JPS61116141A - Vibration damping equipment - Google Patents

Vibration damping equipment

Info

Publication number
JPS61116141A
JPS61116141A JP23761384A JP23761384A JPS61116141A JP S61116141 A JPS61116141 A JP S61116141A JP 23761384 A JP23761384 A JP 23761384A JP 23761384 A JP23761384 A JP 23761384A JP S61116141 A JPS61116141 A JP S61116141A
Authority
JP
Japan
Prior art keywords
vibration damping
electromagnet
magnetic fluid
magnetic field
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23761384A
Other languages
Japanese (ja)
Inventor
Takashi Funaki
崇 舟木
Katsuto Nakatsuka
勝人 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAKUMO KOGYO KK
Original Assignee
YAKUMO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAKUMO KOGYO KK filed Critical YAKUMO KOGYO KK
Priority to JP23761384A priority Critical patent/JPS61116141A/en
Publication of JPS61116141A publication Critical patent/JPS61116141A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To make a vibration damping ratio improvable, by altering a magnetic field of an electromagnet body with a variation in current carrying capacity, while controlling a variation in apparent viscosity of a magnetic fluid. CONSTITUTION:With an electromagnet part 11, a magnetic field is avoided becoming extremely unbalanced, and a very effective magnetic field 14 is addable to a magnetic fluid 4 flowing in a narrow passage part 3 formed between an inner circumferential surface of an outer tube part 1 and an outer circumferential surface of an inner tube part 2. Therefore, apparent viscosity in the magnetic fluid is yet more increasable owing to the magnetic field 14. And, the said apparent viscosity in the magnetic fluid 4 regulates current carrying capacity of the electromagnet part 11 from the outside, making it controllable, thus a vibration damping ratio is made so favorable enough.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電磁石体と磁性流体−とを巧みに組み合わせ
てなることを特徴とする振動減衰装置に関するものであ
り、詳述すれば、電磁石体と磁性流体との組み合わせに
おいて惹起する当該磁性流体の見掛は粘度の増加現象を
利用しつつ、電磁石体電流量の自在変化に即応して磁性
流体の見掛は粘度を自在に変化させると同時に制振作用
を変化させるようにしたことをもって、誘発された各種
の振動を速やかに減衰させると同時に振動減衰を必要と
する適宜荷重或いは振動の如何なる変化にも即時に減衰
対応可能とし、振動減衰を必要とする各種分野に用いる
ことが出来るようにした振動減衰装置に関するものであ
る。そして、本発明は、発明者及び出願人が本出願と同
一である昭和58年特許願第176894号、昭和59
年特許願第111984号、昭和58年特許願第111
985号の各発明の改良に係るものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a vibration damping device characterized by skillfully combining an electromagnetic body and a magnetic fluid. The apparent viscosity of the magnetic fluid can be freely changed in response to a free change in the amount of current in the electromagnetic body while utilizing the phenomenon of increase in the apparent viscosity of the magnetic fluid caused by the combination of the magnetic body and the magnetic fluid. By changing the damping effect at the same time, it is possible to quickly dampen various types of induced vibrations, and at the same time, it is possible to immediately respond to any change in load or vibration that requires vibration damping. This invention relates to a vibration damping device that can be used in various fields requiring vibration. The present invention is based on Patent Application No. 176894 filed in 1982, whose inventor and applicant are the same as the present application.
Patent Application No. 111984, 1988, Patent Application No. 111
This invention relates to improvements to the inventions of No. 985.

(従来の技術) 従来、振動を減衰するための装置として、バネ機構等を
はじめとする各種装置が存在した。しかじながら、従来
の諸種装置においては、制振効果を一層高めるという要
求から、装置内の弾性機構部を可及的に軟性としていた
ため、制振すべき振動が当該弾性機構部それ自体にいつ
までも長く持続されてしまうことから、結果的に振動減
衰の効率が低下してしまうという欠陥があった。また。
(Prior Art) Conventionally, various devices such as spring mechanisms and the like have existed as devices for damping vibrations. However, in various conventional devices, in order to further enhance the vibration damping effect, the elastic mechanism inside the device was made as flexible as possible, so the vibrations that should be damped were caused by the elastic mechanism itself. The problem is that the vibration damping efficiency decreases because it continues indefinitely. Also.

従来存在する各種の振動減衰装置においては、振動発生
源と装置内の制振機構部とが相互に接触状態にあるのが
一般であったことから、当該接触状態を原因として、適
宜誘発した振動がこれを制振せんとする機構部自体に伝
わってしまいそれ自体が振動媒介になってしまうという
不都合が生じていた。
In various conventional vibration damping devices, the vibration generation source and the vibration damping mechanism inside the device were generally in contact with each other, so the vibrations induced as a result of this contact state were However, this is transmitted to the mechanism itself which is intended to suppress the vibration, and this causes the inconvenience that the mechanism itself becomes a vibration medium.

等を解消しつつしかも振動減衰比を如何に良好にするか
ということが、解決されるべき極めて重要な課題とされ
ていたのが実情である。
In reality, an extremely important problem to be solved was how to improve the vibration damping ratio while eliminating the above problems.

本発明の基礎発明技術である前記の各出願発明は、上述
の如〈従来の実情に基いて開発されたものである。ここ
に、本発明の特徴と訛る改良を概略すれば次の如くであ
る。
The above-mentioned applied inventions, which are the basic inventive techniques of the present invention, were developed based on the conventional circumstances as described above. The features and improvements of the present invention are summarized as follows.

すなわち、本発明の前記各基礎発明技術においては、複
数の磁石体を用いてこれと磁性流体との組み合わせにお
いて惹起する当該磁性流体の磁場による見掛は粘度の増
加現象を利用して振動減衰をするものであるのに対し、
本発明においては、当該磁石体に代替して電磁石体を用
いてなることを特徴としたものであり、電磁石体の電流
量を変化させつつ電磁石の磁場を変化させることをもっ
て磁性流体の見掛は粘度の変化、ひいては制動力作用を
変化させ、これらの操作を装置の外から自在にコトロー
ルすることにより、振動減衰を必要とする適宜如何なる
荷重或いは振動の如何なる変化にも即時に減衰対応可能
としたことを特徴としたものである。
That is, in each of the basic invention techniques of the present invention, vibration damping is achieved by using a phenomenon in which a plurality of magnets are used in combination with a magnetic fluid, and the apparent viscosity increases due to the magnetic field of the magnetic fluid. In contrast,
The present invention is characterized in that an electromagnet is used instead of the magnet, and the appearance of the magnetic fluid is changed by changing the amount of current in the electromagnet and changing the magnetic field of the electromagnet. By changing the viscosity and thus the braking force effect and freely controlling these operations from outside the device, it is possible to immediately respond to any changes in load or vibration that require vibration damping. It is characterized by this.

(本発明の目的) ここに本発明は、磁気体と磁性流体との組み合わせにお
いて惹起する磁性流体の見掛は粘度の増加現象を巧みに
利用した振動減衰装置である点で、前記本発明の各基礎
発明と共通するが、その目的とするところは、電磁石体
と磁性流体とを巧みに組み合わせ、電磁石体の電流量を
自在に変化させつつ電磁石体の地場を変化させ磁性流体
の見掛は粘度の変化、ひいては制動力作用の変化を装置
の外から自在にコトロールすることにより、振動減衰を
必要とし且つ誘発された各種振動を即時且つ高効率に減
衰しつつ振動減衰比を極めて良好なものとすると共に、
振動減衰を必要とする適宜如何なる荷重或いは振動の如
何なる変化にも即時に減衰対応可能とし、しかも、当該
即時になし得る減衰対応操作を装置の外から自在になし
得るようにした振動減衰装置を提供することにある。
(Object of the present invention) Here, the present invention is a vibration damping device that skillfully utilizes the phenomenon of increase in the apparent viscosity of the magnetic fluid caused by the combination of a magnetic body and a magnetic fluid. Although it is common to all basic inventions, its purpose is to skillfully combine an electromagnet and a magnetic fluid, freely change the amount of current in the electromagnet, and change the field of the electromagnet to change the appearance of the magnetic fluid. By freely controlling changes in viscosity and, in turn, changes in braking force action from outside the device, various vibrations that require vibration damping and are induced can be damped immediately and with high efficiency, while achieving an extremely good vibration damping ratio. In addition,
To provide a vibration damping device that can immediately respond to any change in load or vibration that requires vibration damping, and can freely carry out the immediate damping response operation from outside the device. It's about doing.

(本発明の実施例) 以下添付した各図を参照して本発明の詳細な説明する。(Example of the present invention) The present invention will be described in detail below with reference to the attached figures.

本発明においては、その機構自体を各実施例のものに限
定するものでないことは勿論であるが、以下の実施例に
ついては本発明に係る装置の機構を例えばピストン方式
のものとした場合について説明する。
In the present invention, it goes without saying that the mechanism itself is not limited to that of each embodiment, but the following embodiments will be explained in the case where the mechanism of the device according to the present invention is, for example, a piston type. do.

この発明の各実施例は、説明の便宜上、第1図、第2図
及び第8図、第9図のものを装置A、第3図〜第5図の
ものを装置1B、第6図及び第7図のものを装置Cとし
て説明する。
For convenience of explanation, in each embodiment of the present invention, those in FIGS. 1, 2, 8, and 9 are referred to as apparatus A, those in FIGS. The device shown in FIG. 7 will be described as device C.

(第1実施例) 先ず、第1の実施例装置Aの構成は以下の如くである。(First example) First, the configuration of the first embodiment apparatus A is as follows.

すなわち、装置Aは、非鉄材よりなる外筒部1の内部に
、電磁石機能を発揮し得るようにしだ内筒部2を取置し
、該内筒部2の外周面と外筒部1の内周面との間に適当
間隙の通路部3を形成し、外筒部1内に磁性流体4を納
入してなる。内筒部2は、その上面で非鉄材の支持軸部
5と固着し、該支持軸部5の上面には、適宜の平板部6
を介して、例えば、本装置の用途例としてこれを防振架
台に用いた場合、適宜機器等の上架台16が配置され、
外筒部1の下面には下架台17が配置されることになる
。電磁石体よりなる前記内筒部2の構成は、図示する一
例の如く、各スペーサー12を介在しつつ各電磁石部1
1を複数積層し、当該各電磁石部はその各積層対向面が
同極になるようになっている。従って、このような状態
に構成した内筒部2の外周面には、第2図の破線の如く
各磁界13が生じ、介在した各スペーサー12の部分で
最大且つ強烈な磁場J4が発生する反面、磁場は各電磁
石部11の中心で最小なものとなる現象が惹起する。
That is, in device A, an inner cylinder part 2 is placed inside an outer cylinder part 1 made of a non-ferrous material so as to exhibit an electromagnetic function, and the outer circumferential surface of the inner cylinder part 2 and the outer cylinder part 1 are connected. A passage portion 3 with an appropriate gap is formed between the inner circumferential surface and the magnetic fluid 4 is delivered into the outer cylinder portion 1. The inner cylinder part 2 is fixed to a support shaft part 5 made of a non-ferrous material on its upper surface, and an appropriate flat plate part 6 is provided on the upper surface of the support shaft part 5.
For example, when this device is used as a vibration-proof pedestal, an upper pedestal 16 such as equipment is appropriately arranged,
A lower pedestal 17 is disposed on the lower surface of the outer cylinder portion 1. As shown in the example shown in the figure, the structure of the inner cylindrical part 2 made of an electromagnetic body is such that each electromagnet part 1 is
A plurality of electromagnets 1 are stacked, and the surfaces of the electromagnets facing each other are of the same polarity. Therefore, magnetic fields 13 are generated on the outer circumferential surface of the inner cylindrical portion 2 configured in this manner, as shown by the broken lines in FIG. , a phenomenon occurs in which the magnetic field becomes minimum at the center of each electromagnet section 11.

なお、本発明においては、内筒部2を構成する電磁石部
11の配列組み合わせは各種のものが考えられることは
勿論であり5図示例に限定するものではない。また、各
電磁石部11としては、各種如何なる電磁石を用いても
よく、また、当該各電磁石部11の積層個数の如何、或
いは、本装置自体を並列に用いる等については、何ら限
定するものでなく自由である。
In the present invention, it goes without saying that various arrangement combinations of the electromagnet parts 11 constituting the inner cylinder part 2 can be considered, and are not limited to the five illustrated examples. Furthermore, any kind of electromagnet may be used as each electromagnet section 11, and there are no limitations on the number of stacked electromagnet sections 11, or whether the device itself is used in parallel. Be free.

(f32実施例) 第2実施例を示す装置Bは、非磁性材よりなる外筒部2
0の部内内周に、電磁石部21を内設するとともに、当
該電磁石部21の部内に非磁性材よりなる内筒部22を
配設し、内筒部外周面と電磁石部内周面との間に適当な
間隙の通路部23を形成しつつ上記外筒部20内に磁性
流体24を納入、内蔵してなるものである。各電磁石部
は、図示する一例の如く、各スペーサー25を介在しつ
つその各積層対向面が同極するようになっている、従っ
て、このような状態に構成した電磁石部21の内周面に
は、第4図の破線の如く各磁界28が生じ、介在した各
スペーサー25の部分で最大且つ強烈な磁場29が発生
する反面、磁場は各電磁石部26の中心で最小なものと
なる現象が惹起する。
(F32 Example) Device B showing the second example has an outer cylinder portion 2 made of a non-magnetic material.
An electromagnet part 21 is disposed inside the inner periphery of the section 0, and an inner cylindrical part 22 made of a non-magnetic material is disposed inside the electromagnet part 21, and between the outer periphery of the inner cylindrical part and the inner periphery of the electromagnet part. A magnetic fluid 24 is delivered and built into the outer cylindrical portion 20 while forming a passage portion 23 with an appropriate gap. As shown in the example shown in the figure, each electromagnet section has spacers 25 interposed in between, and the stacked opposing surfaces thereof are made to have the same polarity. Therefore, the inner peripheral surface of the electromagnet section 21 configured in this manner In this case, each magnetic field 28 is generated as shown by the broken line in FIG. 4, and the maximum and intense magnetic field 29 is generated at each intervening spacer 25, while the magnetic field is at its minimum at the center of each electromagnet 26. cause

なお、本装置Bにおいては、電磁石部21の配列組み合
わせは各種のものが考えられることは勿論であり、図示
例に限定するものではない、また、各電磁石部21とし
ては各種のものを用いることができることは勿論、その
積層個数の如何、或いは、本装置自体を並列に用いる等
については、何ら限定するものでないことは前記第1実
施例と同様でる。
In addition, in this device B, it goes without saying that various arrangements and combinations of the electromagnet parts 21 can be considered, and are not limited to the illustrated example. Furthermore, various types of electromagnet parts 21 can be used as each electromagnet part 21. Of course, as in the first embodiment, there are no limitations on the number of layers or whether the devices themselves can be used in parallel.

但し1水装置Bにおいて、電磁石部21の配列組み合わ
せは、図示した一例に限定されるものでなく各種の場合
が考えられ、例えば第5図の如くスペーサー25を各電
磁石部26の間より適当幅表出させるようにしてもよい
However, in the water device B, the arrangement and combination of the electromagnet parts 21 is not limited to the example shown in the figure, and various cases can be considered. For example, as shown in FIG. It may be made to be exposed.

なお 内筒部22の上方に連設した非磁性材よりなる支
持軸部30、該軸部上端の平板部31、該平板部を介し
て例えば装置iBの用途例としてこれを適宜機器等の防
振架台に用いた場合、機器等の上架台32が配設され、
外筒部下面には下架台33が配設されること等は、前記
第1実施例と同様である。
The support shaft part 30 made of a non-magnetic material connected above the inner cylindrical part 22, the flat plate part 31 at the upper end of the shaft part, and the flat plate part 31, for example, as an example of the application of the device iB. When used as a shaking stand, an upper stand 32 for equipment etc. is provided,
The lower pedestal 33 is disposed on the lower surface of the outer cylinder, which is the same as in the first embodiment.

(第3実施例) 実施例の装置Cは、前記第1実施例の装置A或いは第2
実施例の装置Bとその基本構成を同一にしつつ、これら
基本構成を後記する如く振動減衰機構体Xとし、当該機
構体Xを内蔵しつつ、例えば空気バネ方式等をはじめと
する適宜何らかの手段で可及的に軟性としたバネ性を保
有してなる弾性機構体Yより構成したものである。
(Third Embodiment) The device C of the embodiment is similar to the device A of the first embodiment or the second embodiment.
While the basic configuration is the same as that of the device B of the embodiment, these basic configurations are made into a vibration damping mechanism X as described later, and while the mechanism X is built-in, it is possible to use some appropriate means such as an air spring system, etc. It is constructed from an elastic mechanism Y that is made as flexible as possible and has spring properties.

上記弾性機構体Yは、防振機走を一層発揮させるため適
宜手段で可及的に軟性としたバネ性部分を具備した構成
であればよく、当該バネ性部分として具体的には例えば
空気ばね方式等のものが考えられる0図示する例では、
鋼材等よりなる側枠40にて下端支持した軟性のゴムよ
りなるバネ部41をもって空気室42を形成した弾性機
構体Yとしている0図中の符合43は側枠40とバネ部
41とを締着する締着部であり、符合44は図外の適宜
機器等が!a置される上架台45とバネ部41とを連結
する連結部でありそれはバネ部41の中心に配設されて
いる。
The above-mentioned elastic mechanism Y may be configured to have a springy part made as soft as possible by appropriate means in order to further exhibit vibration-proof machine running. Specifically, the springy part may be an air spring, for example. In the example shown in the figure,
An elastic mechanism Y includes an air chamber 42 with a spring portion 41 made of soft rubber supported at its lower end by a side frame 40 made of steel or the like. Reference numeral 43 in Figure 0 indicates that the side frame 40 and spring portion 41 are tightened. This is the fastening part that is attached, and the reference numeral 44 indicates the appropriate equipment not shown in the figure. This is a connecting portion that connects the upper pedestal 45 and the spring portion 41, which are placed in the upper frame 45, and is disposed at the center of the spring portion 41.

前記振動減衰機構体Xの構成は、非磁性材よりなる基礎
外筒部46の部内内周に電磁石部47を内設すると共に
当該電磁石部内に非磁性材よりなる内筒部48を配設し
、該内筒部外周面と電磁石部内周面との間に適当な間隙
の通路部49を形成しつつ上記基礎外筒部46内に磁性
流体50を納入、内蔵してなるものである。内筒部48
の上方には非磁性材の支持軸部51が固設され、該軸部
上端には、その上面がバネ部41の内面中心に固着部5
2をもって連設している適宜の平板部53が固設されて
いる0図中の符合54は空気室42の空気給・積用の管
部であり、符合55は基礎外筒部46の筒部上端に形成
した傾斜部でありそれは空気室下端に位置している。
The structure of the vibration damping mechanism X includes an electromagnet part 47 disposed inside the inner periphery of a basic outer cylinder part 46 made of a non-magnetic material, and an inner cylinder part 48 made of a non-magnetic material arranged inside the electromagnet part. A magnetic fluid 50 is delivered and built into the basic outer cylinder part 46 while forming a passage part 49 with an appropriate gap between the outer peripheral surface of the inner cylinder part and the inner peripheral surface of the electromagnet part. Inner cylinder part 48
A support shaft portion 51 made of a non-magnetic material is fixedly provided above, and the upper end of the shaft portion has a fixed portion 5 whose upper surface is centered on the inner surface of the spring portion 41.
Reference numeral 54 in FIG. 0 is a pipe section for supplying and loading air to the air chamber 42, and reference numeral 55 is a pipe section of the basic outer cylinder section 46, on which an appropriate flat plate section 53 is fixedly connected. It is an inclined part formed at the upper end of the air chamber, and it is located at the lower end of the air chamber.

電磁石部47の構成は、図示する一例の如く前記第2実
施例の装置Bにおける電磁石部21と同じであり、各ス
ペーサー56を介在しつつその各積層対向面が同極する
ようになっている。従って、このような状態に構成した
電磁石部47の内周面には、前記第4図の破線の如く各
磁界28が生じ、介在した各スペーサーの部分で最大且
つ強烈な磁場29が発生する反面、磁場は各電磁石部の
中心で最小なものとなる現象が惹起する。
The structure of the electromagnet section 47 is the same as that of the electromagnet section 21 in the device B of the second embodiment, as shown in the example shown in the figure, and the stacked opposing surfaces thereof are made to have the same polarity with spacers 56 interposed therebetween. . Therefore, magnetic fields 28 are generated on the inner circumferential surface of the electromagnet section 47 configured in this manner, as indicated by the broken lines in FIG. , a phenomenon occurs in which the magnetic field becomes minimum at the center of each electromagnet.

なお、電磁石部の配列組み合わせを図示例に限定するも
のでないこと、当該電磁石部としては各種如何なるもの
でも用いることができること、電磁石部の積層個数の如
何、或いは、本装置自体を並列に用いる等については、
何ら図示のものに限定するものでないこと等、前記第1
及び第2の各実施例と同様でる。
Note that the arrangement and combination of the electromagnet parts is not limited to the illustrated example, that any type of electromagnet can be used, the number of stacked electromagnet parts, or the use of this device itself in parallel. teeth,
The above-mentioned 1.
and the same as in each of the second embodiments.

但し、本装置Cにおいて、振動減衰機構体Xの構成は、
図示した一例に限定されるものでなく各種の場合が考え
られ、例えば第7図に示し前記第1実施例装置Aの如く
、非磁性材よりなる基礎外筒部46の内部に電磁石機爺
を有する内筒部59を形成取置し、該内筒部内に磁性流
体50を収納、内蔵するようにしてもよい。
However, in this device C, the configuration of the vibration damping mechanism X is as follows:
The present invention is not limited to the illustrated example, and various cases may be considered. For example, as in the device A of the first embodiment shown in FIG. Alternatively, an inner cylindrical portion 59 may be formed and set aside, and the magnetic fluid 50 may be accommodated and incorporated within the inner cylindrical portion.

しかして、各機構体x、Yを以上の如く構成した本装置
Cは、その用途例として本装置を適宜機器等の防振架台
に用いた場合、機器等の上架台45が装置上に配置され
基礎外筒部46の下面には下架台或いは床部60が配置
されることになる。
Therefore, in the case where the device C in which the mechanisms x and Y are configured as described above is used as an anti-vibration pedestal for equipment etc. as an example of its application, the upper pedestal 45 for the equipment etc. is placed on the device. A lower pedestal or floor section 60 is disposed on the lower surface of the basic outer cylinder section 46.

(第1実施例の作用、効果) 実施例の装置Aにおいては、内筒部2の形成と共に電磁
石部11の連設により磁場が極端な不均一になることを
回避しつつ、外筒部lの内周面と内筒部2の外周面との
間に形成した狭1.N通路部3を流れる磁性流体4に極
めて有効に磁場14を加えることが出来、更に、当該磁
場14により磁性流体の見掛は粘度を、より一層増大さ
せることが出来る。モして、磁性流体4の当該見掛は粘
度は、電磁石部11の電流量を装置の外から図外の適宜
変化操作をもって極めて簡易に変化、調節しコトロール
することが出来る。この場合、上記電流量の変化操作を
手動にするか、自動にするかは自在である。
(Operations and effects of the first embodiment) In the device A of the embodiment, the formation of the inner cylinder part 2 and the continuous arrangement of the electromagnet parts 11 prevent the magnetic field from becoming extremely non-uniform, and the outer cylinder part l. A narrow 1. is formed between the inner circumferential surface of the inner cylindrical portion 2 and the outer circumferential surface of the inner cylinder portion 2. A magnetic field 14 can be applied very effectively to the magnetic fluid 4 flowing through the N passage section 3, and furthermore, the apparent viscosity of the magnetic fluid can be further increased by the magnetic field 14. Furthermore, the apparent viscosity of the magnetic fluid 4 can be controlled by changing and adjusting the amount of current of the electromagnet 11 very easily by appropriately changing the amount of current flowing through the electromagnet 11 from outside the device (not shown). In this case, the operation for changing the amount of current can be performed manually or automatically.

ここに、振動減衰装置Aは、実施例の如く装置Aを例え
ばピストン方式に構成した場合、内筒部2が上下運動す
るのに伴ない磁性流体4は、狭l/)通路部3を速度勾
配を生じつつ流れることななるため、内筒部2の上面と
下面とに流れの平均速度に比例した圧力差が生ずること
になり、これによって制動力が惹起し、更に当該制動力
を利用して誘発した振動を速やかに減衰することを可悌
としたものであると共に、 磁性流体4と内筒部2を構成し電磁石機能を発揮する各
電磁石部11とを前記実施例の如く組み合わせることに
よって、磁性流体4の粘性と通路部3の隙間とに衣存し
ている制動力自体に、前記強烈な磁場14により磁性流
体4の見掛は粘度の可及的増大をもって更に一層大きな
制動効果を付加し、もって、誘発された振動を即時的且
つ高効率に減衰するようにしたものであり、 更に、内筒部2を構成する各電磁石部11に流れる電流
量を図外の適宜操作機構により変化させつつ電磁石の磁
場を変化させることをもって磁性流体の見掛は粘度の変
化、ひいては制動力作用を変化させ、これらの操作を装
置の外から自在にコトロー、ルすることにより、振動減
衰を必要とする適宜如何なる荷重或いは振動の如何なる
変化にも即時に減衰対応可能としたものである。
Here, in the vibration damping device A, when the device A is configured as a piston type as in the embodiment, as the inner cylinder portion 2 moves up and down, the magnetic fluid 4 moves through the narrow l/) passage portion 3 at a speed. Since the flow does not occur while creating a gradient, a pressure difference proportional to the average velocity of the flow is generated between the upper and lower surfaces of the inner cylinder portion 2, which causes a braking force, and further utilizes the braking force. By combining the magnetic fluid 4 and the electromagnet parts 11 that constitute the inner cylinder part 2 and exhibit the electromagnetic function as in the above embodiment, The strong magnetic field 14 causes the apparent viscosity of the magnetic fluid 4 to increase as much as possible, resulting in an even greater braking effect due to the braking force existing between the viscosity of the magnetic fluid 4 and the gap in the passage section 3. In addition, the amount of current flowing through each electromagnet section 11 constituting the inner cylinder section 2 is controlled by an appropriate operating mechanism (not shown). By changing the magnetic field of the electromagnet while changing the magnetic field of the electromagnet, the apparent viscosity of the magnetic fluid and, in turn, the braking force effect can be changed, and these operations can be freely controlled from outside the device to achieve vibration damping. Therefore, it is possible to immediately dampen any change in load or vibration as appropriate.

一方、実施例に示す本発明の装置Aは、上述のように特
に優れた振動減衰効果を発揮する他、磁性流体4の中に
積層され電磁石機能を有する各電磁石部11よりなる内
筒部2を配設したと共に、内筒部2の外周側面に発生す
る強烈な磁場14により、当該内筒部2は外筒部1の内
周面に全く接触することなく常にセンタリングされてい
るという特質を有する。従って、換言すれば、本装置は
、無接触方式の振動減衰機構ということができ、前記従
来の如く接触された各機構部自体が振動媒介となってし
まうという不都合を完全に解消できるものである。
On the other hand, the device A of the present invention shown in the embodiment exhibits a particularly excellent vibration damping effect as described above, and also has an inner cylindrical portion 2 consisting of each electromagnetic portion 11 laminated in a magnetic fluid 4 and having an electromagnetic function. In addition, due to the strong magnetic field 14 generated on the outer peripheral surface of the inner cylinder part 2, the inner cylinder part 2 is always centered without coming into contact with the inner peripheral surface of the outer cylinder part 1. have Therefore, in other words, the present device can be said to be a non-contact type vibration damping mechanism, and can completely eliminate the inconvenience of the conventional contacting mechanical parts themselves becoming vibration media. .

ここに、実施例本装置の機構及び用途例として図示した
ものは、ピストン方式より本発明を構成し、その用途を
適宜機器等の防振架台とする場合であり、図中、上架台
16は第8図に示すバネ部18によって下架台17上に
支持されているものであり、本装置を当該上・下架台の
間に設置したものである。従って、予め、当該防振架台
の固有周期より減衰定数を求め、更には磁性流体の見掛
は粘度と制振作用とを、電磁石機能を有する内筒部2の
電流量変化をもって自動的に変化、調節しコントロール
する等により、木製ff1Aをこのような防振架台に用
いた場合、装置自体、如何なる振動媒介となることもな
く上・下架台のいずれかに誘発された振動を素早く即時
減衰させることが出来き、しかも、架台に生じた適宜如
何なる荷重或いは振動の如何なる変化にも装置の外から
自在且つ即時に減衰対応可能としたものである。
What is illustrated here as an example of the mechanism and application of the present device is a case in which the present invention is constituted by a piston system and the application is appropriately used as a vibration-proof mount for equipment, etc. In the figure, the upper mount 16 is It is supported on a lower pedestal 17 by a spring portion 18 shown in FIG. 8, and the present device is installed between the upper and lower pedestals. Therefore, the damping constant is determined in advance from the natural period of the vibration isolating frame, and the apparent viscosity and damping action of the magnetic fluid are automatically changed by changing the amount of current in the inner cylinder 2, which has an electromagnetic function. When the wooden FF1A is used in such a vibration-isolating pedestal by adjusting and controlling, the device itself quickly and immediately damps the vibrations induced in either the upper or lower pedestal without becoming any vibration mediator. Moreover, it is possible to freely and immediately dampen any change in load or vibration occurring on the pedestal from outside the device.

なお、装置Aは、上記−用途例に限ることなく各種分野
の各種振動減衰として使用出来ることは勿論である。
It goes without saying that the device A can be used for vibration damping in various fields without being limited to the above-mentioned application examples.

以上説明したように、一実施例に就いて述べた本装置A
は、前記従来の課題を見$に解決しつつ従来の欠陥、不
都合を解消出来ることの他、機構部が無接触であること
から各部の摩耗が全くないので極めてその耐用が長期と
なり、また、内筒部が常時センタリング機能を発揮して
いるので従来の如くセンタリングのための特別手段は全
く不要であるなど、振動減衰装置として極めて優れた諸
効果を併有しつつランダムな各種誘発振動に対し極めて
広汎に適用することの出来る優れた装置であり、以下に
の述べる第2実施例及び第3実施例に関してもこれら優
れた各諸効果を併有することは勿論である。
As explained above, the present device A described in one embodiment
In addition to being able to eliminate the defects and inconveniences of the prior art while solving the above-mentioned conventional problems at a low cost, the mechanism has no contact, so there is no wear on each part, resulting in an extremely long service life. Since the inner cylinder always performs the centering function, there is no need for any special means for centering as in the past, and it has extremely excellent effects as a vibration damping device, while also being able to withstand various types of random induced vibrations. This is an excellent device that can be widely applied, and it goes without saying that the second and third embodiments described below also have these excellent effects.

(第2実施例の作用、効果) 実施例の装置Bにおいては、電磁石部21の連設により
磁場が極端な不均一になることを回避しつつ、内筒部2
2の外周面と電磁石部21の内周面との間に形成した狭
い通路部23を流れる磁性流体24に極めて有効に磁場
29を加えることが出来、更に、当該磁場29により磁
性流体の見掛は粘度を、より一層増大させることが出来
る。そして、磁性流体z4の当該見掛は粘度は、電磁石
部21の電流量を装置の外から図外の適宜変化操作をも
って極めて簡易に変化、調節しコトロールすることが出
来る。この場合、上記電流量の変化操作を手動にするか
、自動にするか自在であることは装置Aと同様である。
(Operations and Effects of the Second Embodiment) In the device B of the embodiment, the electromagnet parts 21 are arranged in series to prevent the magnetic field from becoming extremely non-uniform, and the inner cylindrical part 2
A magnetic field 29 can be applied extremely effectively to the magnetic fluid 24 flowing through the narrow passage 23 formed between the outer circumferential surface of the electromagnet 2 and the inner circumferential surface of the electromagnet 21. can further increase the viscosity. The apparent viscosity of the magnetic fluid z4 can be controlled by changing and adjusting the current amount of the electromagnetic part 21 very easily by appropriately changing the amount of current flowing through the electromagnet section 21 from outside the device (not shown). In this case, as in device A, the operation for changing the amount of current can be performed manually or automatically.

ここに、振動減衰装置Bは、実施例の如く装置Bを例え
ばピストン方式に構成した場合、内筒部22が上下運動
するのに伴ない磁性流体24は、東い通路部23を速度
勾配を生じつつ流れることになるため、内筒部22の上
面と下面とに流れの平均速度に比例した圧力差が生ずる
ことになり、これによって制動力が惹起し、更に当該制
動力を利用して、誘発した振動を速やかに減衰すること
を回走としたものであると共に、 磁性流体24と電磁石部21とを前記実施例の如く組み
合わせることによって、磁性流体24の粘性と通路部2
3の隙間とに衣存している制動力自体に、前記強烈な磁
場29により磁性流体24の見掛は粘度の可及的増大を
もって更に一層大きな制動効果を付加し、もって、誘発
された振動を即時的且つ高効率に減衰するようにしたも
のであり、 更に、電磁石部21に流れる電流量を図外の適宜操作機
構により、例えば振動減衰を必要とする各荷重或いは振
動の変化に即応できるように自動変化させつつ電磁石部
の磁場を変化させることにより磁性流体の見掛は粘度の
変化ひいては制動力作用の変化を装置の外から自在にコ
ンロール操作することにより、振動減衰を必要とする適
宜如何なる荷重或いは振動の如何なる変化にも即時に減
衰対応可能としたものである。
Here, in the vibration damping device B, when the device B is configured as a piston system as in the embodiment, the magnetic fluid 24 moves along the east passage portion 23 with a velocity gradient as the inner cylinder portion 22 moves up and down. As a result, a pressure difference proportional to the average speed of the flow occurs between the upper and lower surfaces of the inner cylinder portion 22, which causes a braking force, and further utilizes the braking force to The circulation is intended to quickly attenuate the induced vibrations, and by combining the magnetic fluid 24 and the electromagnet section 21 as in the above embodiment, the viscosity of the magnetic fluid 24 and the passage section 2 can be reduced.
The intense magnetic field 29 increases the apparent viscosity of the magnetic fluid 24 as much as possible, thereby adding an even greater braking effect to the braking force existing in the gap 3, thereby reducing the induced vibrations. Furthermore, the amount of current flowing through the electromagnet section 21 can be adjusted immediately to changes in load or vibration that require vibration damping, for example, by using an appropriate operating mechanism (not shown). By automatically changing the magnetic field of the electromagnet, the apparent viscosity of the magnetic fluid, and thus the braking force, can be freely controlled from outside the device, allowing vibration damping to be performed as needed. This makes it possible to immediately dampen any changes in load or vibration.

一方、第1実施例と同様に、装置Bは、上述のように特
に優れた振動減衰効果を発揮する他、磁性流体24を包
覆するような状態で積層された電磁石機能を有する各電
磁石部21を配設したと共に、内筒部22の外周側面に
発生する強烈な磁場29により、当該内筒部22は電磁
石部21の内周面に全く接触することなく常にセンタリ
ングされているという特質を有する。従って、前記各実
施例装置Aと同様、これを換言すれば、本装置は、無接
触方式の振動減衰機構ということができ、前記従来の如
く接触された各機構部自体が振動媒介となってしまうと
いう不都合を完全に解消できるものである。
On the other hand, similarly to the first embodiment, in addition to exhibiting a particularly excellent vibration damping effect as described above, the device B has each electromagnet section having an electromagnetic function that is stacked so as to cover the magnetic fluid 24. 21 and the strong magnetic field 29 generated on the outer peripheral side of the inner cylinder part 22, the inner cylinder part 22 is always centered without coming into contact with the inner peripheral surface of the electromagnet part 21. have Therefore, like the device A of each of the embodiments described above, in other words, this device can be said to be a non-contact type vibration damping mechanism, in which each mechanical part itself that is brought into contact as in the prior art becomes a vibration medium. It can completely eliminate the inconvenience of storing things away.

ここに、実施例本装置・Bの機構及び用途例として図示
したものは、前記実施例装置Aと同様にピストン方式よ
り本発明を構成し、その用途を適宜機器等の防振架台と
する場合であり、図中、上架b32を士曲記装置Aにお
いて図示した第8図に示すバネ部18によって下架台3
3上に支持されているものであり、本装置を当該上・下
架台の間に設置したものである。従って、予め、当該防
振架台の固有周期より減衰定数を求め、更には磁性流体
の見掛は粘度と制振作用とを、電磁石機能を有する電磁
石部21の電流量変化をもって自動的に変化、調節しコ
ントロールする等により、本装置Bをこのような防振架
台に用いた場合、装置自体、如何なる振動媒介となるこ
ともなく上・下架台のいずれかに誘発された振動を素早
く即時に減衰させることが出来き、しかも、架台に生じ
た適宜如何なる荷重或いは振動の如何なる変化にも装置
の外から自在且つ即時に減衰対応可能としたものである
Here, the mechanism and application example of the device B according to the embodiment are illustrated in the case where the present invention is constructed using a piston system similar to the device A in the embodiment described above, and the application is appropriately used as a vibration-isolating stand for equipment, etc. In the figure, the upper rack b32 is connected to the lower rack 3 by the spring part 18 shown in FIG.
3, and this device is installed between the upper and lower frames. Therefore, the damping constant is determined in advance from the natural period of the vibration isolating frame, and furthermore, the apparent viscosity and damping action of the magnetic fluid are automatically changed by changing the amount of current of the electromagnet section 21 having an electromagnetic function. By adjusting and controlling, when this device B is used in such a vibration-isolating frame, the device itself quickly and immediately damps the vibrations induced in either the upper or lower frame without acting as a vibration mediator. Moreover, it is possible to freely and immediately dampen any change in load or vibration occurring on the pedestal from outside the device.

なお、装置Bは前記装置Aと同様、上記−用途例に限る
ことなく各種分野の各種振動減衰として使用出来ること
は勿論である。
It goes without saying that device B, like device A, can be used for vibration damping in various fields without being limited to the above-mentioned application examples.

(第3実施例の作用、効果) 本装置Cにおいて、振動減衰機構体Xには、前記装置A
、Bと同様な磁界、磁場(第2図及び第4図参照)と同
時に大きな制動力等が惹起する。
(Operations and effects of the third embodiment) In the present device C, the vibration damping mechanism X has the device A
, B, a large braking force, etc. are induced at the same time as the magnetic field (see FIGS. 2 and 4).

一方、弾性機構体Yは、上記振動減衰機構体Xの上方に
あって管部54より空気給・排を調節されつつその空気
室42とバネ部41とにより上架台45上に載置される
機器等から発生する振動を可及的・高効率に防振すると
いう機能を発揮する。
On the other hand, the elastic mechanism Y is placed above the vibration damping mechanism X, and is placed on the upper frame 45 by its air chamber 42 and spring portion 41, with air supply and exhaust being adjusted by the tube portion 54. It has the function of isolating vibrations generated from equipment as efficiently as possible.

従って、装置Cは、前記装置A或いは装置Bの基本構成
よりなる振動減衰機構体Xと、弾性機構体Yとの巧みな
組み合わせをもってその防振機能を発揮させるようにし
たものである。
Therefore, the device C exhibits its vibration damping function through a skillful combination of the vibration damping mechanism X, which has the basic structure of the device A or device B, and the elastic mechanism Y.

なお、本装置Cは、前記各装置A、Bと同様、磁性流体
50の見掛は粘度及び制動作用が、電磁石部47の電流
量を装置の外から図外の適宜変化操作をもって極めて簡
易に変化、調節しコトロール出来るので、図外の適宜操
作機構により、例えば振動減衰を必要とする各種荷重或
いは振動の変化に即応できるよう電磁石部の磁場を自動
変化させつつ磁性流体の見掛は粘度と制動力作用の変化
を装置の外から自在にコトロール操作することにより、
振動減衰を必要とする適宜如何なる荷重或いは振動の如
何なる変化にも即時に減衰対応できることの他、内筒部
48又は59が全く何らの手段を要することなく常時セ
ンタリングされており無接触方式の振動減衰機構である
こと等の諸点に関し、前記実施例装置A、Bと同様であ
る。
In this device C, as with each of the devices A and B, the apparent viscosity and braking function of the magnetic fluid 50 can be extremely easily changed by appropriately changing the amount of current in the electromagnet section 47 from outside the device (not shown). Since it can be controlled by changing and adjusting, the magnetic field of the electromagnet can be automatically changed by using an appropriate operating mechanism (not shown), for example, in order to immediately respond to various loads that require vibration damping or changes in vibration, while the apparent viscosity of the magnetic fluid is changed. By freely controlling changes in braking force from outside the device,
In addition to being able to immediately respond to any changes in load or vibration that require vibration damping, the inner cylinder portion 48 or 59 is constantly centered without any means required, and vibration damping is achieved in a non-contact manner. It is the same as the embodiment devices A and B in terms of the mechanism and other aspects.

また、本装置Cにおいては、弾性機構体Yが振動減衰機
構体Xを包覆しカバーする状態に構成されているので、
振動減衰機構体X内は完全密封されており、その内部に
チリ、はこり等が侵入することを完全に遮断し、且つ、
磁性流体の蒸発等を防ぐことが出来ることにより、装置
自体の各機構体、特に磁性流体への不用意な悪影響を見
事に解消することが出来る。
In addition, in this device C, the elastic mechanism Y is configured to cover and cover the vibration damping mechanism X, so that
The inside of the vibration damping mechanism X is completely sealed, completely blocking dust, lumps, etc. from entering the inside, and
By being able to prevent evaporation of the magnetic fluid, it is possible to successfully eliminate inadvertent adverse effects on the various mechanisms of the device itself, especially the magnetic fluid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1実施例に係る装置Aの縦断面図、第2図は
第1図の要部を抽出した正面図、第3図は第2実施例に
係る装置Bの縦断面図、第4図は第3図の要部を抽出し
た縦断面図、第5図は第3図の他の実施例装置Bの要部
を示す縦断面図、第6図は第3実施例に係る装置Cの縦
断面図、第7図は第6図の他の実施例装置Cの縦断面図
、第8図は第1実施例に係る装置iAを防振架台に使用
した一例を示す概略側面図、第9図は同概略正面図であ
る。 図中の主な符合 第1実施例の装置A 1拳・舎外筒部、2拳争Φ内筒部、3・φ拳通路部、4
・・・磁性流体、11・・・電磁石部、12−−−スペ
ーサー、13・・拳磁界、1411・・磁場、16・・
・上架台、17・・・下架台部2実施例の装置B 20・参会外筒部、21や拳・電磁石部、22・・舎内
筒部、23会・・通路部、24@・φ磁性流体、25−
−・スペーサー、2811ψΦ磁界、29φ0.磁場、
320.・上架台、33.。 ・下架台。 第3実施例の装置C X−・争振動減衰機構体、Yll・・弾性機構体・・上
架台、46・拳−基礎外筒部、47φΦ昏電磁石部、4
8.59・・・内筒部、49・・・通路部、50・−・
磁性流体、56・・ψスペーサー、60・金−下架台或
いは床部。 図面の浄♂(内容に変更なし) 1鴨1(3 第20 第7回 手続補正書 (方式) %式% 2、発明の名称 振動減衰装置 3、補正をする者 事件との関係 特許出願人 居所 東京部品用区東五反田5−1o−18(岩田ビル
) 名称 ヤクモ工業株式会社 4、代理人 住所 東京都港区赤坂9丁目1番7号 「図面」及び「委任状」 7、補正の内容 願書に最初に添付した図面の浄書(内容に変更なし)及
び委任状を提出致します。 8、添付書類の目録
FIG. 1 is a longitudinal cross-sectional view of device A according to the first embodiment, FIG. 2 is a front view extracting the main parts of FIG. 1, and FIG. 3 is a vertical cross-sectional view of device B according to the second embodiment. FIG. 4 is a vertical cross-sectional view showing the main parts of FIG. 3, FIG. 5 is a vertical cross-sectional view showing the main parts of the apparatus B of the other embodiment shown in FIG. 3, and FIG. FIG. 7 is a vertical cross-sectional view of the device C according to another embodiment of FIG. 6, and FIG. 8 is a schematic side view showing an example in which the device iA according to the first embodiment is used as a vibration-isolating frame. 9 are schematic front views of the same. Main symbols in the figure Device A of the first embodiment 1 fist/outer cylinder part, 2 fist/φ inner cylinder part, 3/φ fist passage part, 4
...Magnetic fluid, 11...Electromagnet part, 12---Spacer, 13...Fist magnetic field, 1411...Magnetic field, 16...
・Upper mount, 17...Device B of the lower mount 2 embodiment 20.Outer cylindrical part, 21 and fist/electromagnet part, 22...Inner cylindrical part, 23.Passway part, 24@- φ magnetic fluid, 25-
-・Spacer, 2811ψΦ magnetic field, 29φ0. magnetic field,
320.・Upper stand, 33. .・Lower stand. Device C of the third embodiment
8.59... Inner cylinder part, 49... Passage part, 50...
Magnetic fluid, 56... ψ spacer, 60, gold - lower stand or floor. Cleaning of the drawings (no change in content) 1 duck 1 (3 20th 7th procedural amendment (method) % formula % 2, name of the invention Vibration damping device 3, person making the amendment Relationship with the case Patent applicant Address: 5-1o-18 Higashigotanda, Tokyo Parts Ward (Iwata Building) Name: Yakumo Kogyo Co., Ltd. 4; Agent Address: 9-1-7 Akasaka, Minato-ku, Tokyo; “Drawings” and “Power of Attorney” 7. Contents of amendments We will submit an engraving of the drawings originally attached to the application (no changes to the contents) and a power of attorney. 8. List of attached documents

Claims (1)

【特許請求の範囲】 1、複数の電磁石体と磁性流体とを巧みに組み合わせた
ことをもって強烈な磁場を発生させつつ上記磁性流体の
見掛け粘度を一層増大させることにより大きな制動力を
惹起させるようにしたと共に、上記電磁石体電流量の自
在変化に即応して電磁石体の磁場を変化させつつ磁性流
体の見掛け粘度を自在に変化させることにより制動力作
用を自在に変化させるようにしたことをもって、 過渡特性及び位相特性を極めて良好に改善しつつ、誘発
された各種の振動を速やかに減衰させると同時に、振動
減衰を必要とする適宜の荷重或いは振動の如何なる変化
にも即時に減衰対応可能としたことを特徴とする振動減
衰装置(A)。 2、複数の電磁石体と磁性流体とを巧みに組み合わせた
ことをもって強烈な磁場を発生させつつ上記磁性流体の
見掛け粘度を一層増大させることにより大きな制動力を
惹起させるようにしたと共に、上記電磁石体電流量の自
在変化に即応して電磁石体の磁場を変化させつつ磁性流
体の見掛け粘度を自在に変化させることにより制動力作
用を自在に変化させるようにしたことをもって、 過渡特性及び位相特性を極めて良好に改善しつつ、誘発
された各種の振動を速やかに減衰させると同時に、振動
減衰を必要とする適宜の荷重或いは振動の如何なる変化
にも即時に減衰対応可能としたことを特徴とする振動減
衰装置において、振動発生源となる適宜機器等の上架台
(32)下に位置し非磁性材よりなる支持軸部(30)
の下端に形成された非磁性材よりなる内筒部(22)、
上記内筒部を包覆しつつその内周に適当隙間の通路部(
23)を形成して設置され非磁性材よりなる外筒部(2
0)、上記外筒部内周面に設置され各スペーサー(25
)を介在してそれぞれが同極対向するようにして設置さ
れた電磁石部(21)、上記内筒部内に内蔵された磁性
流体(24)、とから成ることを特徴とした振動減衰装
置(B)。 3、複数の電磁石体と磁性流体とを巧みに組み合わせた
ことをもって強烈な磁場を発生させつつ上記磁性流体の
見掛け粘度を一層増大させることにより大きな制動力を
惹起させるようにしたと共に、上記電磁石体電流量の自
在変化に即応して電磁石体の磁場を変化させつつ磁性流
体の見掛け粘度を自在に変化させることにより制動力作
用を自在に変化させるようにしたことをもって、 過渡特性及び位相特性を極めて良好に改善しつつ、誘発
された各種の振動を速やかに減衰させると同時に、振動
減衰を必要とする適宜の荷重或いは振動の如何なる変化
にも即時に減衰対応可能としたことを特徴とする振動減
衰機構体(X)と、上記振動減衰機構体を内蔵しつつ例
えば空気バネ方式等をはじめ適宜手段にて可及的に軟性
としたバネ性を保有してなる弾性機構体(Y)とから成
ることを特徴とした振動減衰装置(C)。 4、前記特許請求の範囲第3項記載の振動減衰機構体(
X)において、電磁石部(47)の部位に代替して当該
部全体を非磁性材よりなる基礎外筒部(46)としたと
共に、内筒部(48)に代替してこれを電磁石機能を有
する内筒部(59)とした特許請求の範囲第3項記載の
振動減衰装置(C)。
[Claims] 1. A large braking force can be induced by skillfully combining a plurality of electromagnets and a magnetic fluid to generate an intense magnetic field and further increase the apparent viscosity of the magnetic fluid. In addition, by freely changing the apparent viscosity of the magnetic fluid while changing the magnetic field of the electromagnet in response to a free change in the amount of current in the electromagnet, the braking force action can be freely changed. While improving the characteristics and phase characteristics extremely well, it can quickly damp various induced vibrations, and at the same time, it can immediately respond to appropriate loads that require vibration damping or any changes in vibration. A vibration damping device (A) characterized by: 2. By cleverly combining a plurality of electromagnets and a magnetic fluid, a strong magnetic field is generated and the apparent viscosity of the magnetic fluid is further increased to induce a large braking force. By freely changing the apparent viscosity of the magnetic fluid while changing the magnetic field of the electromagnet in response to a free change in the amount of current, the braking force action can be freely changed, thereby achieving excellent transient characteristics and phase characteristics. Vibration damping that is characterized by quickly damping various types of induced vibrations while improving the improvement, and at the same time being able to immediately respond to any changes in appropriate loads or vibrations that require vibration damping. In the device, a support shaft portion (30) made of a non-magnetic material is located under an upper frame (32) for appropriate equipment, etc., which is a source of vibration generation.
An inner cylinder part (22) made of a non-magnetic material formed at the lower end of the
A passage part (with appropriate clearance) surrounding the inner cylinder part (
The outer cylindrical part (23) made of a non-magnetic material is
0), each spacer (25
) A vibration damping device (B ). 3. By skillfully combining a plurality of electromagnets and a magnetic fluid, a strong magnetic field is generated and the apparent viscosity of the magnetic fluid is further increased to induce a large braking force. By freely changing the apparent viscosity of the magnetic fluid while changing the magnetic field of the electromagnet in response to a free change in the amount of current, the braking force action can be freely changed, thereby achieving excellent transient characteristics and phase characteristics. Vibration damping that is characterized by quickly damping various types of induced vibrations while improving the improvement, and at the same time being able to immediately respond to any changes in appropriate loads or vibrations that require vibration damping. It consists of a mechanism (X) and an elastic mechanism (Y) which houses the vibration damping mechanism described above and has elasticity made as flexible as possible by appropriate means such as an air spring system. A vibration damping device (C) characterized by: 4. The vibration damping mechanism according to claim 3 (
In X), the part of the electromagnet part (47) is replaced with the basic outer cylinder part (46) made of a non-magnetic material, and the part is replaced with the inner cylinder part (48), which has the electromagnetic function. A vibration damping device (C) according to claim 3, wherein the vibration damping device (C) has an inner cylindrical portion (59).
JP23761384A 1984-11-13 1984-11-13 Vibration damping equipment Pending JPS61116141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23761384A JPS61116141A (en) 1984-11-13 1984-11-13 Vibration damping equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23761384A JPS61116141A (en) 1984-11-13 1984-11-13 Vibration damping equipment

Publications (1)

Publication Number Publication Date
JPS61116141A true JPS61116141A (en) 1986-06-03

Family

ID=17017907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23761384A Pending JPS61116141A (en) 1984-11-13 1984-11-13 Vibration damping equipment

Country Status (1)

Country Link
JP (1) JPS61116141A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039530A (en) * 2017-08-28 2019-03-14 不二ラテックス株式会社 Buffer
CN109973579A (en) * 2019-04-22 2019-07-05 安徽工程大学 MR elastomer vibration isolator
CN113074208A (en) * 2021-03-16 2021-07-06 广西科技大学 Combined type magneto-rheological vibration damper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769136A (en) * 1980-10-13 1982-04-27 Yakumo Kogyo Kk Vibration insulator
JPS57144327A (en) * 1981-02-27 1982-09-06 Itsuki Ban Linear type time-lagging device utilizing magnetic coupling
JPS5857536A (en) * 1981-09-29 1983-04-05 Kinugawa Rubber Ind Co Ltd Vibration proof supporter
JPS60241053A (en) * 1984-05-16 1985-11-29 Konishiroku Photo Ind Co Ltd Treatment of silver halide color photographic sensitive material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769136A (en) * 1980-10-13 1982-04-27 Yakumo Kogyo Kk Vibration insulator
JPS57144327A (en) * 1981-02-27 1982-09-06 Itsuki Ban Linear type time-lagging device utilizing magnetic coupling
JPS5857536A (en) * 1981-09-29 1983-04-05 Kinugawa Rubber Ind Co Ltd Vibration proof supporter
JPS60241053A (en) * 1984-05-16 1985-11-29 Konishiroku Photo Ind Co Ltd Treatment of silver halide color photographic sensitive material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039530A (en) * 2017-08-28 2019-03-14 不二ラテックス株式会社 Buffer
CN109973579A (en) * 2019-04-22 2019-07-05 安徽工程大学 MR elastomer vibration isolator
CN113074208A (en) * 2021-03-16 2021-07-06 广西科技大学 Combined type magneto-rheological vibration damper

Similar Documents

Publication Publication Date Title
EP0875694B1 (en) Damper device and turbomolecular pump with damper device
WO2002049192A1 (en) Passive magnetic support and damping system
US4526381A (en) Magnetic disc liquid supporting
JPS61116141A (en) Vibration damping equipment
CN209856292U (en) Damping-adjustable magnetic suspension type eddy current tuned mass damper
US4717266A (en) Low friction ferrofluid bearing arrangement
JPS60256638A (en) Vibration damping device
US3885839A (en) Magnetic bearing
JPS6069340A (en) Oscillation damping device
JPS60256639A (en) Supporting device for equipment base or the like
JPS60136615A (en) Fluid bearing construction
CN102360109A (en) Five-degree of freedom magnetic suspension single sheet DLP (digital light procession) color wheel drive system
JP2810631B2 (en) Hydrostatic gas bearing device
JP2008185184A (en) Vibration absorbing machine for in-wheel motor
JPH03255220A (en) Magnetic bearing device
CN210950402U (en) Damping device suitable for petroleum pipeline
JP2524835Y2 (en) Radial bearing device
JPH1162878A (en) Turbo molecular pump
JPS63190928A (en) Dynamic pressure bearing
Terada et al. Dividing Repulsion Permanent Magnets for Enhancing Suspension Force Characteristics in a 1-axis Active Control Type Magnetic Levitation Pump
JPH0389018A (en) Vibrationproofing type rotation axis support system
JPH06333733A (en) Damper for magnetic levitation train
JPS6231720A (en) Damper device of magnetic bearing
JPH07138845A (en) Vibration insulating device for loom
JPS6073119A (en) Shock absorbing device for rotary body