JPS61114130A - Capacity type flow meter - Google Patents

Capacity type flow meter

Info

Publication number
JPS61114130A
JPS61114130A JP23589784A JP23589784A JPS61114130A JP S61114130 A JPS61114130 A JP S61114130A JP 23589784 A JP23589784 A JP 23589784A JP 23589784 A JP23589784 A JP 23589784A JP S61114130 A JPS61114130 A JP S61114130A
Authority
JP
Japan
Prior art keywords
pressure
fine particles
container
bearing
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23589784A
Other languages
Japanese (ja)
Inventor
Michitoshi Kitano
北野 通俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23589784A priority Critical patent/JPS61114130A/en
Publication of JPS61114130A publication Critical patent/JPS61114130A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/02Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement
    • G01F3/04Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls
    • G01F3/06Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls comprising members rotating in a fluid-tight or substantially fluid-tight manner in a housing
    • G01F3/10Geared or lobed impeller meters

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To discharge abrasive fine particles, which are produced at the sliding part of a rotating shaft, from the system of a tube flow without mixing them with pure water to be measured by linking outlets for discharging abrasive fine particles with a bearing part and connecting them to a discharge pipe outside a case. CONSTITUTION:The outlets 8 communicating with slide surfaces between bearings 7 of the case 1 and sliding surfaces of shafts 5 and 6 are provided and connected to communication discharging pipes 9, and led to a container 10. When the pressure in the container 10 is set a little bit lower than the pressure in a measuring chamber 1 through a pressure valve 12, fine particles produced by the sliding of the bearings 7 on the sliding surfaces are discharged to the container 10 through the discharging pipes 9 without moving to the measuring chamber. At this time, the flow rate is controlled by a control valve 12 through a flow meter 11 so that the amount of pure water flowing out to the discharge pipes 9 is not excessive.

Description

【発明の詳細な説明】 半導体の製造過程において洗滌は不可欠の工程であり、
極めて純度の高い純水を必要とし、集積度の高い半導体
のミクロン以下の微細な線幅の導線を基盤上に描かねば
ならないため各工程の前後で何度も繰り返えす水洗い工
程でこの線幅よりも大きな傷がつくと導線が切断される
ことになる。
[Detailed Description of the Invention] Cleaning is an essential step in the semiconductor manufacturing process.
Extremely pure water is required, and since conductive wires with a fine line width of less than a micrometer must be drawn on the substrate of highly integrated semiconductors, this line width is reduced by a washing process that is repeated many times before and after each process. If the damage is larger than that, the conductor will be severed.

従って、例えば0.1 Eクロンの微粒子が一立方糎中
に何個と言う融しい純度が要求され、かがる超純水づく
りは高分子物質の逆浸透膜を用いた漏過装置で行なわれ
る。超純水の洗滌設備は微細な粉粒、油分等の不純物の
発生、混入を防ぐことが重要である。半導体の水洗い工
程で高い精度の流量管理が行なわれるが、適用できる流
量計としては容積式流量計が純水を高精度で計量し得る
唯一の計測装機である。しかし容積式流量計は計量機能
を果す回転体が計量室内で微小のクリアランスを保ちな
がら回転するメカニカル構造であるため回転部分で接触
摩擦による磨耗は免れず、微細粒子が発生ずる。例えば
ステンレス軸とカーボン軸受の摺動面で固体同志の接触
によるカーボン微粉粒は被計測流体の純水中に混入し、
洗滌の際半導体を鍋つけることになる。繊細にして精緻
な半導体の洗滌に微量かつ精度の高い流量管理がより高
度に求められ、この要件を満たすためには、例えば楕円
歯車式、ルーツ式流量計等差特計曲線の低流量域での器
差の小さい計器が望ましい。即ち回転素子の低速化によ
り軸受部の動的荷重が著減するため前記摩擦による磨耗
が軽減される。然し管流中の純水は極めて潤滑性の低い
流体であるため軸受部の固体接触による微細粒子は当然
発生ずることが考えらI]る。楕円歯車式流量計は回転
子の歯の噛合いのため精度の高い流量計であるが非円型
歯車が互に連動して噛合う歯面は軸受部の面圧荷重に比
し格段に荷重が低いとされるため微細粒子の発生は少な
いが、これに対し軸受部の接触摺動による磨耗粒子が発
生ずる率は高いのである。ルーツ式流量計はまゆ型回転
子は非接触回転であるが、えらを連動させるtコめの連
動歯車は計量室と連通ずる歯車山内で回転する構造では
連動歯車間の噛合いにより生じtコ微細粉粒は純水中に
混入する。
Therefore, ultra-pure water is required to have a high degree of purity, such as the number of microparticles of 0.1 E chlorine in one cubic starch, and the production of ultrapure water is carried out using a leakage device that uses a reverse osmosis membrane made of polymeric substances. It will be done. It is important to prevent the generation and contamination of impurities such as fine particles and oil in ultrapure water washing equipment. Highly accurate flow control is performed in the semiconductor washing process, and positive displacement flowmeters are the only applicable flowmeters that can measure pure water with high precision. However, positive displacement flowmeters have a mechanical structure in which the rotating body that performs the measuring function rotates while maintaining a minute clearance within the measuring chamber, so the rotating parts are subject to wear due to contact friction, which generates fine particles. For example, fine carbon particles due to contact between solids on the sliding surfaces of a stainless steel shaft and a carbon bearing mix into the pure water of the fluid to be measured.
During cleaning, semiconductors will be soaked in a pot. The cleaning of delicate and precise semiconductors requires a higher degree of control of minute and highly accurate flow rates, and in order to meet this requirement, it is necessary to An instrument with small instrumental error is desirable. That is, by reducing the speed of the rotating element, the dynamic load on the bearing portion is significantly reduced, so that the wear caused by the friction is reduced. However, since the pure water in the pipe flow is a fluid with extremely low lubricity, it is thought that fine particles will naturally be generated due to solid contact at the bearing part. Oval gear type flowmeters are highly accurate flowmeters due to the meshing of the teeth of the rotor, but the tooth surfaces where the non-circular gears interlock and mesh with each other have a load that is much higher than the surface pressure load of the bearings. Since the friction is said to be low, the generation of fine particles is small, but on the other hand, the rate of generation of wear particles due to contact sliding of the bearing is high. The cocoon-shaped rotor of the Roots-type flowmeter rotates without contact, but the t-coat interlocking gear that interlocks the gills rotates in a gear pile that communicates with the metering chamber, so the t-coat rotor is caused by the meshing between the interlocking gears. Fine powder particles are mixed into pure water.

本発明の目的は容積式流麗計の回転子の軸受部で発生ず
る徹細な磨耗粒子が計測される純水中に混入されること
なく管流の系外に排除することにある。
An object of the present invention is to eliminate fine abrasion particles generated in the bearing portion of the rotor of a positive displacement flowmeter out of the pipe flow system without being mixed into the pure water being measured.

実施例について説明する。An example will be explained.

第1図ζま本発明の第1実施例おける楕円歯車式流量計
の側面図および第2図は第1図のA −A’断面図を示
す。流量計のケース1の計量室2内に回転子3および4
が各回転子とそれぞれ一体にしてなる回転軸5および6
が軸受7により回転自在に収装される。第2図において
ケース1の軸受7の内面と接する軸5の摺動面イー口の
計量室と反対側に溝孔8を設は連通排出管9に連設し、
容器10に導(。11は流量を検知する流量計である。
FIG. 1 is a side view of an elliptical gear type flowmeter according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line A-A' in FIG. Rotors 3 and 4 are installed in the metering chamber 2 of the flowmeter case 1.
are integrally formed with each rotor, respectively.Rotating shafts 5 and 6
is rotatably housed by a bearing 7. In FIG. 2, a slot 8 is provided on the opposite side of the measuring chamber at the sliding surface of the shaft 5 in contact with the inner surface of the bearing 7 of the case 1, and is connected to the communication discharge pipe 9.
11 is a flow meter that detects the flow rate.

同様に各軸受7の部位にそれぞれ溝孔8を設は連通排出
v9に連通させ容器10に導く。溝孔8および連通排出
管9は小口径となし必要最少限の流量とする。排出管9
には調節弁18を設は流産を調節する乙とも可能であり
、又容@g10に圧力弁12を設は管流の圧力と対応さ
せる。計量室1内の圧力に対し若干低くした圧力に保ち
連通ずる排出管9より容器に導(ように装置される。軸
5および6と各軸受7との接触する摺動面イーロ部分の
摺動によって生じた微細粉粒は計量室2内より若干低圧
の排出管9に流れ出る流体(純水)によって押し出され
容@g10に排出される。軸受摺動面で生じた微細粉粒
は計量室内に移動することなく、かつ排出管9に流れる
純水量が過大とならないように調節弁18により適宜調
整し純水の純度を保ち乍ら流量を管理することが可能で
ある。
Similarly, a groove hole 8 is provided in each bearing 7 to communicate with the communication discharge v9 and lead to the container 10. The slot 8 and the communicating discharge pipe 9 have small diameters to minimize the necessary flow rate. Discharge pipe 9
A control valve 18 can be installed in the g10 to control the miscarriage, and a pressure valve 12 can be installed in the g10 to correspond to the pressure of the pipe flow. The pressure is maintained at a level slightly lower than that in the measuring chamber 1, and the pressure is introduced into the container through the communicating discharge pipe 9. The fine particles generated on the bearing sliding surface are pushed out by the fluid (pure water) flowing out from the measuring chamber 2 into the discharge pipe 9 at a slightly lower pressure and are discharged into the volume @g10.The fine particles generated on the bearing sliding surface are discharged into the measuring chamber. It is possible to control the flow rate while maintaining the purity of the pure water by appropriately adjusting it with the control valve 18 so that it does not move and the amount of pure water flowing into the discharge pipe 9 does not become excessive.

次に第2実施例の第3図は固定軸に溝孔を設けた楕円歯
車式流量計を示し、ケース1内に固定される軸51およ
び6.に回転子3および4が軸受7゜を介しそれぞれ回
転自在に互に噛合係合して収装される。被計測流量体の
流れによって回転子3.ば回転し軸受7□の内面と軸5
1は接触面ハーニで摺動する。該摺動面で発生した微細
粒子は軸51の摺動面中央に設けた溝孔8.およびこれ
と連通しかつ計量室内部より低圧に保たれる排出管9.
に計量室内の純水がへよりホおよび二よりホに流れて容
器111に排出され管理中に混入される乙とを防ぐ。
Next, FIG. 3 of the second embodiment shows an elliptical gear type flowmeter in which a fixed shaft is provided with a slot, and the shafts 51 and 6 are fixed in the case 1. The rotors 3 and 4 are housed in the rotors 3 and 4 in meshing engagement with each other so as to be rotatable through bearings 7°. The rotor 3. When rotating, the inner surface of bearing 7□ and shaft 5
1 slides on the contact surface hone. The fine particles generated on the sliding surface are removed from the slot 8 provided in the center of the sliding surface of the shaft 51. and a discharge pipe 9 which communicates with this and is maintained at a lower pressure than the inside of the metering chamber.
This prevents the pure water in the measuring chamber from flowing from one side to the other and being discharged into the container 111 and being mixed in during management.

第4図はルーツ式流量計の磨耗微細粒子排出機構を用い
た実施例である。計量室1の内のルーツ回転子32およ
び42はそれぞれ連動歯車収容室15内の連動歯車13
および14と軸52および62に一体に構成され、軸受
72および7.により回転自在に収装される。軸受72
側の溝孔82は排出管92と連通し、歯車収容室150
部分に設けた導4一 孔83は前記排出管92に連通し弁】1□を経て容器】
02に導かれる。溝孔82および歯車収容室15が計量
室2よりも低圧に保tこれることにより軸受部および連
動歯車の回転で生じる磨耗微粒子が容器102に排出さ
れる。
FIG. 4 shows an example of a Roots type flowmeter using a wear-out fine particle discharge mechanism. The Roots rotors 32 and 42 in the metering chamber 1 are connected to the interlocking gear 13 in the interlocking gear receiving chamber 15, respectively.
and 14 and integrally formed with the shafts 52 and 62, and bearings 72 and 7. It is rotatably stored. Bearing 72
The side slot 82 communicates with the discharge pipe 92 and is connected to the gear housing chamber 150.
The conduit hole 83 provided in the section communicates with the discharge pipe 92 and the container via the valve]1□.
Guided to 02. By keeping the pressure in the slot 82 and the gear storage chamber 15 lower than that in the metering chamber 2, abrasion particles generated by the rotation of the bearing and the interlocking gear are discharged into the container 102.

第5図は楕円歯車式流量計の非円型回転体を連動楕円歯
車と同一軸で一体に構成し排出導管で異物混入流体を排
出する実施例を示す。
FIG. 5 shows an embodiment in which the non-circular rotating body of the elliptical gear type flowmeter is integrally formed with the interlocking elliptical gear on the same axis, and the fluid contaminated with foreign matter is discharged through a discharge conduit.

計量室2内に互いに係合する非円型回転子33および4
3をそれぞれ軸53および63に連動楕円歯車16およ
び17と一体に構成される。楕円歯車16および17は
非円型回転子或は楕円状歯車33および4.と同一の楕
円状ピッチ線に設定しtこ連動歯車にして加減速し乍ら
噛合連動ずん。非円型回転体33および43ば互に微小
間隙を保ち接触することなく回転するため計量室内で磨
耗微粉粒を発生せず、ケース1の軸受7.の外端部分に
溝孔83を設は連通排出管9により容器10に導き、軸
受74で支承される軸の端部に一体に構成される連動歯
車16および 17を収装する歯車収容室15に溝孔8
4を設は連通排出管9よりケース外に導き、軸受部およ
び連動歯車の噛合部で発生ずる磨耗微細粉粒を管流中に
混入することなく系外に排出ず乙。
Non-circular rotors 33 and 4 engaging each other in the metering chamber 2
3 are integrally constructed with interlocking elliptical gears 16 and 17 on shafts 53 and 63, respectively. Elliptical gears 16 and 17 are non-circular rotors or elliptical gears 33 and 4. Set to the same elliptical pitch line as t and make it an interlocking gear to accelerate and decelerate while engaging and interlocking. Since the non-circular rotating bodies 33 and 43 rotate without contacting each other with a small gap between them, no abrasion particles are generated in the measuring chamber, and bearings 7. A gear storage chamber 15 is provided with a slot 83 at its outer end and is led to the container 10 through a communication discharge pipe 9, and accommodates interlocking gears 16 and 17 integrally formed at the end of the shaft supported by a bearing 74. slot 8
4 is led out of the case through the communication discharge pipe 9, so that fine particles of abrasion generated at the bearings and the meshing parts of the interlocking gears are discharged out of the system without being mixed into the pipe flow.

この第5図に示す機構において、一方の軸を動力源と連
設し駆動することによりポンプ構造にすることも可能で
あり、本体の入口側及び出口側に圧力計を設け、圧力差
を求め、かつ排出導管の排出される流量を検知し、本体
の回転子の回転数を計測することにより圧送される管流
の正確な流量を計測する応用も含まれる。
In the mechanism shown in Fig. 5, it is also possible to create a pump structure by connecting one shaft to a power source and driving it, and by installing pressure gauges on the inlet and outlet sides of the main body, the pressure difference can be determined. , and also includes applications in which the accurate flow rate of the pipe flow to be pumped is measured by sensing the flow rate discharged from the discharge conduit and measuring the rotational speed of the rotor of the main body.

第6図はケース1の計量室2内で楕円歯車回転子34お
よび44がそれぞれ固定軸54および64に軸孔が嵌合
し回転自在に収装される実施例である。
FIG. 6 shows an embodiment in which the elliptical gear rotors 34 and 44 are rotatably housed in the measuring chamber 2 of the case 1, with their shaft holes fitting into the fixed shafts 54 and 64, respectively.

軸受摺動部トーチは微小の間隙を有し、各軸54および
64は中空の溝孔84を有し連通管9に連設され圧力調
整弁11を経て外部に排出されるように溝孔、連通管内
の圧力を計量室内の圧力よりも若干低い圧力に弁で調節
される。図において計量室内の被計測流体(純水)はそ
の一部が圧力差によって軸受部トよりチに押し出され、
軸の左端より溝孔84を経て摺動面で生じた磨耗粒子を
系ダに排出する。
The bearing sliding part torch has a minute gap, and each of the shafts 54 and 64 has a hollow slot 84 connected to the communication pipe 9 and drained to the outside via the pressure regulating valve 11. The pressure inside the communication pipe is regulated by a valve to a pressure slightly lower than the pressure inside the metering chamber. In the figure, a part of the fluid to be measured (pure water) in the measurement chamber is pushed out from the bearing part T to the bearing part due to the pressure difference.
Wear particles generated on the sliding surface are discharged from the left end of the shaft through the slot 84 into the system.

第7図はケース1内1ζ直立して固定される軸56およ
び66にそれぞれ軸孔の一部に短軸5.、6.を一体に
構成し、該短軸をピボットで支承する。短軸55および
65には溝孔84を設ける。各溝孔は連通管91こ連設
され圧力調整弁により計量室2内より低い圧力に保たれ
回転子35および450回転に伴って図において軸受の
摺動部でりよりヌおよびルよりオに流体が移行し、溝孔
84および8.を経て連通管9より外部に排出される。
FIG. 7 shows shafts 56 and 66 which are fixed upright in the case 1 and a short shaft 5. ,6. are integrally constructed, and the short shaft is supported by a pivot. Slot holes 84 are provided in the short axes 55 and 65. Each slot is connected to a communicating pipe 91, and the pressure is maintained lower than that in the metering chamber 2 by a pressure regulating valve. Fluid migrates through slots 84 and 8. It is discharged to the outside through the communication pipe 9.

半導体製造技術の高度化に伴い洗滌工程も益々流量管理
に精密度が肝要となり、流量計本体の高い精度と共に排
出される不純物を含む分岐流の流亙調整およびその計測
も行う装置等付属機構も本発明に包含するものであり、
被計測流体の超純水の純度を保持ずろための不純物排除
機構並びに流量管理機能を維持しかつ高めるための前記
構造のような応用も含まれる。その他スラストベアリン
=7− グで封気される構成において或はメカニカルシール構造
にJjける本発明の原理を用いる応用例を包含する。
As semiconductor manufacturing technology becomes more sophisticated, precision in flow control becomes increasingly important in the cleaning process, and along with the high precision of the flow meter itself, attached mechanisms such as devices that adjust and measure the flow of branched flows containing discharged impurities are also required. Included in the present invention,
It also includes applications such as the structure described above to maintain and enhance the impurity removal mechanism and flow control function for maintaining the purity of ultrapure water as the fluid to be measured. The present invention also includes applications in which the principles of the present invention are used in a structure sealed with a thrust bearing or in a mechanical seal structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は楕円歯車式流量計の軸受部に排出連通管を設け
た本発明の一実施例を示す一部縦断側面図、第2図は第
1図A −A’線断面図、第3図は楕円歯車式流量計の
固定軸に溝孔を設は排出連通管で異物を排出する他の実
施例を示す断面図、第4図はルーツ式流量計の軸受部お
よび歯車函に溝孔を設は連通管で異物を排出する構成の
実施例を示す縦断正面図、第5図は楕円歯車連動機構の
楕円歯車式流量計の歯車的および軸受部に溝孔を設は連
通管で異物を排出する構成の実施例の縦断正面図、第6
図は固定軸に楕円歯車を嵌合し、軸に溝孔を設けた実施
例の縦断正面図、第7図は直立固定軸に溝孔を設けた楕
円歯車式流量計の磨耗異物の除去方法を示しrコ実施例
の横断平面図である。 1・・ケース 2 計量室 3及び4・・楕円歯車回転
子 32及び4□・ルーツ型回転子 5及び6・・軸 
7・軸受 8・・溝孔 9・連通排出管10・・容器 
11・流量計 12・・圧力m整弁13および14・・
連動歯車 15・・歯車l!11 16および17 ・
連動楕円歯車 18・・調節弁第3図 第A図 第6図 第7図 昭和59年12月5日 1、事件の表示 特願昭59−235897号 2、発明の名称 容積式流量計 3 補正をする者 事件との関係  特許出願人 北  舒  通  俊 4代理人 1愚1 5袖正の対象 補  正  の  内  径 第7頁4行目げ下記のとおり補正する。 「る。更に計量室2の内壁および非円型回転子3、およ
び4.の表面を鍍金あるいは合成樹脂被膜、例えば弗素
系樹脂ファインセラミック膜等で被覆することにより防
錆効果、金属イオンの流出を防止する効果を付与するこ
とが可能となる。回転子に被覆される合成樹脂被膜は接
触しないで回転するため磨耗を受けることがなく、微小
片が剥離−流出しても電気絶縁性が高いために洗浄の際
、プリント基板に対しシ璽−トさせるおそれはない。 化学9食品用等の流量計、ポンプ装置として構成される
場合も同様の効能がある。」 !!’l’dl願人   北  野  通  俊手続補
正書(自発) 昭和59年1り月/f日
Fig. 1 is a partially vertical side view showing an embodiment of the present invention in which a discharge communication pipe is provided in the bearing part of an elliptical gear type flowmeter, Fig. 2 is a sectional view taken along the line A-A' in Fig. 1, and Fig. 3 The figure is a sectional view showing another embodiment in which a slotted hole is installed in the fixed shaft of an elliptical gear type flowmeter and foreign matter is discharged through a discharge communication pipe. Figure 4 is a sectional view showing another embodiment in which a slotted hole is installed in the fixed shaft of an elliptical gear type flowmeter. Fig. 5 is a longitudinal sectional front view showing an example of a configuration in which foreign matter is discharged through a communicating pipe, and Fig. 5 is a longitudinal sectional front view showing an example of a configuration in which foreign matter is discharged through a communicating pipe. 6th longitudinal sectional front view of an embodiment configured to discharge
The figure is a longitudinal sectional front view of an embodiment in which an elliptical gear is fitted to a fixed shaft and a slot is provided in the shaft, and Figure 7 is a method for removing worn foreign matter from an elliptical gear type flowmeter in which a slot is provided in an upright fixed shaft. FIG. 3 is a cross-sectional plan view of the embodiment. 1... Case 2 Measuring chamber 3 and 4... Elliptical gear rotor 32 and 4□ Roots type rotor 5 and 6... Shaft
7. Bearing 8. Slot 9. Communication discharge pipe 10. Container
11.Flow meter 12..Pressure m regulating valve 13 and 14..
Interlocking gear 15...gear l! 11 16 and 17 ・
Interlocking elliptical gear 18...Control valve Fig. 3 Fig. A Fig. 6 Fig. 7 December 5, 1980 1. Indication of the incident Patent application No. 1987-235897 2. Name of the invention Positive displacement flow meter 3 Amendment Relationship with the case of the person who filed the patent application Patent Applicant Shun Kita Shun 4 Agents 1 Gu 1 5 Amendments to the Subject of Sleeve Correction The following amendments are made on page 7, line 4 of the inside diameter. Furthermore, by coating the inner wall of the measuring chamber 2 and the surfaces of the non-circular rotors 3 and 4 with a plating or synthetic resin coating, such as a fluorine-based resin fine ceramic coating, the rust prevention effect and metal ion outflow can be improved. The synthetic resin coating on the rotor rotates without contact, so it is not subject to wear, and has high electrical insulation even if minute particles peel off or flow out. Therefore, there is no risk of the printed circuit board being damaged during cleaning.It has the same effect when configured as a flowmeter or pump device for food products, etc. ! 'l'dl Applicant Michitoshi Kitano Procedural Amendment (Voluntary) January 1980/F Day

Claims (1)

【特許請求の範囲】[Claims] 被計測流体の流れによって互に係合回転する一対の非円
型回転子が計量室内で回転する容積式流量計において、
該流量計のケース内で前記回転子の回転を支障する軸受
を備え、この軸受摺動部で発生する磨耗微細粉粒をケー
ス外に連通して排出させる溝孔を前記軸受摺動部の計量
室と、反対側の端部又はその中間部に連絡させた容積式
流量計。
In a positive displacement flowmeter, a pair of non-circular rotors that engage and rotate with each other due to the flow of the fluid to be measured rotate within a measuring chamber.
The flow meter is equipped with a bearing that obstructs the rotation of the rotor within the case of the flowmeter, and a groove in the bearing sliding part is provided to communicate and discharge fine particles of abrasion generated in the bearing sliding part to the outside of the case. A positive displacement flow meter connected to the chamber and the opposite end or intermediate part thereof.
JP23589784A 1984-11-08 1984-11-08 Capacity type flow meter Pending JPS61114130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23589784A JPS61114130A (en) 1984-11-08 1984-11-08 Capacity type flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23589784A JPS61114130A (en) 1984-11-08 1984-11-08 Capacity type flow meter

Publications (1)

Publication Number Publication Date
JPS61114130A true JPS61114130A (en) 1986-05-31

Family

ID=16992854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23589784A Pending JPS61114130A (en) 1984-11-08 1984-11-08 Capacity type flow meter

Country Status (1)

Country Link
JP (1) JPS61114130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641717B2 (en) 2000-03-30 2003-11-04 Mitsubishi Rayon Co., Ltd. Water purifier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769211A (en) * 1980-10-17 1982-04-27 Akitoshi Kitano Flowmeter for suspension

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769211A (en) * 1980-10-17 1982-04-27 Akitoshi Kitano Flowmeter for suspension

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641717B2 (en) 2000-03-30 2003-11-04 Mitsubishi Rayon Co., Ltd. Water purifier

Similar Documents

Publication Publication Date Title
US5415041A (en) Double helical flowmeter
US4210410A (en) Volumetric type flowmeter having circular and involute tooth shape rotors
EP1305107A2 (en) Method and apparatus for blending process materials
US3932941A (en) Rotating machine wear gauge means
JP4599454B1 (en) Volumetric gas-liquid two-phase flow meter and multi-phase flow measurement system
US5108273A (en) Helical metering pump having different sized rotors
JPS61114130A (en) Capacity type flow meter
US6048186A (en) Driving apparatus comprising modified gear shape elliptic gear wheels
US20050276705A1 (en) Positive displacement pump having piston and/or liner with vapor deposited polymer surface
JP6924178B2 (en) Liquid ring pump
WO1995008063A1 (en) Dust-free centrifugal pump device
CN220869559U (en) Volumetric hydraulic turbine for driving foam pump and foam proportion mixing device
CN220322457U (en) Single screw flowmeter for metering fluid containing hard particles
RU2327957C1 (en) Roll-and-paddle flowmetre
CN216621302U (en) Output shaft assembly for positive displacement flowmeter
JP7502180B2 (en) Water Supply Equipment
KR100947667B1 (en) Impeller Shaft supporting Structure Of Vertical Waltman Type Flowmeter
GB2120728A (en) Rotary fluid meter or pump
RU2109141C1 (en) Roller-and-blade machine
CN202177409U (en) Gear flow transducer
CN117212023A (en) Volumetric hydraulic turbine for driving foam pump and foam proportion mixing device
CN100535610C (en) Unloading type spiral rotor
SU1539393A1 (en) Gear pump
CN1153903A (en) Positive displacement flowmeter
CN202915969U (en) Volumetric flow meter provided with multiple layers of scraper plate measuring elements