JPS61114091A - Finned heat exchanger - Google Patents

Finned heat exchanger

Info

Publication number
JPS61114091A
JPS61114091A JP23361984A JP23361984A JPS61114091A JP S61114091 A JPS61114091 A JP S61114091A JP 23361984 A JP23361984 A JP 23361984A JP 23361984 A JP23361984 A JP 23361984A JP S61114091 A JPS61114091 A JP S61114091A
Authority
JP
Japan
Prior art keywords
fins
heat exchanger
heat transfer
airflow
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23361984A
Other languages
Japanese (ja)
Inventor
Tomoaki Ando
智朗 安藤
Mitsuhiro Ikoma
生駒 光博
Fumitoshi Nishiwaki
文俊 西脇
Masaaki Adachi
安立 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23361984A priority Critical patent/JPS61114091A/en
Publication of JPS61114091A publication Critical patent/JPS61114091A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve the heat transfer performance by a method wherein the dead water regions of heat transfer pipes and the thicknesses of boundary layers on fins are reduced in the finned heat exchanger such as the outdoor heat exchanger of a heat pump type air conditioner or the like. CONSTITUTION:The titled finned heat exchanger is provided with fins 8 and 9, which are arranged in and parallel to the incoming air flow 11 and at the upstream side ends of each of which concavities 12 and convexities 13 are alternately arranged, and a plurality of heat transfer pipes 7, which are inserted in the fins 8 and 9 and arranged normal to the air flow 11. A group of a plurality of upstream side upright walls 15a-15c and that of downstream side upright walls 16a and 16b, both groups of which are respectively located on the upstream side and downstream side of the air flow 11 under the state that the line connecting the centers of the heat transfer pipes 7 forms the boundary line between the upstream side and the downstream side of the fin and respectively inclined to the direction of the incoming air flow, are provided onto the fins 8 and 9. In addition, a plurality of the fins 8 and 9 are arranged so that the concavities 12 and convexities 13 at the upstream side end of the fins 8 and 9 are alternately positioned in the direction of the axis of the heat transfer pipe.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気を熱源とするヒートポンプ式空気調和機等
の室外熱交換器として利用されるフィン付熱交換器に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a finned heat exchanger used as an outdoor heat exchanger in a heat pump type air conditioner or the like that uses air as a heat source.

従来例の構成とその問題点 空気を熱源とするヒートポンプ式空気調和機等の暖房あ
るいは給湯運転において、室外熱交換器は蒸発器として
機能し、周囲空気温度が低下すると蒸発温度が0℃以下
になシ、空気中の水蒸気が霜として付着し霜層を形成す
る。この場合、周囲空気と熱交換器伝熱面温度に相当す
る飽和湿り空気の絶対湿度差が一番大きい気流上流側端
部に霜層が形成されやすい。そしてこの霜層による通過
風愈の減少と断熱作用によシ熱交換量が著しく減少して
いくために除霜が必要である。
Conventional configuration and its problems During heating or hot water supply operation of a heat pump air conditioner that uses air as a heat source, the outdoor heat exchanger functions as an evaporator, and when the ambient air temperature drops, the evaporation temperature drops below 0°C. However, water vapor in the air adheres as frost and forms a frost layer. In this case, a frost layer is likely to be formed at the upstream end of the airflow where the absolute humidity difference between the ambient air and the saturated humid air corresponding to the heat exchanger heat transfer surface temperature is greatest. Defrosting is necessary because the amount of heat exchange is significantly reduced due to the reduction in the passing wind and the insulation effect caused by this frost layer.

第1図に従来の熱交換器のフィンの正面図を示す。この
第1図に示すように内部を気流と熱交換を行う流体が流
動する複数の伝熱管1に、フィン2.3が垂直に所定間
隔で交互に挿入されている。
FIG. 1 shows a front view of the fins of a conventional heat exchanger. As shown in FIG. 1, fins 2.3 are vertically inserted alternately at predetermined intervals into a plurality of heat transfer tubes 1 through which a fluid for heat exchange with air flows.

その間を気流が矢印4方向に流動して熱交換を行う。フ
ィン2,3は気流上流側端部が気流に垂直な方向、すな
わち段方向に凹部6と凸部6を交互に有するように切り
欠いている。このような構成の為に、第2図a、bに示
す伝熱管1のnおよびn+1段目の断面図で明らかなよ
うに、気流上流側端部では各段において長いフィンと短
いフィンが管軸方向に並びフィン2.3の気流上流側端
部の間隔が広くなるために、着霜時に霜層7でフィン間
が閉塞され除霜が必要になる迄の運転時間を長くできる
ものである。しかしフィン2,3を切り欠くために伝熱
面積が減少して熱交換量が減少するという欠点を有して
いた。また熱交換量減少を防止するために、フィンにス
リット抜切シ起こしを設けて伝熱促進を行うことが考え
られるが、スリット抜切シ起こしによる伝熱促進は境界
層前縁効果によるものであるためスリット抜切シ起こし
の部分での物質伝達が促進され、霜層が形成さi   
    れて伝熱促進としての効果を果たさないばかり
か、この部分が短時間で閉塞し、通過風量が減少して熱
交換量が短時間で著しく低下するという欠点を有してい
た。
Air flows between them in the four directions of arrows to perform heat exchange. The fins 2 and 3 are cut out so that the upstream ends of the fins have concave portions 6 and convex portions 6 alternately in the direction perpendicular to the air flow, that is, in the step direction. Because of this configuration, as is clear from the cross-sectional views of the n and n+1 stages of the heat exchanger tube 1 shown in FIGS. Since the interval between the airflow upstream ends of the fins 2.3 arranged in the axial direction is widened, the operation time can be extended until the space between the fins is blocked by the frost layer 7 during frost formation and defrosting is required. . However, since the fins 2 and 3 are notched, the heat transfer area is reduced and the amount of heat exchange is reduced. In addition, in order to prevent a decrease in the amount of heat exchange, it is possible to promote heat transfer by providing slits with raised slits on the fins, but the promotion of heat transfer by slits with raised slits is due to the boundary layer leading edge effect. Because of this, material transfer at the raised part of the slit is promoted and a frost layer is formed.
Not only does it not have the effect of promoting heat transfer, but it also has the disadvantage that this portion becomes clogged in a short period of time, reducing the amount of air passing through it and significantly reducing the amount of heat exchanged in a short period of time.

発明の目的 本発明は前記従来の欠点を除去し、伝熱性能の良いフィ
ン付熱交換器を提供することを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to eliminate the above-mentioned conventional drawbacks and provide a finned heat exchanger with good heat transfer performance.

発明の構成 上記目的を達するため、本発明のフィン付熱交換器は、
平行に配置され、その間を気体が流動する複数のフィン
と、これら複数のフィンに挿入され、気流に対して垂直
方向に配列された複数の伝熱管を備え1.フィンには気
流上流側端部に凹部と凸部を交互に設け、かつ複数の伝
熱管の中心を結ぶ線を境界として気流上流側および気流
下流側にそれぞれ気流流動方向に対して傾斜した複数の
下流側立壁および下流側立壁を設け、フィンの上流側端
部の凹部と凸部が伝熱管軸方向に交互に位置するように
複数のフィンを配列してなるものである。      
                     ・1実施
例の説明 以下、本発明の一実施例のフィン付熱交換器を図面とと
もに説明する。第3図a、bは本発明の一実施例のフィ
ン付熱交換器の正面図である。
Structure of the Invention In order to achieve the above object, the finned heat exchanger of the present invention has the following features:
1. A plurality of fins arranged in parallel, through which gas flows, and a plurality of heat transfer tubes inserted into the plurality of fins and arranged in a direction perpendicular to the air flow.1. The fins are provided with concave portions and convex portions alternately at the end on the upstream side of the airflow, and with a line connecting the centers of the plurality of heat transfer tubes as the boundary, a plurality of fins are provided on the upstream side of the airflow and the downstream side of the airflow, respectively, and are inclined with respect to the airflow direction. A downstream vertical wall and a downstream vertical wall are provided, and a plurality of fins are arranged such that concave portions and convex portions at the upstream end of the fins are alternately located in the axial direction of the heat exchanger tube.
-Description of one embodiment Hereinafter, a finned heat exchanger according to one embodiment of the present invention will be explained with reference to the drawings. FIGS. 3a and 3b are front views of a finned heat exchanger according to an embodiment of the present invention.

7は内部を気流と熱交換を行う流体が流動する複数の伝
熱管、8,9は所定間隔で交互に平行に配列されたフィ
ンであり、このフィン8,9に設けられた複数の孔1o
に伝熱管7が挿入され、複数の伝熱管7が気流に対して
垂直方向に配列されている。複数のフィン8.−9間を
送風機(図示せず)によシ生じた気流が矢印11方向に
流動する。フィン8,9の気流上流側端部には気流に垂
直な方向に凹部12と凸部13を交互に有するように切
り欠いている。また気流下流側端部は、気流上流側端部
の凹部12には凸部13が、凸部13には凹部12がそ
れぞれ対応するように切り欠いている。
Reference numeral 7 indicates a plurality of heat transfer tubes through which a fluid for exchanging heat with the air flows, fins 8 and 9 are alternately arranged in parallel at predetermined intervals, and a plurality of holes 1o provided in the fins 8 and 9 are provided.
Heat exchanger tubes 7 are inserted into the air, and the plurality of heat exchanger tubes 7 are arranged in a direction perpendicular to the airflow. Multiple fins8. An air current generated by a blower (not shown) flows between -9 in the direction of arrow 11. The ends of the fins 8 and 9 on the upstream side of the airflow are cut out so as to have recesses 12 and protrusions 13 alternately in a direction perpendicular to the airflow. Further, the downstream end of the airflow is cut out so that the convex part 13 corresponds to the concave part 12 at the upstream end of the airflow, and the concave part 12 corresponds to the convex part 13, respectively.

また複数の孔1oの中心を結ぶ線、すなわち複数の伝熱
管7の中心を結ぶ線14を境界として、気流上流側には
気流流動方向11に対して傾斜させた複数の上流側立壁
151L〜150を、さらには気流下流側には気流流動
方向11に対して上流側立壁151L〜150とは逆方
向に傾斜させた下流側立壁161L、18bを設けてい
る。また上流側立壁16&〜150と下流側立壁1’6
a、16bは、線14に対して非対称となるように設け
ている。
Further, on the upstream side of the airflow, with a line connecting the centers of the plurality of holes 1o, that is, a line 14 connecting the centers of the plurality of heat exchanger tubes 7 as a boundary, there are a plurality of upstream vertical walls 151L to 150 inclined with respect to the airflow flow direction 11. Further, on the downstream side of the airflow, there are provided downstream vertical walls 161L and 18b which are inclined in a direction opposite to the upstream vertical walls 151L to 150 with respect to the airflow flow direction 11. Also, the upstream standing wall 16 & ~ 150 and the downstream standing wall 1'6
a and 16b are provided asymmetrically with respect to the line 14.

次て第4図a、bはそれぞれ伝熱管7のnおよびn+1
段目における断面を上からみた図であるが、フィン8,
9に複数の伝熱管7に挿入することで、気流上流側端部
は、各段において長いフィンと短いフィンが管軸方向に
並んだ配置になる。
Next, Fig. 4 a and b show n and n+1 of the heat exchanger tube 7, respectively.
This is a diagram of the cross section at the step viewed from above, and the fins 8,
9 into a plurality of heat transfer tubes 7, the upstream end of the airflow is arranged such that long fins and short fins are lined up in the tube axis direction at each stage.

複数の伝熱管7内を流動する流体は、伝熱管7とフィン
8.9を介して気流と熱交換を行う。17は霜層である
The fluid flowing through the plurality of heat transfer tubes 7 exchanges heat with the air flow via the heat transfer tubes 7 and the fins 8.9. 17 is a frost layer.

このような構成であるために、次のような作用と効果を
有する。本実施例のフィン付熱交換器が凝縮器として作
用する場合には、上流側立壁16&〜15OK衝突した
気流は上流側立壁15&〜150の傾斜により伝熱管7
方向へ偏向する気流18となる。
This configuration has the following functions and effects. When the finned heat exchanger of this embodiment acts as a condenser, the airflow colliding with the upstream vertical walls 16 & ~ 15 OK is transferred to the heat exchanger tubes 7 due to the inclination of the upstream vertical walls 15 & ~ 150.
This results in an airflow 18 that is deflected in the direction.

従って気流18によシ伝熱管了の後流部に生ずる死水域
は、従来フィンの死水域に比べて非常に減少する。その
ため伝熱性能は向上する。次にフィン8.9での気流状
態を第6図に示す。上流側立壁15bを乗シ越えた気流
19はフィン8,9へ再び付着する方向へ偏向し、上流
側立壁15b。
Therefore, the dead area generated at the trailing edge of the heat transfer tube due to the airflow 18 is greatly reduced compared to the dead area of conventional fins. Therefore, heat transfer performance is improved. Next, the airflow condition at the fins 8.9 is shown in FIG. The airflow 19 that has passed over the upstream standing wall 15b is deflected in the direction of adhering to the fins 8 and 9 again, and then the upstream standing wall 15b.

150間を通過する気流2oと干渉することで旋回成分
をもった気流21.22が発生する。そして上流側立壁
15&〜150と下流側立壁16&。
By interfering with the airflow 2o passing between the airflows 21 and 150, airflows 21 and 22 having swirling components are generated. And the upstream side standing wall 15&~150 and the downstream side standing wall 16&.

16bは、線14に対して非対称となるように設けてい
るので、気流21.22は下流側立壁162Lに衝突し
て偏向されるとともに、上流側立壁151L。
16b is provided so as to be asymmetrical with respect to the line 14, so the airflow 21.22 collides with the downstream vertical wall 162L and is deflected, and also the upstream vertical wall 151L.

15b間を通過してきた気流23と干渉して、下流側立
壁16&の後流部に非常に強い旋回成分をもった気流2
4.25を発生させる。このように強い旋回成分をもっ
た気流はフィン8,9上の境界層に乱れを与えて境界層
厚さを減少させるので、熱伝達率は著しく向上する。
The airflow 2 with a very strong swirling component interferes with the airflow 23 that has passed between the space 15b and the downstream vertical wall 16&.
Generate 4.25. The airflow having such a strong swirling component disturbs the boundary layer on the fins 8 and 9 and reduces the thickness of the boundary layer, so that the heat transfer coefficient is significantly improved.

次に本実施例のフィン付熱交換器が蒸発器として作用す
る場合には、フィン付熱交換器の気流流入端部は各段ご
とに管軸方向のフィン間隔が広くなるために着霜時に霜
層17でフィン間が閉塞され除霜が必要になる迄の運転
時間を著しく長くてきる。また上流側立壁16&〜15
0および下流側立壁16a 、 16bによる伝熱促進
は、前述のように境界層前縁効果によるものではなく、
偏向゛気流による死水域の減少および旋回成分をもった
気流によるフィンの境界層厚さ減少効果によるものであ
るため、立壁自体に霜層が形成されて閉塞されることな
く伝熱促進としての効果が損なわれずに伝熱性能は著し
く向上する。
Next, when the finned heat exchanger of this embodiment acts as an evaporator, the airflow inlet end of the finned heat exchanger has a wider fin spacing in the tube axis direction for each stage, so that when frost forms, The space between the fins is blocked by the frost layer 17, and the operating time until defrosting becomes necessary becomes significantly longer. Also upstream side standing wall 16&~15
The heat transfer promotion by the 0 and downstream vertical walls 16a and 16b is not due to the boundary layer leading edge effect as described above;
This is due to the effect of reducing the dead area due to the deflection airflow and reducing the boundary layer thickness of the fin due to the airflow with a swirling component, so the effect of promoting heat transfer without forming a frost layer on the vertical wall itself and blocking it. Heat transfer performance is significantly improved without sacrificing performance.

また伝熱管の段数が奇数であれば本実施例のフィン9は
フィン8を上下逆にしたものであるから母材からフィン
8.Qを製作する場合、材料取シが効率よく行え、残材
を非常に少なくできる。または段数が偶数の場合には、
気流上流側端部の凹 一部には凹部が、凸部には凸部が
それぞれ対応するように切シ欠けば、同様の効果が得ら
れる。
Furthermore, if the number of stages of the heat exchanger tubes is an odd number, the fins 9 of this embodiment are the fins 8 upside down, so the fins 8. When manufacturing Q, material collection can be done efficiently and the amount of leftover material can be minimized. Or if the number of stages is even,
A similar effect can be obtained by notching the airflow upstream end so that a concave portion corresponds to a concave portion and a convex portion corresponds to a convex portion.

また本発明の一実施例としてフィンを切シ起こ    
   11して立壁を設けたが、他の加工法にょシ立壁
を設けても同様の効果があることはいうまでもない。
In addition, as an embodiment of the present invention, the fins are cut and raised.
11 and a standing wall was provided, but it goes without saying that the same effect can be obtained by providing a standing wall using other processing methods.

発明の効果 以上のように本発明のフィン付熱交換器は、流動する気
流中に置かれ、気流上流側端部に凹部と凸部を交互に設
けたフィンと、このフィンに挿入され気流の垂直方向に
配列された複数の伝熱管を備え、このフィンには複数の
伝熱管の中心を結ぶ線を境界として、気流上流側および
気流下流側に。
Effects of the Invention As described above, the finned heat exchanger of the present invention has a fin that is placed in a flowing airflow, and has fins that are alternately provided with concave portions and convex portions at the upstream end of the airflow, and a fin that is inserted into the fin and is placed in a flowing airflow. Equipped with a plurality of heat exchanger tubes arranged in the vertical direction, the fins have a line connecting the centers of the plurality of heat exchanger tubes as a boundary, and an airflow upstream side and an airflow downstream side.

それぞれ気流流動方向に対して傾斜させた複数の上流側
立壁および下流側立壁を設け、凹部と凸部が伝熱管軸方
向に交互に位置するように複数のフィンを配列してなる
ので伝熱管後流部の死水域を減少させ、さらにフィン上
の境界層厚さを減少させる効果が得られ、伝熱性能は著
しく向上し、気流上流側端部は各段ごとに管軸方向のフ
ィン間隔が広くなるので着霜時に霜層でフィン間が閉塞
され除霜が必要になる迄の運転時間を著しく長くできる
。さらに立壁による伝熱促進は、境界層前縁効果による
ものでなく死水域の減少および境界層厚さの減少効果に
よるものであるから、立壁自体に霜層が形成されて閉塞
されることなく、伝熱促進としての効果が損なわれずに
伝熱性能は著しく向上する。
A plurality of upstream and downstream vertical walls are provided, each inclined with respect to the air flow direction, and a plurality of fins are arranged so that concave portions and convex portions are alternately located in the axial direction of the heat exchanger tube. This has the effect of reducing the dead zone in the flow section and further reducing the thickness of the boundary layer on the fins, significantly improving heat transfer performance. Since it is wider, the operating time until defrosting becomes necessary due to the frost layer blocking the space between the fins during frost formation can be significantly lengthened. Furthermore, the promotion of heat transfer by standing walls is not due to the leading edge effect of the boundary layer, but is due to the reduction of the dead area and the thickness of the boundary layer, so that the standing walls themselves are not blocked by the formation of a frost layer. Heat transfer performance is significantly improved without impairing the effect of promoting heat transfer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aおよびbは従来のフィン付熱交換器のフィンの
正面図、第2図aおよびbは同フィン付熱交換器の水平
断面図、第3図aおよびbは本発明の一実施例を示すフ
ィン付熱交換器のフィンの正面図、第4図aおよびbは
同フィン付熱交換器の水平断面図、第6図は同要部斜視
図である。 7・・・・・・伝熱管、8,9・・・・・・フィン、1
2・・・・・・凹部、13・・・・・・凸部、16&〜
15C・・・・・・上流側立壁、152L、15b・・
・・・・下流側立壁。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 (α)               66ノ第2図 (Q)          (b) 第3図 ((1)                  ’bノ
5c
Figures 1a and b are front views of the fins of a conventional finned heat exchanger, Figures 2a and b are horizontal sectional views of the same finned heat exchanger, and Figures 3a and b are one embodiment of the present invention. FIGS. 4A and 4B are horizontal sectional views of the finned heat exchanger, and FIG. 6 is a perspective view of the main parts thereof. 7... Heat exchanger tube, 8, 9... Fin, 1
2...Concave portion, 13...Convex portion, 16&~
15C...Upstream standing wall, 152L, 15b...
...Downstream standing wall. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure (α) 66 No. 2 (Q) (b) No. 3 ((1) 'b No. 5c

Claims (2)

【特許請求の範囲】[Claims] (1)平行に配置され、その間を気体が流動する複数の
フィンと、これら複数のフィンに挿入され、気流に対し
て垂直方向に配列された複数の伝熱管を備え、前記フィ
ンには気流上流側端部に凹部と凸部を交互に設け、かつ
前記複数の伝熱管の中心を結ぶ線を境界として気流上流
側および気流下流側にそれぞれ気流流動方向に対して傾
斜した複数の上流側立壁および下流側立壁を設け、フィ
ンの気流上流側端部の凹部と凸部が伝熱管軸方向に交互
に位置するように複数のフィンを配列したフィン付熱交
換器。
(1) A plurality of fins arranged in parallel, through which gas flows, and a plurality of heat transfer tubes inserted into these fins and arranged perpendicularly to the airflow; a plurality of upstream vertical walls that are provided with concave portions and convex portions alternately on the side end portions, and that are inclined with respect to the air flow direction on the air flow upstream side and the air flow downstream side, respectively, with a line connecting the centers of the plurality of heat exchanger tubes as the boundary; A finned heat exchanger in which a downstream vertical wall is provided and a plurality of fins are arranged such that concave portions and convex portions at the airflow upstream end of the fins are alternately located in the axial direction of the heat transfer tube.
(2)上流側立壁および下流側立壁を、気流流動方向に
対してそれぞれ逆方向に傾斜させて設けた特許請求の範
囲第1項記載のフィン付熱交換器。
(2) The finned heat exchanger according to claim 1, wherein the upstream vertical wall and the downstream vertical wall are respectively inclined in opposite directions with respect to the air flow direction.
JP23361984A 1984-11-06 1984-11-06 Finned heat exchanger Pending JPS61114091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23361984A JPS61114091A (en) 1984-11-06 1984-11-06 Finned heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23361984A JPS61114091A (en) 1984-11-06 1984-11-06 Finned heat exchanger

Publications (1)

Publication Number Publication Date
JPS61114091A true JPS61114091A (en) 1986-05-31

Family

ID=16957882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23361984A Pending JPS61114091A (en) 1984-11-06 1984-11-06 Finned heat exchanger

Country Status (1)

Country Link
JP (1) JPS61114091A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6644389B1 (en) * 1999-03-09 2003-11-11 Pohang University Of Science And Technology Foundation Fin tube heat exchanger
US7337831B2 (en) * 2001-08-10 2008-03-04 Yokohama Tlo Company Ltd. Heat transfer device
JP2010096481A (en) * 2008-10-20 2010-04-30 Toshiba Carrier Corp Indoor unit for air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6644389B1 (en) * 1999-03-09 2003-11-11 Pohang University Of Science And Technology Foundation Fin tube heat exchanger
US7337831B2 (en) * 2001-08-10 2008-03-04 Yokohama Tlo Company Ltd. Heat transfer device
JP2010096481A (en) * 2008-10-20 2010-04-30 Toshiba Carrier Corp Indoor unit for air conditioner

Similar Documents

Publication Publication Date Title
JP3048549B2 (en) Air conditioner heat exchanger
US5062475A (en) Chevron lanced fin design with unequal leg lengths for a heat exchanger
JPS61110889A (en) Finned heat exchanger
JPH0271096A (en) Heat exchanger with fin
JPS61114091A (en) Finned heat exchanger
JP3048614B2 (en) Heat exchanger
JPS6162794A (en) Heat exchanger with fins
JPS58158495A (en) Finned-tube type heat exchanger
JPS62147290A (en) Heat exchanger
JPS62112997A (en) Heat exchanger
JPS6324390Y2 (en)
JPS58158497A (en) Finned-tube type heat exchanger
JPS6199097A (en) Finned heat exchanger
JPS61159094A (en) Finned heat exchanger
JPS6338892A (en) Fin tube type heat exchanger
JP2730649B2 (en) Heat exchanger
JPS58158494A (en) Finned-tube type heat exchanger
JPS61256192A (en) Heat exchanger with fins
JP3406737B2 (en) Heat exchangers and air conditioners
JPH0311593Y2 (en)
JPS6252398A (en) Finned heat exchanger
JPS63233295A (en) Fin and tube type heat exchanger
JPS61272594A (en) Finned heat exchanger
JPS6199098A (en) Finned heat exchanger
JPS61153392A (en) Finned heat exchanger