JPS61114139A - Differential pressure sensor - Google Patents

Differential pressure sensor

Info

Publication number
JPS61114139A
JPS61114139A JP23582484A JP23582484A JPS61114139A JP S61114139 A JPS61114139 A JP S61114139A JP 23582484 A JP23582484 A JP 23582484A JP 23582484 A JP23582484 A JP 23582484A JP S61114139 A JPS61114139 A JP S61114139A
Authority
JP
Japan
Prior art keywords
diaphragm
hole
layer
differential pressure
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23582484A
Other languages
Japanese (ja)
Other versions
JPH0536737B2 (en
Inventor
Kyoichi Ikeda
恭一 池田
Katsumi Isozaki
克巳 磯崎
Tetsuya Watanabe
哲也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP23582484A priority Critical patent/JPS61114139A/en
Publication of JPS61114139A publication Critical patent/JPS61114139A/en
Publication of JPH0536737B2 publication Critical patent/JPH0536737B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • G01L9/0019Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a semiconductive element

Abstract

PURPOSE:To improve sensitivity by joining the 2nd diaphragm which has the same material with the 1st diaphragm to the side of the 1st diaphragm where a hole is formed. CONSTITUTION:The part of the n<+> diffused layer 2b in the 1st hole 3 is etched in a rod shape and a P layer as a substrate is under-etched to form the 2nd hole 5, thereby forming an oscillation beam 4 of the n<+> layer. Then, a P<+> layer 6 is formed by diffusion or epitaxial growth at the part which is most sensitive to the oscillation of the oscillation beam 4. This P<+> layer is led out through an unshown lead wire, etc., while insulated from the P layer to form p-n junction on the oscillation beam 4 as the n<+> diffused layer. The 2nd diaphragm and the 2nd diaphragm are anode-joined together under a vacuum to produce a vacuum in the 1st hole and the 2nd hole. Thus, differential pressure is dealt with and the sensitivity is improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はダイアフラムに生ずる差圧に対応した力を、周
波数信号として出力する差圧センサに関し、シリコンの
ような半導体基板を使用し、この巣板上に振動梁を形成
させた構造の差圧センサに関するものである。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a differential pressure sensor that outputs a force corresponding to a differential pressure generated across a diaphragm as a frequency signal, and uses a semiconductor substrate such as silicon to eliminate this The present invention relates to a differential pressure sensor having a structure in which a vibrating beam is formed on a plate.

〈従来例〉 測定圧力をダイアフラムで受け、ダイアフラムに生ずる
力をダイアフラム上に設けたストレンゲージで検出し、
電気信号に変換する差圧センサは公知で、既に広く実用
化されている。
<Conventional example> Measured pressure is received by a diaphragm, and the force generated on the diaphragm is detected by a strain gauge installed on the diaphragm.
Differential pressure sensors that convert into electrical signals are well known and have already been widely put into practical use.

このような差圧センサにおいて、ストレンゲージは測定
すべき力に応じたアナログ的な抵抗値変化を示し、出力
値も小さい。この為に、出力信号をコンピュータ等で信
号処理する場合、増幅したりA/、D変換しなければな
ら、ない。
In such a differential pressure sensor, the strain gauge exhibits an analog resistance value change according to the force to be measured, and its output value is also small. For this reason, when the output signal is processed by a computer or the like, it is not necessary to amplify or perform A/D conversion.

差圧に対応した周波数信号を得る方式の差圧センサも、
例えば特開昭54−56880号公報に見られるように
公知である。この装置はダイアフラムに生ずる力を、ダ
イアフラムに結合した振動線に与え、振動線の張力に関
連した固有振動数の変化を周波数信号出力として得るも
のである。
A differential pressure sensor that obtains a frequency signal corresponding to differential pressure is also available.
This is known, for example, as seen in Japanese Unexamined Patent Publication No. 54-56880. This device applies a force generated on a diaphragm to a vibrating wire coupled to the diaphragm, and obtains a change in the natural frequency related to the tension of the vibrating wire as a frequency signal output.

この装置においては、ダイアフラムに生ずる力を正確に
振動線に伝えられるように両者間を結合する必要がある
こと、振動線周囲の環境変化が振動線の固有振動数の変
化とならない構成を工夫する必要がある等構成が複雑に
なるという問題があった。
In this device, it is necessary to connect the two so that the force generated in the diaphragm can be accurately transmitted to the vibration line, and a configuration must be devised so that changes in the environment around the vibration line will not cause changes in the natural frequency of the vibration line. There was a problem that the configuration became complicated due to the necessity of

〈発明の目的〉 本発明は上記従来技術の問題点に鑑みてなされたもので
、差圧に対応した周波数信号を出力する構成の簡単な差
圧センサを提供することを目的とする。
<Objective of the Invention> The present invention has been made in view of the problems of the prior art described above, and an object of the present invention is to provide a differential pressure sensor with a simple configuration that outputs a frequency signal corresponding to a differential pressure.

〈発明の構成〉 この目的を達成プる本発明の構成は、弾性を有する半導
体材料で構成した第1のダイアフラムの表面に、エツチ
ングおよびアンダエッヂングの手法により、一方が閉塞
し他方が解放した穴と、この穴の途中に両端が固定され
た振動梁を設け、前記第1のダイアフラムの、穴を有す
る側に、前記第1のダイアフラムと同等の材質を有する
第2のダイアフラムを接合するとともに前記穴を真空に
し、前記M1のダイアフラムににQ(プた振動梁の励振
手段と振動検出手段を具備したことを桐成上の特徴とす
るものである。
<Configuration of the Invention> The configuration of the present invention that achieves this object is to form holes in the surface of the first diaphragm made of an elastic semiconductor material, one of which is closed and the other of which is open, by etching and underedging techniques. A vibration beam having both ends fixed is provided in the middle of this hole, and a second diaphragm made of the same material as the first diaphragm is joined to the side of the first diaphragm having the hole, and the vibration beam is fixed at both ends. Kirinari's feature is that the hole is evacuated and the diaphragm of M1 is equipped with an excitation means for a vibrating beam and a vibration detection means.

〈実施例〉 第1図は本発明に係る差圧センVの全体構成を示す斜視
図、第2図は第1図に示す差圧センサの要部(一点鎖線
で囲ったA部分)を示す断面拡大図斜視図である。これ
らの図において、1はff11のダイアフラムであり、
例えば不純物濃度1015以下のp形のシリコン基板で
ある。このシリコン基板1の表面には部分的に不純物淵
g1io+e程度の0+拡散層2a、2b、2cを形成
し、この拡散層を所定の厚さに部分的にエツチングして
第1の穴3を形成する。次に第1の穴3のなかのn+拡
散層2bの部分を棒状にエツチングづ′るとともに基板
であるp層をアンダエッチングして第2の穴5を形成し
、n中層からなる振動梁4を形成する。6は振動梁4の
振動を最も感じる部分(図では梁の両端)に拡散やエビ
タギシャル成長により形成したp中層である。このp十
層6は図示しないリード線等により基板である0層1と
は絶縁して外部に取り出され、n十拡散層である振動梁
4上でpO接合を形成する。7は第1のダイアフラムと
同等の材質を有する第2のダイアフラムで、この第2の
ダイアフラムと第1のダイアフラムは真空中において陽
極接合することにより、第1の穴と第2の穴は真空状態
となる。8は接合剤および絶縁剤として機能する例えば
5tO2膜である。
<Example> Fig. 1 is a perspective view showing the overall configuration of a differential pressure sensor V according to the present invention, and Fig. 2 shows a main part of the differential pressure sensor shown in Fig. 1 (portion A surrounded by a chain line). It is a cross-sectional enlarged perspective view. In these figures, 1 is the diaphragm of ff11,
For example, it is a p-type silicon substrate with an impurity concentration of 1015 or less. On the surface of this silicon substrate 1, 0+ diffusion layers 2a, 2b, and 2c of approximately the impurity depth g1io+e are formed, and the first holes 3 are formed by partially etching these diffusion layers to a predetermined thickness. do. Next, the part of the n+ diffusion layer 2b in the first hole 3 is etched into a rod shape, and the p layer that is the substrate is under-etched to form a second hole 5, and the vibrating beam 4 made of the n middle layer is etched. form. Reference numeral 6 denotes a p-middle layer formed by diffusion or epitaxial growth in the part where the vibration of the vibrating beam 4 is most felt (both ends of the beam in the figure). This p10 layer 6 is insulated from the 0 layer 1 which is the substrate and taken out to the outside by a lead wire (not shown) or the like, and forms a pO junction on the vibrating beam 4 which is the n0 diffusion layer. 7 is a second diaphragm made of the same material as the first diaphragm, and the second diaphragm and the first diaphragm are anodically bonded in a vacuum, so that the first hole and the second hole are kept in a vacuum state. becomes. 8 is a 5tO2 film, for example, which functions as a bonding agent and an insulating agent.

上記構成において第1のダイアフラム1と第2のダイア
フラム7の厚さを略等しくすれば、接合面が中立面とな
るので、ダイアフラムに発生する応力は中立面で最小と
なり、接合によって発生する影響をほとんど零にするこ
とができる。 また、振動梁4が形成された部分の静圧
に対する耐圧は、第3図に示ず穴の幅2ρ、と、ダイア
フラム膜の厚さ1!4との比14/13を十分大きくす
ることによって解決することができる。例えば、13−
3μm、1a=3μmとし、シリコンの最大応力を10
 kO/1111’とすると、耐圧POはPo−<14
/j’3)2−crmax−”IQQOk<1/ el
l”となる。
In the above configuration, if the thicknesses of the first diaphragm 1 and the second diaphragm 7 are made approximately equal, the bonding surface becomes the neutral plane, so the stress generated in the diaphragm is minimized at the neutral plane, and the stress generated by the bonding is minimized at the neutral plane. The impact can be reduced to almost zero. Moreover, the withstand pressure against static pressure in the part where the vibrating beam 4 is formed is determined by making the ratio 14/13 of the width of the hole 2ρ and the thickness of the diaphragm membrane 1!4 sufficiently large (not shown in FIG. 3). It can be solved. For example, 13-
3 μm, 1a = 3 μm, and the maximum stress of silicon is 10
When kO/1111', the breakdown voltage PO is Po-<14
/j'3)2-crmax-"IQQOk<1/el
l”.

一方、梁の軸方向への静圧による歪みは13/R(Rは
ダイアフラムの半径・・・第1図参照)を十分小さくす
ることにより無視することができる。
On the other hand, distortion due to static pressure in the axial direction of the beam can be ignored by making 13/R (R is the radius of the diaphragm, see FIG. 1) sufficiently small.

なお、これらの加工はフォトリソグラフィの技術を用い
ることにより可能である。
Note that these processes can be performed using photolithography technology.

上記構成の差圧センサを、図示しない固定手段により固
定し、ダイアフラムの両側から圧力を加える。そして、
第1のダイアフラムであるp層に負のバイアスを印加し
ておき、振動梁の端部に形成されたpn接合部からダイ
アフラムの歪みによる振動歪み信号を検出する。この歪
信号を増幅して第1のダイアフラム1に正帰還させると
、振動梁は静電ノ〕によりその固有振動数で励振する。
The differential pressure sensor configured as described above is fixed by a fixing means (not shown), and pressure is applied from both sides of the diaphragm. and,
A negative bias is applied to the p layer, which is the first diaphragm, and a vibration distortion signal due to distortion of the diaphragm is detected from a pn junction formed at the end of the vibrating beam. When this strain signal is amplified and fed back positively to the first diaphragm 1, the vibrating beam is excited at its natural frequency by electrostatic force.

この振動はダイアフラムに加わった差圧に応じて変化し
、その歪み感r!I S は次式で与えられる。
This vibration changes according to the differential pressure applied to the diaphragm, resulting in a distorted feeling r! I S is given by the following formula.

S−Δf /f o =0.118・<1+/l2)2
・ε (εは歪) この、歪による振動梁4の振動周波数の変化は図示しな
い公知の1!初検出手段により検出される。
S-Δf/f o =0.118・<1+/l2)2
-ε (ε is strain) This change in the vibration frequency of the vibrating beam 4 due to strain is a well-known 1! not shown in the figure. Detected by first detection means.

このように構成した装置によれば、受圧ダイア−〇− フラム中に真空状態で振動梁を形成したので、理想的4
1弾包持性を1qることができ、Qが高く安定したモノ
リシックセンサを実現することができる。
According to the device configured in this way, the vibration beam is formed in the pressure receiving diaphragm in a vacuum state, so that the ideal
It is possible to reduce single bullet retention by 1q, and to realize a stable monolithic sensor with a high Q.

なお、上記実施例においては第1のダイアフラムをp形
のシリコン基板としたが、この基板をn形とし、このn
形基板の上にp層を拡散してp形の梁を形成しその上に
振動検出のためのダイオードを形成してもよい。また、
振動梁は1つに限るものではなく、例えばダイアフラム
の中央部にもう1つ振動梁を形成づれば感度を2倍にづ
ることができるとともに、温度変化による熱歪みをキャ
ンセルすることができる。
In the above embodiment, the first diaphragm was made of a p-type silicon substrate, but this substrate was made of an n-type, and this n-type silicon substrate was used as the first diaphragm.
A p-type beam may be formed by diffusing a p-layer on a shaped substrate, and a diode for vibration detection may be formed on the p-type beam. Also,
The number of vibrating beams is not limited to one; for example, if another vibrating beam is formed in the center of the diaphragm, sensitivity can be doubled and thermal distortion caused by temperature changes can be canceled.

さらに、ダイアフラムの形状は円形以外の他の形状にす
ることも可能である。
Furthermore, the shape of the diaphragm can be other than circular.

〈発明の効采〉 以上、実施例とともに具体的に説明したように本発明に
よれば、差圧に対応し、Qが高く安定な周波数信号を出
力づることができ、かつ、構成の簡単な差圧センサを実
現することができる。
<Effects of the Invention> As described above in detail with the embodiments, according to the present invention, a stable frequency signal with a high Q can be outputted in response to differential pressure, and the structure is simple. A differential pressure sensor can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る差圧センサの全体構成を示す斜視
図、第2図は第1図に示す差圧センサの要部を示す断面
拡大斜視図、第3図は梁形成部におけるダイアフラムの
厚さと幅の関係を示M図である。 1・・・第1のダイアフラム、2a〜2C・・・拡散層
、3.5・・・穴、4・・・振動梁、7・・・第2のダ
イアフラム。
Fig. 1 is a perspective view showing the overall configuration of a differential pressure sensor according to the present invention, Fig. 2 is an enlarged cross-sectional perspective view showing main parts of the differential pressure sensor shown in Fig. 1, and Fig. 3 is a diaphragm in a beam forming part. FIG. DESCRIPTION OF SYMBOLS 1... First diaphragm, 2a-2C... Diffusion layer, 3.5... Hole, 4... Vibration beam, 7... Second diaphragm.

Claims (1)

【特許請求の範囲】[Claims] 弾性を有する半導体材料で構成した第1のダイアフラム
の表面に、エッチングおよびアンダエッチングの手法に
より、一方が閉塞し他方が解放した穴と、この穴の途中
に両端が固定された振動梁を設け、前記第1のダイアフ
ラムの、穴を有する側に、前記第1のダイアフラムと同
等の材質を有する第2のダイアフラムを接合するととも
に前記穴を真空にし、前記第1のダイアフラムに設けた
振動梁の励振手段と振動検出手段を具備したことを特徴
とする差圧センサ。
A hole is formed on the surface of the first diaphragm made of an elastic semiconductor material by etching and under-etching, one of which is closed and the other is open, and a vibrating beam with both ends fixed is provided in the middle of this hole. A second diaphragm made of the same material as the first diaphragm is bonded to the side of the first diaphragm that has the hole, and the hole is evacuated to excite a vibrating beam provided on the first diaphragm. A differential pressure sensor characterized by comprising a means for detecting vibration and a means for detecting vibration.
JP23582484A 1984-11-08 1984-11-08 Differential pressure sensor Granted JPS61114139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23582484A JPS61114139A (en) 1984-11-08 1984-11-08 Differential pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23582484A JPS61114139A (en) 1984-11-08 1984-11-08 Differential pressure sensor

Publications (2)

Publication Number Publication Date
JPS61114139A true JPS61114139A (en) 1986-05-31
JPH0536737B2 JPH0536737B2 (en) 1993-05-31

Family

ID=16991800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23582484A Granted JPS61114139A (en) 1984-11-08 1984-11-08 Differential pressure sensor

Country Status (1)

Country Link
JP (1) JPS61114139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2824636A1 (en) * 2001-05-10 2002-11-15 Schlumberger Services Petrol Microelectronic pressure sensors for use at high pressure, e.g. for sub-marine and oil industry applications are manufactured from crystalline silicon so that they operate at high pressure with a high degree of accuracy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526487A (en) * 1978-05-30 1980-02-25 Itt Pressure converter and producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526487A (en) * 1978-05-30 1980-02-25 Itt Pressure converter and producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2824636A1 (en) * 2001-05-10 2002-11-15 Schlumberger Services Petrol Microelectronic pressure sensors for use at high pressure, e.g. for sub-marine and oil industry applications are manufactured from crystalline silicon so that they operate at high pressure with a high degree of accuracy
WO2003001171A2 (en) * 2001-05-10 2003-01-03 Services Petroliers Schlumberger A resonance-type microelectronic pressure sensor that withstands high pressures
WO2003001171A3 (en) * 2001-05-10 2003-03-06 Schlumberger Services Petrol A resonance-type microelectronic pressure sensor that withstands high pressures
US6966228B2 (en) 2001-05-10 2005-11-22 Schlumberger Technology Corporation Resonator-type microelectronic pressure sensor that withstands high pressures

Also Published As

Publication number Publication date
JPH0536737B2 (en) 1993-05-31

Similar Documents

Publication Publication Date Title
US4071838A (en) Solid state force transducer and method of making same
US6006607A (en) Piezoresistive pressure sensor with sculpted diaphragm
US4050049A (en) Solid state force transducer, support and method of making same
US5473944A (en) Seam pressure sensor employing dielectically isolated resonant beams and related method of manufacture
US6642594B2 (en) Single chip multiple range pressure transducer device
JP2560140B2 (en) Semiconductor device
US5172205A (en) Piezoresistive semiconductor device suitable for use in a pressure sensor
US5412993A (en) Pressure detection gage for semiconductor pressure sensor
US7013733B2 (en) Silicon resonant type pressure sensor
KR20010050327A (en) Micromechanical device
US3161844A (en) Semiconductor beam strain gauge
JPS59158566A (en) Semiconductor acceleration sensor
JPS61114139A (en) Differential pressure sensor
JPS60186725A (en) Pressure sensor
JP2871064B2 (en) Semiconductor pressure sensor
JP2006029984A (en) Oscillating type pressure sensor
JP2573539Y2 (en) Semiconductor pressure sensor
JP2770488B2 (en) Semiconductor pressure gauge
JPH0254137A (en) Semiconductor pressure sensor
JPH0769239B2 (en) Semiconductor pressure sensor
JP2573540Y2 (en) Semiconductor pressure sensor
JP3070118B2 (en) Semiconductor acceleration sensor
JPS5943326A (en) Semiconductor pressure detector
JPH01242933A (en) Semiconductor pressure sensor
JPH01127931A (en) Vibration type differential pressure sensor