JPH04291142A - Ion sensor - Google Patents

Ion sensor

Info

Publication number
JPH04291142A
JPH04291142A JP3080615A JP8061591A JPH04291142A JP H04291142 A JPH04291142 A JP H04291142A JP 3080615 A JP3080615 A JP 3080615A JP 8061591 A JP8061591 A JP 8061591A JP H04291142 A JPH04291142 A JP H04291142A
Authority
JP
Japan
Prior art keywords
ion
electrode
internal
liquid
internal liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3080615A
Other languages
Japanese (ja)
Other versions
JP2741509B2 (en
Inventor
Takashi Kato
隆史 加藤
Junichi Tokumoto
徳本 淳一
Migiwa Ando
安藤 汀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP3080615A priority Critical patent/JP2741509B2/en
Publication of JPH04291142A publication Critical patent/JPH04291142A/en
Application granted granted Critical
Publication of JP2741509B2 publication Critical patent/JP2741509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To enable a title item to be superb in storage stability regardless of the use of an internal liquid it is, to achieve a highly accurate measurement using the internal liquid on use, to enable it to be useful for applications where it is desirable to be thrown away, and to enable it to be miniaturized easily so that it can be effectively used for measuring ion activity of a small amount of measurement liquid. CONSTITUTION:An ion selection electrode is provided with a diaphragm for separating an ion sensitive film 2 and an inner electrode from an internal liquid 3. The diaphragm loses its function by an external operation. In a reference electrode, this ion sensitive film 2 may be used for the liquid channel part 2. An ion sensor can be constituted by using these ion selection electrode and the reference electrode. When it is not used (in storage), the internal liquid 3 is isolated from the ion sensitive film 2 and an internal pole by the isolation film 4. On the other hand, when it is used, it is allowed to contact an internal pole 6 by brecking or eliminating the isolation film by external operation.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は医療計測(臨床検査)、
水質検査、食品工業や化学工業におけるプロセス管理な
どに利用され、特に使い捨て用途に適したイオンセンサ
に関する。
[Industrial Application Field] The present invention is applicable to medical measurement (clinical examination),
This invention relates to an ion sensor that is used for water quality testing, process control in the food and chemical industries, and is especially suitable for disposable applications.

【0002】0002

【従来の技術】イオンセンサを構成するイオン選択電極
や参照電極としては、電解質溶液を内部に封入した内部
液構造のものが用いられている。この内部液構造のもの
は、精度はすぐれているが、保守・管理が必要であると
共に小型化が困難である。その点を改善するため、内部
液をゲル化等により固化したり、内部液を用いないよう
にする試みとして次の報告がある。特開昭  63−7
5551、同63−26566、同62−218850
、同62−47546など。
2. Description of the Related Art An ion selective electrode and a reference electrode constituting an ion sensor have an internal liquid structure in which an electrolyte solution is sealed inside. Although this internal liquid structure has excellent accuracy, it requires maintenance and management and is difficult to downsize. In order to improve this point, the following reports have been made on attempts to solidify the internal liquid by gelation or the like, or to avoid using the internal liquid. Japanese Patent Publication No. 63-7
5551, 63-26566, 62-218850
, 62-47546, etc.

【0003】0003

【従来技術の問題点】しかし、ゲル化剤や吸水性樹脂を
用いて内部液をゲル化したもの(特開昭63−2656
6、同62−218850、同62−47546)は、
内部液性状を完全に維持するのは難しく、長期間にわた
る保存においては、測定精度が劣化する。一方、完全に
固体状の電極(特開昭63−75551)では、電位の
精度やその出力電位の安定性(再現性、個体差等)の点
で従来の内部液を用いるものよりは性能が劣る。
[Problems with the prior art] However, a method in which the internal liquid is gelled using a gelling agent or a water-absorbing resin (Japanese Patent Laid-Open No. 63-2656
6, 62-218850, 62-47546) are
It is difficult to completely maintain the internal liquid properties, and measurement accuracy deteriorates during long-term storage. On the other hand, completely solid electrodes (Japanese Patent Application Laid-Open No. 63-75551) have better performance than conventional electrodes using internal liquids in terms of potential accuracy and output potential stability (reproducibility, individual differences, etc.). Inferior.

【0004】イオンセンサの用途のひとつとして、血液
や尿中の電解質成分の分析があるが、この場合、センサ
の使い捨て使用が衛生上望ましく、また高い精度と保存
安定性が要求されている。しかし、従来技術においては
、満足すべきセンサが得られていない。
One of the applications of ion sensors is the analysis of electrolyte components in blood and urine. In this case, disposable use of the sensor is desirable for hygiene reasons, and high accuracy and storage stability are required. However, in the prior art, a satisfactory sensor has not been obtained.

【0005】[0005]

【問題点を解決するための手段】本発明のイオン選択電
極は内部液をイオン感応膜及び内部極から隔離する隔膜
であって外的操作によって前記隔離作用を消失し得るも
のを備えていることを特徴とする。又、参照電極につい
ては、前記イオン感応膜を液絡部に代替すればよい。更
に、こうしたイオン選択電極や参照電極を使用すること
によってイオンセンサを構成できる。
[Means for Solving the Problems] The ion-selective electrode of the present invention is provided with a diaphragm that isolates the internal liquid from the ion-sensitive membrane and the internal electrode, the isolation effect of which can be eliminated by external manipulation. It is characterized by As for the reference electrode, the ion-sensitive membrane may be replaced by a liquid junction. Furthermore, an ion sensor can be constructed by using such an ion selection electrode and a reference electrode.

【0006】[0006]

【作用】不使用時においては、隔膜によってイオン感応
膜(参照電極の場合は液絡部)及び内部極と内部液とを
隔離し、この状態で保管することにより、感応膜及び内
部極の変化を抑える。即ち、従来のように不使用時にお
いてもイオン感応膜と内部液とが接触している場合、感
応膜成分が内部液中に溶出したり、感応膜のイオンと内
部液のイオンとがイオン交換して感応膜の組成が変化し
て、イオン感応性、従って出力信号に変動をきたす。特
に、イオン感応膜が固体電解質からなるイオン選択電極
にあっては、その感応膜(固体電解質)の劣化が大きい
。又、内部極と内部液とが接触している場合、通常の内
部極であるAg/AgCl電極を例にとれば、Agが内
部液中に溶出してやはり出力信号に変動をきたす。しか
し、本発明にあっては、長期間にわたる保存においても
、こうしたイオン感応膜及び内部極の変化が起こらず、
その精度を高く維持できる。
[Operation] When not in use, the ion-sensitive membrane (liquid junction in the case of a reference electrode) and internal electrode are separated from the internal liquid by a diaphragm, and by storing them in this state, changes in the sensitive membrane and internal electrode can be achieved. suppress. In other words, if the ion-sensitive membrane and the internal solution are in contact with each other even when not in use, as in the past, the components of the sensitive membrane may be eluted into the internal solution, or ions in the sensitive membrane and ions in the internal solution may exchange ions. This changes the composition of the sensitive membrane, causing fluctuations in ion sensitivity and thus in the output signal. In particular, in the case of an ion-selective electrode in which the ion-sensitive membrane is made of a solid electrolyte, the sensitive membrane (solid electrolyte) deteriorates significantly. Further, when the internal electrode and the internal liquid are in contact with each other, for example, in the case of an Ag/AgCl electrode, which is a normal internal electrode, Ag is eluted into the internal liquid, which also causes fluctuations in the output signal. However, in the present invention, such changes in the ion-sensitive membrane and internal electrode do not occur even during long-term storage.
The accuracy can be maintained at a high level.

【0007】そして使用時には、この隔膜を外的操作に
より破壊又は除去等させてその隔離作用を消失せしめる
ことによってイオン感応膜と内部極との間(参照電極の
場合は液絡部と内部極との間)に内部液を流入させる。 そして測定試料液をイオン選択電極のイオン感応膜及び
参照電極の液絡部に滴下等して測定を行なう。
When in use, this diaphragm is destroyed or removed by an external operation to eliminate its isolation effect, thereby creating a gap between the ion-sensitive membrane and the internal electrode (in the case of a reference electrode, between the liquid junction and the internal electrode). The internal liquid is allowed to flow into the Then, the measurement sample liquid is dropped onto the ion-sensitive membrane of the ion-selective electrode and the liquid junction of the reference electrode to perform the measurement.

【0008】[0008]

【実施例】図1に示す様に、柔軟性のあるチューブ(1
)(シリコーンゴムなど)の側面に設けた穴に、イオン
感応膜(2)としてナシコンセラミックをはめ込み、内
部液(3)として飽和AgCl−1M−KCl溶液を封
入したガラスアンプル(4)及び液浸透材(5)例えば
綿状パルプをチューブ(1)の中に挿入後、銀/塩化銀
電極(6)を入れて封止し、ナトリウムイオン電極とす
る。尚、銀/塩化銀電極(6)の形成は、Ag製の円板
表面に塩酸を接触させた状態で電流を流しAgClを析
出させることにより行った。一方、ナシコンセラミック
スの代わりに液絡部(2’)として多孔質アルミナセラ
ミックをはめ込んだものを同様にして作製し、参照電極
とする。この2つの電極を並べて一対のイオンセンサを
構成する。銀/塩化銀電極(6)の外部端子部(7)を
エレクトロメータ(図示せず)に接続し、次のようにし
て2つの電極間の電位差を測定した。まず、ガラスアン
プル(4)の挿入されているチューブ(1)部分を曲げ
て、中のガラスアンプル(4)を破壊し、液浸透材(5
)によってイオン感応膜(2)と銀/塩化銀電極(6)
との間に内部液を浸み込ませる。
[Example] As shown in Figure 1, a flexible tube (1
) (silicone rubber, etc.), a glass ampoule (4) filled with Nasicon ceramic as the ion-sensitive membrane (2) and a saturated AgCl-1M-KCl solution as the internal liquid (3) and the liquid. After inserting a penetrating material (5) such as cotton-like pulp into the tube (1), a silver/silver chloride electrode (6) is inserted and sealed to form a sodium ion electrode. The silver/silver chloride electrode (6) was formed by applying an electric current to the surface of an Ag disk in contact with hydrochloric acid to precipitate AgCl. On the other hand, an electrode in which porous alumina ceramic was fitted as a liquid junction (2') instead of Nasicon ceramics was produced in the same manner and used as a reference electrode. These two electrodes are arranged to form a pair of ion sensors. The external terminal portion (7) of the silver/silver chloride electrode (6) was connected to an electrometer (not shown), and the potential difference between the two electrodes was measured as follows. First, bend the part of the tube (1) into which the glass ampoule (4) is inserted, break the glass ampoule (4) inside, and then
) by ion-sensitive membrane (2) and silver/silver chloride electrode (6)
Let the internal liquid seep between the

【0009】次いでイオン感応部(2)と液絡部(2’
)とを同時に覆うように測定液を滴下して電位を測定し
た。各種濃度のNaCl溶液に対して得られた応答は、
ネルンストの式に従うものであった(図3)。応答時間
(電位が安定するまでの時間)も滴下後約30〜60秒
と短かった。また、100mMのNaCl溶液について
10個の上記実施例センサを用いて出力電位を調べた。 尚、比較例の電極として、全固体型のナトリウムイオン
選択電極(イオン感応膜がナシコンセラミック、内部極
がカーボン樹脂)及び市販の参照電極を組み合わせたも
のを用い、両電極を試料液に浸漬することにより、同様
に10個の比較例センサについても出力電位を調べた。 その結果、本実施例センサについては、個々のセンサ間
の出力電位のばらつき(変動係数CV)も0.3%以内
であり、比較例センサ間のばらつき(約6%)に比べて
格段に優れていた(表1)。
Next, the ion sensing part (2) and the liquid junction part (2'
), and the potential was measured by dropping the measurement liquid so as to simultaneously cover both. The responses obtained for NaCl solutions of various concentrations were
It followed Nernst's equation (Figure 3). The response time (time until the potential stabilizes) was also short, about 30 to 60 seconds after dropping. Furthermore, the output potential was investigated using the 10 sensors of the above-mentioned example in a 100 mM NaCl solution. As a comparative example electrode, a combination of an all-solid-state sodium ion selective electrode (ion-sensitive membrane is Nasicon ceramic, internal electrode is carbon resin) and a commercially available reference electrode was used, and both electrodes were immersed in the sample solution. By doing so, the output potentials of the 10 comparative example sensors were also investigated. As a result, for the sensor of this example, the variation in output potential between individual sensors (coefficient of variation CV) was within 0.3%, which is much better than the variation between the comparative example sensors (approximately 6%). (Table 1).

【表1】 また別の構造として、柔軟性チューブを用いる代わりに
硬質のチューブ(1)、を用い、図3の様にピン(8)
を挿入してガラスアンプル(4)を破壊させて測定した
ところ、同様の結果が得られた。
[Table 1] Another structure is to use a hard tube (1) instead of a flexible tube, and use a pin (8) as shown in Figure 3.
Similar results were obtained when the glass ampoule (4) was broken by inserting the ampoule.

【0010】隔膜は内部液に溶解・反応せず、又破壊時
などにおいても測定精度を阻害しないものであれば、ガ
ラスの他、プラスチック、セラミックなど種々の材料の
ものを使用できる。隔膜は、内部液を包囲するアンプル
状のものだけでなく、内部液とイオン感応膜及び内部液
とを接触させないように単に仕切る平板状の膜であって
もよい。この平板状隔膜の場合、電極使用時には、外的
操作によって隔膜を引き抜いたり、その隔膜の向きを変
化させて除去させることにより、内部液を感応膜及び内
部極の位置する方へ流出させ、これらと接触させること
ができる。もっとも、アンプル状の包囲膜の方が、電極
製造が用意であり、又内部液の密封性が良いので、量産
に適しかつ保存安定性の点からも好ましい。
[0010] The diaphragm can be made of various materials such as glass, plastic, and ceramic, as long as it does not dissolve or react with the internal liquid and does not impede measurement accuracy even when broken. The diaphragm may be not only an ampoule-shaped membrane that surrounds the internal liquid, but also a flat membrane that simply partitions the internal liquid, the ion-sensitive membrane, and the internal liquid so that they do not come into contact with each other. In the case of this flat plate-shaped diaphragm, when using the electrode, the diaphragm is pulled out by an external operation or removed by changing its direction, thereby causing the internal liquid to flow toward the sensitive membrane and the internal electrode. can be brought into contact with. However, ampoule-shaped envelope membranes are preferable from the viewpoint of storage stability and are suitable for mass production because electrode manufacturing is easier and the internal liquid is better sealed.

【0011】液浸透材は必ずしも入れなくても良い。も
っとも、液浸透材を存在させることにより、内部液を容
器内においてムラなく均質に浸透させて、イオン感応膜
及び内部極と接触させることができる。イオン感応膜は
ベータ・アルミナや、イオン伝導性ガラスなどを用いて
も良い。液絡部は多孔質セラミックに限ることなく、内
部液と測定液とをつなぐ働きを持ち特に液に不溶性のも
のであれば良く、ピンホールを有するプラスチック膜な
どでもよい。また、内部液はイオンセンサとして使用す
る場合、イオン選択電極及び参照電極を一の絶縁性支持
体に埋込み一体化してもよい。血液など小量の測定液の
イオン活量を測定する場合のようにその測定を浸透では
なく液滴下によって行うとき、前記実施例の使用法(2
つの電極を並べて使用)と同様に有効となる。本発明の
イオン選択電極、参照電極及びイオンセンサは、Naイ
オンの他、各種イオンの活量測定に広く適用可能である
[0011] The liquid penetrating material does not necessarily need to be added. However, the presence of the liquid penetrating material allows the internal liquid to permeate evenly and homogeneously into the container, and to bring it into contact with the ion-sensitive membrane and the internal electrode. The ion-sensitive membrane may be made of beta alumina, ion-conductive glass, or the like. The liquid junction is not limited to porous ceramics, and may be any material that functions to connect the internal liquid and the measurement liquid and is particularly insoluble in the liquid, such as a plastic film having pinholes. Further, when the internal liquid is used as an ion sensor, the ion selection electrode and the reference electrode may be embedded and integrated into one insulating support. When measuring the ionic activity of a small amount of measurement liquid such as blood, when the measurement is carried out by dropping the liquid rather than by osmosis, the usage method (2) of the above embodiment is used.
(using two electrodes side by side) is equally effective. The ion selective electrode, reference electrode, and ion sensor of the present invention are widely applicable to measuring the activity of various ions in addition to Na ions.

【0012】0012

【発明の効果】内部液をそのまま使用しているにも拘ら
ず、各電極構成部材の状態を初期と同じままに維持でき
るため、メンテナンスフリーで長期保存が可能となる。 即ち、従来の内部液(ゲル化したもの等も含む)を用い
た電極ないしはセンサでは、通例半年から1年もすると
内部液等に径時変化をきたし、測定精度を低下すること
となるが、本発明の電極ないしはセンサによれば、半永
久的に保存安定性を維持し、その後の使用時において初
期状態と同様に構成度の測定が可能である。もっとも、
いったん使用した場合、従来技術と同様な問題を生ずる
。従って、高い精度と保存安定性が要求される一方使い
捨てが好ましい用途、例えば血液や尿などを分析する医
療測に極めて有効である。
[Effects of the Invention] Although the internal liquid is used as is, the condition of each electrode component can be maintained as it was at the beginning, so long-term storage is possible without maintenance. In other words, with conventional electrodes or sensors that use internal liquids (including gelled ones), the internal liquid usually changes over time after six months to a year, reducing measurement accuracy. According to the electrode or sensor of the present invention, storage stability is maintained semi-permanently, and the degree of composition can be measured in the same manner as in the initial state during subsequent use. However,
Once used, problems similar to those of the prior art arise. Therefore, it is extremely effective for applications that require high accuracy and storage stability but are preferably disposable, such as medical measurements for analyzing blood, urine, etc.

【0013】また、イオン選択電極と参照電極とを一体
化して小型イオンセンサとすることも容易である。特に
、長期にわたる高い保存安定性ゆえに、保存・メンテナ
ンスが一切不要となり測定精度を高水準に維持しつつ極
めて小型化できる。従って微量の測定液についてイオン
活量を測定する場合に有効である。
[0013] Furthermore, it is easy to integrate the ion selection electrode and the reference electrode into a compact ion sensor. In particular, due to its high storage stability over a long period of time, there is no need for storage or maintenance at all, and it can be extremely miniaturized while maintaining a high level of measurement accuracy. Therefore, it is effective when measuring the ion activity of a trace amount of the measurement liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1のイオン選択電極又は参照電極を示す
断面図
[Figure 1] Cross-sectional view showing the ion selection electrode or reference electrode of Example 1

【図2】実施例2のイオン選択電極又は参照電極を示す
断面図
[Figure 2] Cross-sectional view showing the ion selection electrode or reference electrode of Example 2

【図3】実施例1のイオン選択電極及び参照電極からな
るイオンセンサを用いた測定試験において、Naイオン
濃度に基づく電位変化を示すグラフ
FIG. 3 is a graph showing potential changes based on Na ion concentration in a measurement test using the ion sensor consisting of the ion selection electrode and reference electrode of Example 1.

【符号の説明】[Explanation of symbols]

2  ナシコンセラミック(イオン感応膜)2’多孔質
アルミナセラミック(液絡部)3  AgCl−KCl
溶液(内部液)4  ガラスアンプル(隔膜) 6  銀/塩化銀電極(内部極)
2 Nasicon ceramic (ion sensitive membrane) 2' Porous alumina ceramic (liquid junction) 3 AgCl-KCl
Solution (internal solution) 4 Glass ampoule (diaphragm) 6 Silver/silver chloride electrode (internal electrode)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】内部液をイオン感応膜及び内部極から隔離
する隔膜であって外的操作によって前記隔離作用を消失
し得るものを備えていることを特徴とするイオン選択電
極。
1. An ion-selective electrode comprising a diaphragm that isolates an internal liquid from an ion-sensitive membrane and an internal electrode, the isolation effect of which can be eliminated by external manipulation.
【請求項2】イオン感応膜が固体電解質であることを特
徴とする請求項1記載のイオン選択電極。
2. The ion selective electrode according to claim 1, wherein the ion sensitive membrane is a solid electrolyte.
【請求項3】内部液を液絡部及び内部極から隔離する隔
膜であって外的操作によって前記隔離作用を消失し得る
ものを備えていることを特徴とする参照電極。
3. A reference electrode comprising a diaphragm that isolates an internal liquid from a liquid junction and an internal electrode, the isolation effect of which can be eliminated by external manipulation.
【請求項4】請求項1記載のイオン選択電極及び請求項
3記載の参照電極の少なくとも一からなることを特徴と
するイオンセンサ。
4. An ion sensor comprising at least one of the ion selection electrode according to claim 1 and the reference electrode according to claim 3.
【請求項5】使い捨て用途に使用される請求項4記載の
イオンセンサ。
5. The ion sensor according to claim 4, which is used for disposable purposes.
JP3080615A 1991-03-20 1991-03-20 Ion sensor Expired - Lifetime JP2741509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3080615A JP2741509B2 (en) 1991-03-20 1991-03-20 Ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3080615A JP2741509B2 (en) 1991-03-20 1991-03-20 Ion sensor

Publications (2)

Publication Number Publication Date
JPH04291142A true JPH04291142A (en) 1992-10-15
JP2741509B2 JP2741509B2 (en) 1998-04-22

Family

ID=13723249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3080615A Expired - Lifetime JP2741509B2 (en) 1991-03-20 1991-03-20 Ion sensor

Country Status (1)

Country Link
JP (1) JP2741509B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004027A (en) * 2014-06-19 2016-01-12 株式会社Lixil Sensor, urine sensor, and toilet bowl device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004027A (en) * 2014-06-19 2016-01-12 株式会社Lixil Sensor, urine sensor, and toilet bowl device

Also Published As

Publication number Publication date
JP2741509B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
Lindner et al. Ion‐selective membranes with low plasticizer content: electroanalytical characterization and biocompatibility studies
US4340457A (en) Ion selective electrodes
US4933048A (en) Reference electrode, method of making and method of using same
JP3667639B2 (en) Small solid reference electrode with self-diagnosis function
Maas et al. Ion-selective electrodes for sodium and potassium: a new problem of what is measured and what should be reported.
Fogh-Andersen et al. Measurement of free calcium ion in capillary blood and serum.
US4339317A (en) Device for performing measurements on fluids, directly in the sample container
EP1164372B1 (en) Microchip-based differential carbon dioxide gas sensor
Caflisch et al. Manufacture and utilization of antimony pH electrodes
DE69828319T2 (en) METHOD AND APPARATUS FOR MEASURING BLOOD COAGULATION OR LYSIS WITH THE HELP OF VISCOSITY CHANGES
JP2859458B2 (en) Ion sensor
EP0772041B1 (en) Reference electrode assembly
US6197172B1 (en) Electrochemical sensor with gelled membrane and method of making
US4461998A (en) Ion selective measurements
US3605722A (en) Method of diagnosing cystic fibrosis
US4981567A (en) Lithium-salt reference half-cell for potentiometric determinations
JPH04291142A (en) Ion sensor
Oesch et al. Solvent polymeric membrane pH catheter electrode for intraluminal measurements in the upper gastrointestinal tract
US4495053A (en) Replaceable junctions for reference electrodes
Russell et al. The commercialisation of sensor technology in clinical chemistry: an outline of the potential difficulties
KR100483628B1 (en) A porous polymer reference electrode membrane and reference electrode therewith
EP0752098B1 (en) Sensor for monitoring ionic activity in biological fluids
JPH0139781B2 (en)
Birch et al. Potentiometric transducers
GB2089997A (en) Replaceable junctions for reference electrodes

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971209