JPS61114230A - Automatic focusing camera - Google Patents

Automatic focusing camera

Info

Publication number
JPS61114230A
JPS61114230A JP23511184A JP23511184A JPS61114230A JP S61114230 A JPS61114230 A JP S61114230A JP 23511184 A JP23511184 A JP 23511184A JP 23511184 A JP23511184 A JP 23511184A JP S61114230 A JPS61114230 A JP S61114230A
Authority
JP
Japan
Prior art keywords
optical system
entrance window
luminous flux
light
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23511184A
Other languages
Japanese (ja)
Inventor
Michio Yagi
八木 道生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP23511184A priority Critical patent/JPS61114230A/en
Publication of JPS61114230A publication Critical patent/JPS61114230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To eliminate error factors between a right and a left image and utilize the space for optical system arrangement by providing the 1st incidence window and the 2nd incidence window in order at right angles to the incidence direction of luminous flux for range measurement, and reflecting pieces of luminous flux incident from those windows almost in the same direction ad guiding them to a photodetection part. CONSTITUTION:A photodetecting element chip 7 is arranged at right angles to the conventional direction for the two pieces L1 and L2 of luminous flux from a subject; one piece L1 of luminous flux is passed through a lens 10 and reflected by a mirror 11 at right angles, and the other piece L2 is reflected by a mirror 12 at right angles and then passed through a lens 13, so that the both are guided to respective photodetecting elements A and B. Thus, an optical system for range measurement is arranged and the there is some space between the two pieces L1 and L2 of luminous flux in the camera, so the finder optional system composed of lenses 8 and 9 is arranged in this space, which is utilized. Further, the optical system for range measurement uses only one lens and one mirror for one piece of luminous flux, so error factors of an image position are decreased.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、カメラ内部のスペースを有効に利用し測距用
光学像の相対的位置の調整を容易にした自動焦点カメラ
に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an autofocus camera that makes effective use of the space inside the camera and facilitates adjustment of the relative position of an optical image for distance measurement.

(ロ)従来技術 従来、自動焦点カメラが開発され実用化されている。自
動焦点カメラにおいて被写体の合焦を光学的に検知する
方法として、被測定物の像のシャープさを検出するボケ
像検出式、左右2つの被測定物の重なりを検出する二重
像合致検出式、あるいは上下像合致検出式、被測定物に
向けて発射した光線の反射光を利用して基線長と見込み
角より三角測量式に距離を求める光線距離式など種々の
方式が知られている。
(b) Prior Art Conventionally, autofocus cameras have been developed and put into practical use. As methods for optically detecting the focus of a subject in an autofocus camera, there is a blurred image detection method that detects the sharpness of the image of the object to be measured, and a double image matching detection method that detects the overlap of the left and right two objects to be measured. Various methods are known, such as the upper and lower image coincidence detection method, and the ray distance method, which uses the reflected light of the light beam emitted towards the object to be measured to calculate the distance by triangulation from the base line length and angle of view.

一方、合焦のための測距方式には、赤外ビーム光のよう
なビーム光を被写体に向けて投射しその反射ビーム光を
受光して測距するいわゆるアクティブAF方式と、被写
体からの2つの異なる光束を別々の受光素子で受光して
像を形成し、像の一致を監視して測距するいわゆるパッ
シブAF方式とがある。
On the other hand, the distance measurement methods for focusing include the so-called active AF method, which projects a beam of light such as an infrared beam toward the subject and receives the reflected beam light to measure the distance, and the There is a so-called passive AF method in which two different light beams are received by separate light receiving elements to form an image, and distance measurement is performed by monitoring the coincidence of the images.

ところで、アクティブAF方式のカメラでは測距のため
に用いられる赤外ビーム光が通過する発光レンズの光軸
と受光レンズの光軸との間にファインダ光学系を配置す
ることができるの゛でスペースの有効利用が図れカメラ
のコンパクト化が可能であるが、パッシブAF方式のカ
メラでは以下に述べるような理由で測距用光学系とファ
インダ光学とを独立して離して配置せざるを得ないため
カメラのコンパクト化が困難である。
By the way, in active AF type cameras, the finder optical system can be placed between the optical axis of the light emitting lens and the optical axis of the light receiving lens, through which the infrared beam light used for distance measurement passes. However, in passive AF cameras, the rangefinding optical system and finder optical system must be placed independently and separately for the reasons described below. It is difficult to make the camera more compact.

すなわち、三角測量に基づいて測距するパッシブAF方
式では2つのアレイ状受光素子で異なる光を受光するが
、これら2つの受光素子は次の理由により1チツプ上に
形成する必要がある。
That is, in the passive AF method that measures distance based on triangulation, two arrayed light receiving elements receive different lights, but these two light receiving elements must be formed on one chip for the following reason.

(i)  受光素子は第3図に示すように多数の短冊状
の光電素子を複数個アレイ状に配置したものであるから
左右2つの受光素子A、Bを別々のチップに構成すると
配線が著るしく複雑になる。
(i) As the photodetector is made up of a large number of strip-shaped photoelectric elements arranged in an array as shown in Figure 3, configuring the left and right photodetectors A and B on separate chips would require significant wiring. It becomes complicated.

(ii) 2つの受光素子の特性がそろっていないと測
距誤差を生ずるおそれがある。
(ii) If the characteristics of the two light-receiving elements are not the same, there is a possibility that a distance measurement error will occur.

このような−組の受光素子を用いて三角測量に基づいて
測距する場合の測距能力は、光学的基線長、結像レンズ
の焦点距離、受光素子を構成する複数の光電素子の各素
子間のピッチにより決まり、光学的基線長は一般に15
〜351mという寸法とされることが多い。従って、2
つの受光素子を数龍平方のチップにに構成した場合は第
4図に示すようにミラーなどを用いて基線長変換を行な
っている。すなわち、被写体からくる異なった光束Ll
−、L2を一旦ミラー1.2で直角に反射させた後レン
ズ3,4に通し、さらにミラー5,6で反射させてチッ
プ7上の2つの受光素子A、 Bのそれぞれに投射する
。従って、第4図かられかるよう番こ、両光束Ll、L
2の間は測距光学系の専用スペースとなってしまいレン
ズ、8,9から成るファインダ光学系はその外側のスペ
ースに配置せざるを得ずカメラ寸法が大きくなってしま
う。
When performing distance measurement based on triangulation using such a set of light receiving elements, the distance measuring ability depends on the optical base length, the focal length of the imaging lens, and each element of the plurality of photoelectric elements that make up the light receiving element. The optical baseline length is generally 15
It is often assumed that the size is ~351 m. Therefore, 2
When two light-receiving elements are arranged on a square chip, a mirror or the like is used to convert the base line length, as shown in FIG. That is, different light fluxes Ll coming from the subject
-, L2 are once reflected at a right angle by mirror 1.2, passed through lenses 3 and 4, and further reflected by mirrors 5 and 6, and projected onto two light receiving elements A and B on chip 7, respectively. Therefore, from Fig. 4, it can be seen that both luminous fluxes Ll and L
The space between 2 and 2 becomes a dedicated space for the distance measuring optical system, and the finder optical system consisting of lenses 8 and 9 has to be placed outside of that space, resulting in an increase in camera size.

一方、被写体の輝度分布の位相差に基づいて三角測量を
行なうパッシブAF方式においては、左右の両光束L1
. 、 L2として入射する像が基準距離に対して受光
素子上で左右、上下とも像に位相差がないように調整さ
れなければならないが、第4図かられかるように測距光
学系は一方の光束に対して1つのレンズと2つのミラー
が用いられているために左右の像の相対的位置を狂わせ
る要因が多くなるとともに位置調整に1つのレンズと2
つのミラーが介入するので調整が厄介になるという問題
もある。
On the other hand, in the passive AF method that performs triangulation based on the phase difference of the brightness distribution of the subject, both the left and right light beams L1
.. , The image incident as L2 must be adjusted so that there is no phase difference between the left, right, top and bottom images on the light receiving element with respect to the reference distance, but as can be seen from Figure 4, the distance measuring optical system is Since one lens and two mirrors are used for the light beam, there are many factors that can disturb the relative positions of the left and right images, and one lens and two mirrors are used for position adjustment.
There is also the problem that adjustment is complicated because two mirrors intervene.

(ハ)発明の目的および構成 本発明は上記の点にかんがみてなされたもので、パッシ
ブAF方式カメラにおいて、測距用左右像の誤差要因を
なくし光学系配置のためをこスペースの有効利用を図る
ことを目的とし、この目的を達成するために、測距用光
束の入射方向に対して直角な方向から見て順に第1の入
射窓・と第2の入射窓とを設け、第1の入射窓および第
2の入射窓から入射した光束を反射鏡によりほぼ同一方
向に屈曲させて受光部に導くように構成したものである
(c) Object and structure of the invention The present invention has been made in view of the above points, and it is possible to eliminate the cause of errors in the left and right images for distance measurement and to make effective use of space for optical system arrangement in a passive AF camera. In order to achieve this purpose, a first entrance window and a second entrance window are provided in order when viewed from the direction perpendicular to the direction of incidence of the ranging light beam, and The light flux incident through the entrance window and the second entrance window is bent in substantially the same direction by a reflecting mirror and guided to the light receiving section.

に)実施例 以下本発明を図面に基づいて説明する。) Example The present invention will be explained below based on the drawings.

ig1図は本発明による自動焦点カメラの光学系配置の
一実施例を示す線図である。
ig1 is a diagram showing an example of the optical system arrangement of an autofocus camera according to the present invention.

この実施例は、被写体からの2つの光束Ll。In this embodiment, there are two light beams Ll from the subject.

L2に対して、受光素子チップ7を従来とは直角方向に
配置し、一方の光束L1はレンズ10を通しtこ後ミラ
ー11で直角に反転させ、他方の光束L2はミラー12
で直角に反射した後レンズ13を通し、チップ7上のそ
れぞれの受光素子A。
The light receiving element chip 7 is arranged in a direction perpendicular to L2, which is different from the conventional one, and one light beam L1 passes through a lens 10 and is then reversed at a right angle by a mirror 11, and the other light beam L2 is passed through a mirror 12.
After being reflected at right angles, the light passes through the lens 13 and passes through each light receiving element A on the chip 7.

Bに導くようにしたものである。It is designed to lead to B.

測距光学系をこのように配置すれば、カメラ内の2つの
光束L1.L2の間にはスペースができるので、レンズ
8,9から成るファインダ光学系をこのスペース内に配
置することによりスペースの有効な利用が図れる。また
、測距光学系は一方の光束に対して1つのレンズと1つ
のミラーが用いられるだけであるから、受光素子に形成
される像の左右、上下の位置の誤差要因が減少したこと
にもなる。また、像の相対的位置調整が1−12だけで
上下、左右とも可能になるので調整が容易になるという
効果もある。
If the distance measuring optical system is arranged in this way, two light beams L1. Since a space is created between L2, effective use of the space can be achieved by arranging the finder optical system consisting of lenses 8 and 9 within this space. In addition, since the distance measuring optical system uses only one lens and one mirror for one beam of light, the error factors in the left, right, top and bottom positions of the image formed on the light receiving element are reduced. Become. Further, since the relative position of the image can be adjusted by only 1-12 in both the vertical and horizontal directions, there is also the effect that the adjustment becomes easy.

第2図は本発明の他の実施例を示す。FIG. 2 shows another embodiment of the invention.

この実施例では、やはり受光素子チップ7を第1図の実
施例と同様に置き、被写体からの一方の光束L】はレン
ズ14を通した後ミラー15で直角に反射させ、他方の
光束L2はミラー16で直角に反射させた後レンズ17
を通してチップ7上の受光素子A、 Bにそれぞれ導く
。この実施例では、チップ7上の受光素子A、 Bの配
置が第1図の実施例の場合とは逆になっている。
In this embodiment, the light-receiving element chip 7 is placed in the same manner as in the embodiment shown in FIG. After being reflected at right angles by mirror 16, lens 17
through the light receiving elements A and B on the chip 7, respectively. In this embodiment, the arrangement of the light receiving elements A and B on the chip 7 is reversed from that in the embodiment shown in FIG.

この実施例においても、2つの光束Ll、L2の間にス
ペースができるので、このスペースにレンズ8,9から
成るファインダ光学系を配置することができ、スペース
の有効利用が可能である。また、各光束に対して測距光
学系を構成するレンズとミラーが1つずつであるから、
結像の位置に誤差を生ぜしぬる要因が従来の場合より減
少するし、相対位置の調整が1つのミラーの調整ですむ
ので調整が容易になるという点も第1図の実施例と同じ
である。
In this embodiment as well, since a space is created between the two light beams Ll and L2, a finder optical system consisting of lenses 8 and 9 can be placed in this space, and the space can be used effectively. In addition, since there is one lens and one mirror that make up the ranging optical system for each light beam,
This is the same as the embodiment shown in Fig. 1 in that the factors that cause errors in the position of the image are reduced compared to the conventional case, and the relative position can be adjusted easily because only one mirror needs to be adjusted. be.

(ホ)発明の詳細 な説明したように、本発明においては、測距用光束の入
射方向に対して直角な方向から見て順に第1の入射窓と
第2の入射窓とを設け、第1の入射窓および第2の入射
窓から入射した光束を反射鏡によりほぼ同一方向に屈曲
させて受光部に導くように構成したので、2つの光束通
路間にスペースができ、このスペースにファインダ光学
系を配置すればスペースの有効利用を図ることができて
カメラのコンパクト化が可能になる。また、1つの光束
に対する測距光学系は1つのレンズと反射鏡とで構成さ
れるので像位置の誤差要因が減少し、2つの光束により
形成される像の相対的位置の調整が1つの反射鏡の調整
だけででき調整が容易である。
(e) As described in detail of the invention, in the present invention, the first entrance window and the second entrance window are provided in order when viewed from the direction perpendicular to the direction of incidence of the ranging light beam, and the second entrance window is provided in order. The structure is such that the light beams entering from the first entrance window and the second entrance window are bent in almost the same direction by the reflecting mirror and guided to the light receiving section, so a space is created between the two light beam paths, and the finder optical By arranging the system, space can be used effectively and the camera can be made more compact. In addition, since the distance measuring optical system for one light beam is composed of one lens and a reflecting mirror, error factors in the image position are reduced, and adjustment of the relative position of the image formed by two light beams is done by one reflection. Adjustment is easy, just by adjusting the mirror.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による自動焦点カメラの光学系の配置の
一実施例を示す線図、第2図は本発明による自動焦点カ
メラの光学系の配置の他の実施例を示す線図、第3図は
一対の受光素子を配置したチップの一例、第4図は従来
の光学系の配置の一例を示す線図である。 7・・・チップ    8,9,10.13・・・レン
ズ11.12・・・ミラー   Lコ、I、2・・・光
束A、B・・・受光素子
FIG. 1 is a diagram showing one embodiment of the arrangement of the optical system of an autofocus camera according to the present invention, and FIG. 2 is a diagram showing another embodiment of the arrangement of the optical system of the autofocus camera according to the invention. FIG. 3 is an example of a chip in which a pair of light receiving elements are arranged, and FIG. 4 is a diagram showing an example of the arrangement of a conventional optical system. 7... Chip 8,9,10.13... Lens 11.12... Mirror L, I, 2... Luminous flux A, B... Light receiving element

Claims (3)

【特許請求の範囲】[Claims] (1)測距用光束の入射方向に対して直角な方向から見
て順に第1の入射窓と第2の入射窓とを設け、前記第1
の入射窓および第2の入射窓から入射した光束を反射鏡
でほぼ同一方向に屈曲させて受光部に導くようにしたこ
とを特徴とする測距装置を有する自動焦点カメラ。
(1) A first entrance window and a second entrance window are provided in order when viewed from a direction perpendicular to the direction of incidence of the distance-measuring light beam, and the first entrance window
1. An autofocus camera having a distance measuring device, characterized in that a light flux incident through an entrance window and a second entrance window is bent in substantially the same direction by a reflecting mirror and guided to a light receiving section.
(2)前記第1の入射窓と第2の入射窓との間にファイ
ンダ光学系を配置した特許請求の範囲第1項に記載の自
動焦点カメラ。
(2) The autofocus camera according to claim 1, wherein a finder optical system is disposed between the first entrance window and the second entrance window.
(3)前記受光部が一対の感光部分を有する1チップの
受光素子で構成され、該受光素子が前記第1および第2
の入射窓に入射する光束とほぼ平行に配置された自動焦
点カメラ。
(3) The light receiving section is composed of a one-chip light receiving element having a pair of photosensitive parts, and the light receiving element is connected to the first and second photosensitive parts.
The autofocus camera is placed approximately parallel to the light flux entering the entrance window of the camera.
JP23511184A 1984-11-09 1984-11-09 Automatic focusing camera Pending JPS61114230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23511184A JPS61114230A (en) 1984-11-09 1984-11-09 Automatic focusing camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23511184A JPS61114230A (en) 1984-11-09 1984-11-09 Automatic focusing camera

Publications (1)

Publication Number Publication Date
JPS61114230A true JPS61114230A (en) 1986-05-31

Family

ID=16981217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23511184A Pending JPS61114230A (en) 1984-11-09 1984-11-09 Automatic focusing camera

Country Status (1)

Country Link
JP (1) JPS61114230A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367424A (en) * 1976-11-19 1978-06-15 Honeywell Inc Automatic focusing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367424A (en) * 1976-11-19 1978-06-15 Honeywell Inc Automatic focusing device

Similar Documents

Publication Publication Date Title
JPH067219B2 (en) Camera focus detector
JPH0533366B2 (en)
JPS6233564B2 (en)
JPH0943682A (en) Finder device
JPH04248509A (en) Multipoint range finder
JPS6120808A (en) Range measuring instrument
JPS61114230A (en) Automatic focusing camera
JPH04317017A (en) Automatic focusing device
US6229602B1 (en) Photometering apparatus
JPS63259521A (en) Composite type focusing detection device
JP2632178B2 (en) Automatic focus detection device for camera
JPS59121011A (en) Focusing position detector
JPS63309810A (en) Range finder
JPS61137115A (en) Focus detecting device
JPS6167012A (en) Focus detecting device
JPH0711622B2 (en) Projection system for automatic focus detection
JPS63235907A (en) Focus detector
JPS6187114A (en) Single-lens reflex camera having automatic focus mechanism
JPS63235908A (en) Focus detector
JPH0352608B2 (en)
JPS6190113A (en) Single-lens reflex camera with automatic focusing mechanism
JPS62120717U (en)
JPS6017415A (en) Camera provided with range finder optical system placed in ttl finder
JPS63235906A (en) Focus detector
JPS6075813A (en) Automatic focus detector