってイオンセンサを構成できる。
The ion-selective electrode of the present invention is provided with a diaphragm for isolating the internal liquid from the ion-sensitive membrane and the internal electrode, which can eliminate the above-mentioned isolation action by an external operation. It is characterized by. As for the reference electrode, the ion-sensitive membrane may be replaced with a liquid junction. Further, an ion sensor can be configured by using such an ion selection electrode and a reference electrode.

【0006】[0006]

【作用】不使用時においては、隔膜によってイオン感応
膜(参照電極の場合は液絡部)及び内部極と内部液とを
隔離し、この状態で保管することにより、感応膜及び内
部極の変化を抑える。即ち、従来のように不使用時にお
いてもイオン感応膜と内部液とが接触している場合、感
応膜成分が内部液中に溶出したり、感応膜のイオンと内
部液のイオンとがイオン交換して感応膜の組成が変化し
て、イオン感応性、従って出力信号に変動をきたす。特
に、イオン感応膜が固体電解質からなるイオン選択電極
にあっては、その感応膜(固体電解質)の劣化が大き
い。又、内部極と内部液とが接触している場合、通常の
内部極であるAg/AgCl電極を例にとれば、AgC
が内部液中に溶出してやはり出力信号に変動をきた
す。しかし、本発明にあっては、長期間にわたる保存に
おいても、こうしたイオン感応膜及び内部極の変化が起
こらず、その精度を高く維持できる。
When not in use, the ion-sensitive membrane (liquid junction in the case of the reference electrode) and the internal electrode are separated from the internal liquid by a diaphragm, and stored in this state to change the sensitive membrane and the internal electrode. Suppress. That is, when the ion-sensitive membrane and the internal liquid are in contact with each other even when not in use as in the conventional case, the components of the sensitive membrane are eluted into the internal liquid, or the ions of the sensitive membrane and the ions of the internal liquid are exchanged. As a result, the composition of the sensitive film changes, causing fluctuations in the ion sensitivity and thus the output signal. In particular, in the case of an ion selective electrode in which the ion-sensitive membrane is made of a solid electrolyte, the sensitive membrane (solid electrolyte) is greatly deteriorated. When the internal electrode and the internal liquid are in contact with each other, taking an Ag / AgCl electrode, which is a normal internal electrode, as an example, AgC
l elutes into the internal liquid, again causing the output signal to fluctuate. However, in the present invention, such changes in the ion-sensitive membrane and the internal electrode do not occur even during long-term storage, and the accuracy can be maintained high.

【0007】そして使用時には、この隔膜を外的操作に
より破壊又は除去等させてその隔離作用を消失せしめる
ことによってイオン感応膜と内部極との間(参照電極の
場合は液絡部と内部極との間)に内部液を流入させる。
そして測定試料液をイオン選択電極のイオン感応膜及び
参照電極の液絡部に滴下等して測定を行なう。
At the time of use, the diaphragm is destroyed or removed by an external operation so as to eliminate its sequestering action, so that the separation between the ion-sensitive membrane and the inner electrode (in the case of the reference electrode, the liquid junction and the inner electrode is not performed). During the period).
Then, the measurement is performed by dropping the measurement sample liquid onto the ion-sensitive membrane of the ion selection electrode and the liquid junction of the reference electrode.

【0008】[0008]

【実施例】図1に示す様に、柔軟性のあるチューブ
(1)(シリコーンゴムなど)の側面に設けた穴に、イ
オン感応膜(2)としてナシコンセラミックをはめ込
み、内部液(3)として飽和AgCl−1M−KCl溶
液を封入したガラスアンプル(4)及び液浸透材(5)
例えば綿状パルプをチューブ(1)の中に挿入後、銀/
塩化銀電極(6)を入れて封止し、ナトリウムイオン電
極とする。尚、銀/塩化銀電極(6)の形成は、Ag製
の円板表面に塩酸を接触させた状態で電流を流しAgC
lを析出させることにより行った。一方、ナシコンセラ
ミックスの代わりに液絡部(2’)として多孔質アルミ
ナセラミックをはめ込んだものを同様にして作製し、参
照電極とする。この2つの電極を並べて一対のイオンセ
ンサを構成する。銀/塩化銀電極(6)の外部端子部
(7)をエレクトロメータ(図示せず)に接続し、次の
ようにして2つの電極間の電位差を測定した。まず、ガ
ラスアンプル(4)の挿入されているチューブ(1)部
分を曲げて、中のガラスアンプル(4)を破壊し、液浸
透材(5)によってイオン感応膜(2)と銀/塩化銀電
極(6)との間に内部液を浸み込ませる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a flexible tube (1) (silicone rubber or the like) is fitted with a hole formed in a side surface of a flexible tube (1). Glass ampoule (4) containing a saturated AgCl-1M-KCl solution as a material and a liquid osmotic material (5)
For example, after inserting cotton-like pulp into the tube (1), silver /
A silver chloride electrode (6) is put in and sealed to form a sodium ion electrode. The silver / silver chloride electrode (6) was formed by passing an electric current while contacting hydrochloric acid on the surface of an Ag disc to produce AgC.
This was done by precipitating l. On the other hand, a material in which a porous alumina ceramic is inserted as a liquid junction (2 ') instead of the NASICON ceramic is similarly manufactured and used as a reference electrode. The two electrodes are arranged to form a pair of ion sensors. The external terminal (7) of the silver / silver chloride electrode (6) was connected to an electrometer (not shown), and the potential difference between the two electrodes was measured as follows. First, the tube (1) into which the glass ampule (4) is inserted is bent to break the glass ampule (4) inside, and the ion-sensitive film (2) and the silver / silver chloride are separated by the liquid permeable material (5). The internal liquid is impregnated between the electrode (6).

【0009】次いでイオン感応部(2)と液絡部
(2’)とを同時に覆うように測定液を滴下して電位を
測定した。各種濃度のNaCl溶液に対して得られた応
答は、ネルンストの式に従うものであった(図3)。応
答時間(電位が安定するまでの時間)も滴下後約30〜
60秒と短かった。また、100mMのNaCl溶液に
ついて10個の上記実施例センサを用いて出力電位を調
べた。尚、比較例の電極として、全固体型のナトリウム
イオン選択電極(イオン感応膜がナシコンセラミック、
内部極がカーボン樹脂)及び市販の参照電極を組み合わ
せたものを用い、両電極を試料液に浸漬することによ
り、同様に10個の比較例センサについても出力電位を
調べた。その結果、本実施例センサについては、個々の
センサ間の出力電位のばらつき(変動係数CV)も0.
3%以内であり、比較例センサ間のばらつき(約6%)
に比べて格段に優れていた(表1)。
Next, a measurement liquid was dropped so as to simultaneously cover the ion sensitive part (2) and the liquid junction part (2 '), and the potential was measured. The responses obtained for NaCl solutions of various concentrations followed the Nernst equation (FIG. 3). The response time (time until the potential is stabilized) is about 30 to
It was as short as 60 seconds. The output potential of a 100 mM NaCl solution was examined using ten sensors of the above-described embodiment. In addition, as an electrode of the comparative example, an all solid type sodium ion selective electrode (the ion-sensitive membrane was NASICON ceramic,
Using a combination of an internal electrode made of a carbon resin) and a commercially available reference electrode, both electrodes were immersed in a sample solution, and the output potential was similarly examined for ten comparative example sensors. As a result, in the sensor according to the present embodiment, the variation (variation coefficient CV) of the output potential between the individual sensors is also about 0.1.
Within 3%, variation between sensors of comparative example (about 6%)
(Table 1).

【表1】また別の構造として、柔軟性チューブを用いる
代わりに硬質のチューブ(1)、を用い、図2の様にピ
ン(8)を挿入してガラスアンプル(4)を破壊させて
測定したところ、同様の結果が得られた。
As another structure, a rigid tube (1) was used instead of a flexible tube, and a pin (8) was inserted as shown in FIG. 2 to break the glass ampule (4) and measured. As a result, similar results were obtained.

【0010】隔膜は内部液に溶解・反応せず、又破壊時
などにおいても測定精度を阻害しないものであれば、ガ
ラスの他、プラスチック、セラミックなど種々の材料の
ものを使用できる。隔膜は、内部液を包囲するアンプル
状のものだけでなく、内部液とイオン感応膜及び内部液
とを接触させないように単に仕切る平板状の膜であって
もよい。この平板状隔膜の場合、電極使用時には、外的
操作によって隔膜を引き抜いたり、その隔膜の向きを変
化させて除去させることにより、内部液を感応膜及び内
部極の位置する方へ流出させ、これらと接触させること
ができる。もっとも、アンプル状の包囲膜の方が、電極
製造が容易であり、又内部液の密封性が良いので、量産
に適しかつ保存安定性の点からも好ましい。
As long as the diaphragm does not dissolve or react with the internal liquid and does not impair the measurement accuracy even at the time of destruction, various materials such as glass and plastics and ceramics can be used. The diaphragm may be not only an ampule-shaped one surrounding the internal liquid, but also a plate-shaped membrane that simply partitions the internal liquid from contact with the ion-sensitive membrane and the internal liquid. In the case of this plate-shaped diaphragm, when using the electrodes, the diaphragm is pulled out by an external operation or the direction of the diaphragm is changed and removed, so that the internal liquid flows out toward the sensitive membrane and the inner electrode. Can be contacted. However, an ampoule-shaped envelope membrane is preferable from the viewpoints of mass production and storage stability, because the production of the electrode is easy and the sealing property of the internal liquid is good.

【0011】液浸透材は必ずしも入れなくても良い。も
っとも、液浸透材を存在させることにより、内部液を容
器内においてムラなく均質に浸透させて、イオン感応膜
及び内部極と接触させることができる。イオン感応膜は
ベータ・アルミナや、イオン伝導性ガラスなどを用いて
も良い。液絡部は多孔質セラミックに限ることなく、内
部液と測定液とをつなぐ働きを持ち特に液に不溶性のも
のであれば良く、ピンホールを有するプラスチック膜な
どでもよい。また、イオンセンサとして使用する場合、
イオン選択電極及び参照電極を一の絶縁性支持体に埋込
み一体化してもよい。血液など少量の測定液のイオン活
量を測定する場合のようにその測定を浸透ではなく液滴
下によって行うとき、前記実施例の使用法(2つの電極
を並べて使用)と同様に有効となる。本発明のイオン選
択電極、参照電極及びイオンセンサは、Naイオンの
他、各種イオンの活量測定に広く適用可能である。
[0011] It is not always necessary to add a liquid permeable material. However, the presence of the liquid-penetrating material allows the internal liquid to uniformly and uniformly penetrate in the container and to come into contact with the ion-sensitive membrane and the internal electrode. For the ion-sensitive film, beta-alumina, ion-conductive glass, or the like may be used. The liquid junction is not limited to the porous ceramic, but may be any material that has a function of connecting the internal solution and the measurement solution and is particularly insoluble in the solution, and may be a plastic film having a pinhole. Also, if you want to use as Lee Onsensa,
The ion selective electrode and the reference electrode may be embedded and integrated in one insulating support. When the measurement is performed not by permeation but by droplets, as in the case of measuring the ion activity of a small amount of a measurement liquid such as blood, the method is effective in the same manner as the method of use in the above embodiment (using two electrodes side by side). INDUSTRIAL APPLICABILITY The ion selection electrode, reference electrode and ion sensor of the present invention can be widely applied to activity measurement of various ions other than Na ions.

【0012】[0012]

【発明の効果】内部液をそのまま使用しているにも拘ら
ず、各電極構成部材の状態を初期と同じままに維持でき
るため、メンテナンスフリーで長期保存が可能となる。
即ち、従来の内部液(ゲル化したもの等も含む)を用い
た電極ないしはセンサでは、通例半年から1年もすると
内部液等に経時変化をきたし、測定精度を低下すること
となるが、本発明の電極ないしはセンサによれば、半永
久的に保存安定性を維持し、その後の使用時において初
期状態と同様に高精度の測定が可能である。もっとも、
いったん使用した場合、従来技術と同様な問題を生ず
る。従って、高い精度と保存安定性が要求される一方使
い捨てが好ましい用途、例えば血液や尿などを分析する
医療計測に極めて有効である。
According to the present invention, the state of each electrode constituting member can be maintained in the same state as the initial state even though the internal liquid is used as it is, so that maintenance-free long-term storage is possible.
That is, in the case of a conventional electrode or sensor using an internal liquid (including a gelled substance), the internal liquid and the like usually changes with time in half a year to one year, and the measurement accuracy is reduced. ADVANTAGE OF THE INVENTION According to the electrode or sensor of this invention, preservation | stable stability is maintained semipermanently, and a highly accurate measurement is possible at the time of subsequent use similarly to an initial state. However,
Once used, the same problems occur as in the prior art. Therefore, it is extremely effective for applications requiring high precision and storage stability, but for which disposable is preferable, for example, medical measurement for analyzing blood, urine, and the like.

【0013】また、イオン選択電極と参照電極とを一体
化して小型イオンセンサとすることも容易である。特
に、長期にわたる高い保存安定性ゆえに、保守・メンテ
ナンスが一切不要となり測定精度を高水準に維持しつつ
極めて小型化できる。従って微量の測定液についてイオ
ン活量を測定する場合に有効である。
It is also easy to integrate the ion selection electrode and the reference electrode into a small ion sensor. In particular, the long-term high storage stability because, maintenance and maintenance can be extremely miniaturized while a high level to maintain the measurement accuracy will be any unnecessary. Therefore, it is effective when measuring the ion activity of a small amount of the measurement solution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のイオン選択電極又は参照電極を示す
断面図
FIG. 1 is a cross-sectional view illustrating an ion selection electrode or a reference electrode according to a first embodiment.

【図2】実施例2のイオン選択電極又は参照電極を示す
断面図
FIG. 2 is a cross-sectional view illustrating an ion selection electrode or a reference electrode according to a second embodiment.

【図3】実施例1のイオン選択電極及び参照電極からな
るイオンセンサを用いた測定試験において、Naイオン
濃度に基づく電位変化を示すグラフ
FIG. 3 is a graph showing a potential change based on a Na ion concentration in a measurement test using an ion sensor including an ion selection electrode and a reference electrode of Example 1.

【符号の説明】[Explanation of symbols]

2 ナシコンセラミック(イオン感応膜) 2’多孔質アルミナセラミック(液絡部) 3 AgCl−KCl溶液(内部液) 4 ガラスアンプル(隔膜) 6 銀/塩化銀電極(内部極) 2 Nasicon ceramic (ion-sensitive membrane) 2 'porous alumina ceramic (liquid junction) 3 AgCl-KCl solution (internal liquid) 4 Glass ampoule (diaphragm) 6 Silver / silver chloride electrode (internal electrode)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内部液をイオン感応膜及び内部極から隔離
する隔膜であって外的操作によって前記隔離作用を消失
し得るものを備えていることを特徴とするイオン選択電
極。
1. An ion-selective electrode comprising a diaphragm for isolating an internal solution from an ion-sensitive membrane and an internal electrode and capable of eliminating the isolation effect by an external operation.
【請求項2】イオン感応膜が固体電解質であることを特
徴とする請求項1記載のイオン選択電極。
2. The ion selective electrode according to claim 1, wherein the ion sensitive membrane is a solid electrolyte.
【請求項3】内部液を液絡部及び内部極から隔離する隔
膜であって外的操作によって前記隔離作用を消失し得る
ものを備えていることを特徴とする参照電極。
3. A reference electrode comprising a diaphragm for isolating an internal liquid from a liquid junction and an internal electrode, the diaphragm being capable of eliminating the isolation effect by an external operation.
【請求項4】請求項1記載のイオン選択電極及び請求項
3記載の参照電極の少なくとも一からなることを特徴と
するイオンセンサ。
4. An ion sensor comprising at least one of the ion selection electrode according to claim 1 and the reference electrode according to claim 3.
【請求項5】使い捨て用途に使用される請求項4記載の
イオンセンサ。
5. The ion sensor according to claim 4, which is used for disposable use.
JP3080615A 1991-03-20 1991-03-20 Ion sensor Expired - Lifetime JP2741509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3080615A JP2741509B2 (en) 1991-03-20 1991-03-20 Ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3080615A JP2741509B2 (en) 1991-03-20 1991-03-20 Ion sensor

Publications (2)

Publication Number Publication Date
JPH04291142A JPH04291142A (en) 1992-10-15
JP2741509B2 true JP2741509B2 (en) 1998-04-22

Family

ID=13723249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3080615A Expired - Lifetime JP2741509B2 (en) 1991-03-20 1991-03-20 Ion sensor

Country Status (1)

Country Link
JP (1) JP2741509B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6338939B2 (en) * 2014-06-19 2018-06-06 株式会社Lixil Sensor, urine sensor and toilet device

Also Published As

Publication number Publication date
JPH04291142A (en) 1992-10-15

Similar Documents

Publication Publication Date Title
US4933048A (en) Reference electrode, method of making and method of using same
KR100342165B1 (en) Solid-State Type Micro Reference Electrode with Self-Diagnostic Function
US4339317A (en) Device for performing measurements on fluids, directly in the sample container
EP0160566B1 (en) Chemical assay apparatus
US3498899A (en) Electrochemical electrode assembly
US4473458A (en) Ion measuring device with self-contained storage of standardizing solution
US6805781B2 (en) Electrode device with a solid state reference system
US20110308946A1 (en) Ion-Selective Electrode
JPS6356498B2 (en)
US5376254A (en) Potentiometric electrochemical device for qualitative and quantitative analysis
US4495050A (en) Temperature insensitive potentiometric electrode system
JP2859458B2 (en) Ion sensor
US4814060A (en) Ion selective electrodes and method of making such electrodes
EP0772041B1 (en) Reference electrode assembly
US4495052A (en) Replaceable junctions for reference electrodes
JPH08503553A (en) Reference electrode
SE460623B (en) ION SELECTIVE POTENTIOMETRIC MEASURING DEVICE
US4461998A (en) Ion selective measurements
JP2741509B2 (en) Ion sensor
US4981567A (en) Lithium-salt reference half-cell for potentiometric determinations
US7238267B2 (en) Self-condensing pH sensor
US4495053A (en) Replaceable junctions for reference electrodes
Russell et al. The commercialisation of sensor technology in clinical chemistry: an outline of the potential difficulties
EP0752098B1 (en) Sensor for monitoring ionic activity in biological fluids
JPH10197474A (en) Reference electrode for electrochemical detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971209