JPS61113780A - Anticorrosive for heating surface - Google Patents

Anticorrosive for heating surface

Info

Publication number
JPS61113780A
JPS61113780A JP23325084A JP23325084A JPS61113780A JP S61113780 A JPS61113780 A JP S61113780A JP 23325084 A JP23325084 A JP 23325084A JP 23325084 A JP23325084 A JP 23325084A JP S61113780 A JPS61113780 A JP S61113780A
Authority
JP
Japan
Prior art keywords
compound
corrosion
water
emulsion
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23325084A
Other languages
Japanese (ja)
Inventor
Yoshio Harada
良夫 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23325084A priority Critical patent/JPS61113780A/en
Publication of JPS61113780A publication Critical patent/JPS61113780A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Paints Or Removers (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To obtain an anticorrosive for the heating surface of a boiler tube or the like producing a significant corrosion preventing effect by dispersing and suspending an Mn compound and a water soluble synthetic resin in water to prepare an emulsion. CONSTITUTION:An Mn compound such as MnO2, MnCO2, Mn(OH)2 or a fatty acid salt of Mn and a water soluble synthetic resin such as an acrylate polymer or a vinyl polymer are dispersed and suspended in water to prepare an emulsion. At this time, a surfactant such as polyoxyethylene alkyl ether is used as an emulsifier. When the heating surface of a boiler tube liable to corrode is coated with the emulsion, the emulsion produces a significant corrosion preventing effect.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ボイラ炉内等の伝熱面の腐食防止剤に関し、
特にアスファルトや石油コークスを燃料とするボイラに
応用して特に効果が大きい腐食防止剤に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a corrosion inhibitor for heat transfer surfaces in boiler furnaces, etc.
This invention relates to a corrosion inhibitor that is especially effective when applied to boilers that use asphalt or petroleum coke as fuel.

(従来の技術) 重油や原油を燃焼するボイラ炉内には、これらの燃料灰
が付着、堆積し、場合によっては、過熱器、再熱器など
の高温被曝管が甚しい腐食減肉を受けることがある。こ
の原因は燃料中に含まれているナトリウム、硫黄及びバ
ナジウムなどの元素が、相互に反応して低融点で加速酸
化作用の強い化合物をつ〈シ、これがボイラ運転中の管
壁上において強い腐食作用を発揮する゛からである。こ
の種の腐食性化合物として次のようなものがあシ、化合
物中にバナジウムを含むことから前記の加速酸化腐食作
用をバナジウムアタックとも呼んでいる。()内は融点
を示す。
(Conventional technology) Fuel ash adheres and accumulates in boiler furnaces that burn heavy oil and crude oil, and in some cases, high-temperature exposed tubes such as superheaters and reheaters suffer severe corrosion and thinning. Sometimes. The cause of this is that elements such as sodium, sulfur, and vanadium contained in the fuel react with each other to form compounds with low melting points and strong accelerated oxidation effects, which cause severe corrosion on the pipe walls during boiler operation. This is because it exerts its effect. Examples of this type of corrosive compound include the following. Since the compound contains vanadium, the accelerated oxidation corrosion effect described above is also called vanadium attack. The numbers in parentheses indicate the melting point.

1ON−0・7v!0W(574℃’) Na10・2
720g  (614℃)2 Nano ・5’Tl2
01. (565℃) 5Na、O−V、O,−11’
7.0g(535℃)h〜(670℃)  Na1E+
04   (884℃)融点が低いことはボイラ運転中
の管壁温度環境では溶融状態として存在しやすいことを
示すとともに、溶融状態では、各種の化学反応因子の活
動が活発となりボイラ管表面に生成して保護作用を営ん
でいる酸化皮膜を破壊して、管の腐食速度を加速させる
ことを示唆している。又Na180. (硫酸す) I
Jウム)は、バナジウム化合物と共晶をつくり、融点を
引き下げ強い腐食性を発揮する。(例えば50%h06
.50%Na2804の混合物は約600℃で溶融する
) 以上の腐食反応から明らかなように、加速酸化腐食が発
生する場合には、腐食作用を示す化合物が電融状態にあ
ること・が必要である。もし、腐食作用を示す化合物の
融点を上げて固体の状態となると腐食反応速度は甚しく
低下し、実用上問題とならない程度となる。このような
考え方から融点の高いカルシウム、マグネシウムなどの
化合物を燃料中へ添加し、燃焼環境中で低融点化合物と
反応させて、その融点を上昇させること罠よって、腐食
反応を防止させようとする方法が行なわれている。因み
に、OaOの融点は2200℃MgOは2800℃の高
融点を示し、これらがバナジウム化合物と反応すると次
に示すような融点の高い化合物を生成する。
1ON-0.7v! 0W (574℃') Na10・2
720g (614℃)2 Nano ・5'Tl2
01. (565℃) 5Na, OV, O, -11'
7.0g (535℃)h~(670℃) Na1E+
04 (884℃) The low melting point indicates that it is likely to exist in a molten state in the tube wall temperature environment during boiler operation, and in the molten state, the activities of various chemical reaction factors become active and are generated on the boiler tube surface. This suggests that the corrosion rate of pipes is accelerated by destroying the protective oxide film. Also Na180. (sulfuric acid) I
Jum) forms a eutectic with vanadium compounds, lowering the melting point and exhibiting strong corrosive properties. (For example, 50%h06
.. (A mixture of 50% Na2804 melts at approximately 600°C.) As is clear from the above corrosion reactions, when accelerated oxidation corrosion occurs, it is necessary that the compound exhibiting the corrosive action be in an electrically molten state. . If the melting point of a compound that exhibits corrosive action is raised to a solid state, the corrosion reaction rate will be severely reduced to such an extent that it will not pose a practical problem. Based on this idea, compounds with high melting points such as calcium and magnesium are added to the fuel and reacted with low melting point compounds in the combustion environment, raising the melting point and thereby preventing corrosion reactions. method is being carried out. Incidentally, OaO has a melting point of 2200° C. MgO has a high melting point of 2800° C. When these react with vanadium compounds, compounds with high melting points as shown below are produced.

MgO”7101+(671℃)    0aO−V、
O,(618℃)Mg0・2VtOg (835℃) 
  Oao・2VHO6(778℃)Mg() 5V2
01?(1191℃)CaO・3v!oII(1016
℃)カルシウム化合物としてはOa 0C)s XCa
 (OH)x、マグネシウム化合物としてはMgO,’
g(’H)tsMgcICb、両元素化合物としてMg
OOH−CaCOl (ドロマイト〕がある。このほか
、カオリン、All OHX81%などが上記の目的で
試験されたことがあるが、現在では注入効果(少量で目
的が達せられる)の点からMgO1Mg(oa)*が主
流を占め使用されている。
MgO"7101+ (671℃) 0aO-V,
O, (618℃) Mg0・2VtOg (835℃)
Oao・2VHO6 (778℃) Mg() 5V2
01? (1191℃)CaO・3v! oII (1016
℃) As a calcium compound, Oa 0C)s XCa
(OH)x, as a magnesium compound MgO,'
g('H)tsMgcICb, Mg as both elemental compounds
There is OOH-CaCOl (dolomite).In addition, kaolin, All OHX81%, etc. have been tested for the above purpose, but currently MgO1Mg(oa) is used from the point of view of injection effect (the purpose can be achieved with a small amount). * is the most commonly used.

一方、ボイラの燃料は、エネルギ源の有効利用と運転経
費の節減のため、アスファルトや石油コークスなどが採
用されはじめた。しかし、これらの燃料中には前記バナ
ジウムや硫黄化合物が多量に含まれると共に、燃焼速度
の遅い炭素質が含まれている特徴がある。このため、重
油や原油用のバーナでは完全燃焼することが困難である
ため、改良されたバーナで燃焼させているが、これを採
用しても、尚、燃焼領域では完全に燃えず、ボイラの炉
底や過熱器に燃料の一部が堆積した勺付着した後も燃焼
を続ける現  ゝ象が観察される。これらの燃焼部(堆
積したシ、付着した後燃焼している部分)では、燃焼用
に酸素が消費される結果、局部的には酸素分圧の低い環
境が構成されることとなる。このような酸素分圧の低い
環境では、前記バナジウム化合物の加速酸化作用は起ら
ず、又バナジウムの酸化物自体も1犯v、o、 (いず
れも融点は1900℃以上)の高融点の低級酸化物を生
成するにとどまり、高級酸化物で低融点のV、0II(
670℃)は生成しないので、バナジウム化合物が多量
に含まれていたとしても、バナジウムアタックは発生し
ないこととなる。
Meanwhile, asphalt and petroleum coke have begun to be used as fuel for boilers in order to effectively utilize energy sources and reduce operating costs. However, these fuels contain large amounts of vanadium and sulfur compounds, as well as carbonaceous substances that have a slow burning rate. For this reason, it is difficult to achieve complete combustion using a burner for heavy oil or crude oil, so improved burners are used for combustion, but even with this, complete combustion does not occur in the combustion area, and the boiler It is observed that combustion continues even after some of the fuel has accumulated on the bottom of the furnace or superheater. In these combustion parts (the parts where the particles are deposited or are burned after being deposited), oxygen is consumed for combustion, resulting in an environment where the partial pressure of oxygen is locally low. In such an environment with a low oxygen partial pressure, the accelerated oxidation effect of the vanadium compound does not occur, and the vanadium oxide itself has a high melting point of V, O, (both have melting points of 1900°C or higher). V, 0II (which is a higher oxide and has a low melting point)
670° C.), so even if a large amount of vanadium compounds are contained, vanadium attack will not occur.

逆にこのような未焼炭素分が含まれ、酸素分圧の低い環
境罠カルシウムやマグネシウム化合物が存在すると、(
バナジウムアタックを防止しようとして燃料中にOa、
、Mg化合物を添加した場合)&シい硫化腐食が発生し
ボイラ管の損耗が促進される。この場合の腐食反応は概
路次の通りである。Mg(OH)xを例にとって式(1
)〜(6)にて示す。
On the other hand, if there are environmentally trapped calcium and magnesium compounds that contain such unburned carbon and have a low oxygen partial pressure, (
In an attempt to prevent vanadium attack, Oa,
, when Mg compounds are added) and sulfide corrosion occurs, accelerating wear and tear on boiler tubes. The corrosion reaction in this case is roughly as follows. Taking Mg(OH)x as an example, the formula (1
) to (6).

燃料中に添加されたMg(OH)tは、燃焼領域で高温
に加熱されるため脱水する。
Mg(OH)t added to the fuel is heated to a high temperature in the combustion region and is dehydrated.

Mg(01り、−−→MgO(1) 燃焼領域にはB”x 、SOxガスが含まれてbるため
、これらと反応し硫酸塩を生成する。
Mg(01, --→MgO(1)) Since the combustion region contains B"x and SOx gases, it reacts with these to produce sulfate.

MgO+E?偽+1/20.−MgSO4(2)MgO
+  801 −Mg11?04        (3
)これが燃料灰中に含まれ、前記未燃炭素が燃°焼中の
環境では 2Mg5o、 + 50 →2Mg0 + 3(X)、
 + 28 (4)M−1−8−→M 8      
 (5)MgSO4−)−3ME+−→MgO+!+M
O+4ET   (6)の反応が起る。ここでMはボイ
ラ管を示す。
MgO+E? False +1/20. -MgSO4(2)MgO
+801-Mg11?04 (3
) This is contained in the fuel ash, and in an environment where the unburned carbon is being burned, 2Mg5o, + 50 → 2Mg0 + 3(X),
+ 28 (4) M-1-8-→M 8
(5) MgSO4-)-3ME+-→MgO+! +M
The reaction O+4ET (6) occurs. Here, M indicates a boiler tube.

このようにバナジウムアタックを防止させるために燃料
中に注入したMg(oH)tが逆に腐食原因となること
がわかる。カルシウム化合物を注入した場合も同様な腐
食原因が考えられる。
It can be seen that Mg(oH)t, which is injected into the fuel to prevent vanadium attack, actually causes corrosion. A similar cause of corrosion may occur when calcium compounds are injected.

以上のようなことから、重油や原油を燃焼しているボイ
ラで採用されているカルシウムやマグネシウム化合物の
注入による腐食防止法は、アスファルトや石油コークス
特に後者の燃料を使用している場合には採用できない欠
点がある。
For these reasons, the corrosion prevention method by injecting calcium and magnesium compounds, which is used in boilers that burn heavy oil or crude oil, is not recommended for asphalt or petroleum coke, especially when the latter fuel is used. There is a drawback that it cannot be done.

(発明が解決しようとする問題点) 本発明の目的は、前記石油コークスを燃焼するボイラ炉
内のようK、未燃炭素分を含む燃料灰が炉底やボイラ管
に付着して、その場所で燃焼を続けて腐食損傷を起すこ
とを防ぐ、伝熱面の腐食防止剤を提供するととKある。
(Problems to be Solved by the Invention) It is an object of the present invention to solve the problem in that the fuel ash containing unburned carbon adheres to the bottom of the furnace and the boiler tubes, and The objective is to provide a corrosion inhibitor for heat transfer surfaces that prevents corrosion damage caused by continued combustion.

(問題点を解決するための手段) 本発明の動機は問題が発生すると予想される場所に、ボ
イラ管より硫化物をつくり易いマンガン化合物を含む腐
食防止剤をコーティングすることによって、上記の目的
を達成できることを実験的に確認したことにある。
(Means for Solving the Problems) The motive of the present invention is to achieve the above objectives by coating locations where problems are expected to occur with a corrosion inhibitor containing a manganese compound that is more likely to form sulfides than boiler pipes. This is because we have experimentally confirmed that this can be achieved.

すなわち、ボイラ管の全成分より硫化物をつくり易いマ
ンガン化合物を含む腐食防止剤を水溶性の合成樹脂を含
むエマルジョン中に分散させた後、これを腐食の発生が
予想される管0表1  面にコーティングするにある。
That is, after dispersing a corrosion inhibitor containing a manganese compound, which is more likely to form sulfides than all the components of boiler tubes, into an emulsion containing a water-soluble synthetic resin, this is applied to the tubes where corrosion is expected to occur. It is to be coated.

したがって本発明は、Mn化合物及び水溶性の合成樹脂
を水中に分散、懸湿させたエマルジョンからなるボイラ
伝熱面の腐食防止剤に関する。さらに本発明は、A/、
 Si、Feの群から選ばれる元素の少なくとも1種の
化合物、Mn化合物及び水溶性の合成樹脂を水中に分散
、懸濁させたエマルジョンからなるボイラ伝熱面の腐食
防止剤にも関・する。
Therefore, the present invention relates to a corrosion inhibitor for boiler heat transfer surfaces, which is made of an emulsion in which a Mn compound and a water-soluble synthetic resin are dispersed in water and kept moist. Furthermore, the present invention provides A/,
The present invention also relates to a corrosion inhibitor for boiler heat transfer surfaces comprising an emulsion in which at least one compound of elements selected from the group of Si and Fe, a Mn compound, and a water-soluble synthetic resin are dispersed and suspended in water.

本発明において使用する水溶性樹脂としては、アクリル
酸エステル共重合体、ポリ酢酸とニール、ポリ優チレン
、スチレン−ブタジェン共重合体などが用いられる。又
、水溶性樹脂をエマルジョン化するtて際し使用する界
面活性剤としでは、ポリオキシエチレンアルキルエーテ
ル、ポリオキシエチレン脂肪酸エステル、トリメテルア
ミノエチルアルキルアミドハロゲニド、アルキルベタイ
ンなどの有機化合物とその銹導体などがある。
Examples of the water-soluble resin used in the present invention include acrylic ester copolymers, polyacetic acid and neil, polyethylene polyethylene, and styrene-butadiene copolymers. Surfactants used when emulsifying water-soluble resins include organic compounds such as polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, trimetheraminoethyl alkylamide halogenide, and alkyl betaine. There are rust conductors, etc.

本発明で用いられるMn化合物としては、例えば“°−
・“°00・・”n(OH)2を4じめ脂肪酸“no!
5     、、な有機化合物も使用できる。
Examples of the Mn compound used in the present invention include “°-
・“°00...”n(OH)2 is the fourth fatty acid “no!
5. Organic compounds can also be used.

本発明で用いられるム/、 Si、Feの群から選ばれ
る元素の化合物としては、ムtの化合物: AtRol
、A/(OH)、、Sl化合物: 8101、エテルシ
リケート、メチルシリケートナフテン酸、Fe化合物:
 Fe101゜?θ0OH1Fes04、醋酸鉄、A/
とSlの化合物二カオリン(A/ff1O,・8102
・2H,O)等がある。
As the compound of the element selected from the group of Mu/, Si, and Fe used in the present invention, a compound of Mu: AtRol
, A/(OH), , Sl compound: 8101, ether silicate, methyl silicate naphthenic acid, Fe compound:
Fe101°? θ0OH1Fes04, iron acetate, A/
and Sl compound dikaolin (A/ff1O, 8102
・2H, O), etc.

ところで、A/ 、 Si等を余り多量に添加すると燃
焼室を構成するボイラ管の表面1/(A/、81等の白
色化合物が付着すると熱反射が強ぐなシ、ボイラ管の熱
吸収が高くなる。このため燃焼火炎の温度が高い状態に
維持されることとなう、排煙公害として最も重要視され
るNOxの生成が促進される欠点がある。すなわち腐食
防止効果があってもボイラ運転上からは多量添加は好ま
しくないといえる。
By the way, if too much A/, Si, etc. is added, the surface of the boiler tube constituting the combustion chamber will become 1/(A/, 81, etc.) and the heat reflection will be strong and the heat absorption of the boiler tube will be reduced. This has the disadvantage that the temperature of the combustion flame is maintained at a high state, and the formation of NOx, which is considered the most important form of exhaust gas pollution, is promoted.In other words, even if there is a corrosion prevention effect, From an operational point of view, it can be said that adding a large amount is not preferable.

ただし、Mn化合物(有色)を共存させておくと、白色
化が抑制されるので上述したHox発生の問題はなくな
る。
However, if a Mn compound (colored) is allowed to coexist, whitening will be suppressed and the above-mentioned problem of Hox generation will be eliminated.

本発明の腐食防止剤の各成分の含有量範囲は、Mn01
20〜100重量%が好ましい。またこの範囲の1tn
ota度に対して、AI!20sは10〜50重危%、
Ello、10〜50重量%、Fe、0320〜30重
量%が好ましい。
The content range of each component of the corrosion inhibitor of the present invention is Mn01
20 to 100% by weight is preferred. Also, 1tn in this range
AI! 20s is 10-50% critical,
Elo, 10-50% by weight, Fe, 0320-30% by weight are preferred.

なおOaO及びMgOはそれぞれ10重量%までの存在
は許容できる。
Note that the presence of OaO and MgO in an amount of up to 10% by weight is permissible.

また水溶性合成樹脂の含有量は、特に規定されるところ
はなく、ボイラ管に腐食防止剤をコーティングできる量
であればよく、その選択は゛作業(例えば羽毛処理吹付
は処理)しやすい濃度とすればよい。樹脂含有量が多く
粘着性に富み、作業性が悪い場合は水を添加して薄めれ
ばよい。
Furthermore, the content of the water-soluble synthetic resin is not particularly stipulated, as long as it is enough to coat the boiler pipes with the corrosion inhibitor, and the selection should be made at a concentration that is easy to work with (for example, for feather treatment spraying). Bye. If it has a high resin content and is highly sticky and has poor workability, it may be diluted by adding water.

本発明の特徴を列挙すれば次の通りである。The features of the present invention are listed below.

■ マンガンは硫黄化合物と反応しやすく、自らが硫化
物となることによって、環境の硫黄分圧を低下させその
腐食性を緩和させる。
■ Manganese easily reacts with sulfur compounds, and by turning itself into sulfide, it lowers the sulfur partial pressure in the environment and alleviates its corrosivity.

■ マンガンの硫化物MnE+ (融点1160℃)、
Mn −MnSの共晶(1580℃)はいずれも融点が
高く、硫化物が生成したとしてもボイラ運転中でも溶融
することがな(、MnSが腐食原因となることはない。
■ Manganese sulfide MnE+ (melting point 1160℃),
The Mn-MnS eutectic (1580°C) has a high melting point, and even if sulfide is generated, it will not melt even during boiler operation (and MnS will not cause corrosion.

■ A/、Siの腐食防止作用は、S化合物と直接化学
反応することがないのでS化合物と共存することによっ
て、S化合物の0度を薄め、ボイラ管などに接触するこ
とを防ぐ作用がある。また、A/、Siを含む燃料灰は
一般〈ボイラ管から剥離しやすぐ、伝熱面に堆積して熱
吸収を防げることが少ない。
■ A/: The anti-corrosion effect of Si is that it does not have a direct chemical reaction with the S compound, so by coexisting with the S compound, it dilutes the 0 degrees of the S compound and prevents it from coming into contact with boiler pipes, etc. . Furthermore, fuel ash containing A/Si generally accumulates on the heat transfer surface immediately after it is peeled off from the boiler tube, and rarely prevents heat absorption.

■ Fe化合物は、A/、Siに比べ8化合物と反応す
る(後述の実施例第2表参照)ものの、A/。
(2) Although the Fe compound reacts with 8 compounds compared to A/ and Si (see Table 2 of Examples below), A/.

1giと共存させたり硫化腐食性の強いCa化合物、M
g化合物と共存させておくと、腐食防止作用を示すこと
が認められた(実施例第1表のD1E参照)。さらKF
e化合物もMn化合物と同じ有色化合物に属するので同
様にBox発生現象を抑制する作用がある。
1gi, a strong sulfide corrosive Ca compound, M
It was found that when allowed to coexist with compound g, it exhibits a corrosion inhibiting effect (see D1E in Table 1 of Examples). SaraKF
Since the e compound belongs to the same class of colored compounds as the Mn compound, it similarly has the effect of suppressing the Box generation phenomenon.

■ 腐食の発生が予想されるボイラ管、あるいつ   
  は腐食損傷の兆候が見られる管のみを対象としてコ
ーティングするので、燃料中へこの種の腐食防止剤を注
入するのに比べ経費が少くて済む。
■ Boiler tubes where corrosion is expected to occur
Because it targets only the tubes that show signs of corrosion damage, it costs less than injecting this type of corrosion inhibitor into the fuel.

■ 水溶性樹脂によってエマルジョン化した液中にマン
ガン化合物を添加しているのでコーティングするに際し
、火炎の危険や衛生上の問題はない。
■ Since a manganese compound is added to the emulsified liquid using a water-soluble resin, there is no risk of flame or hygienic problems when coating.

の 又、乾燥後は非透水性で弾力性のある皮膜を形成す
るので、マンガン化合物などの固形物は完全に管上にコ
ーティングされる。
Moreover, since it forms a water-impermeable and elastic film after drying, solid substances such as manganese compounds are completely coated on the tube.

■ 上記の性質があるため、コーティング回数を繰返す
ことによって、厚い皮膜を形成させることが可能である
■ Because of the above properties, it is possible to form a thick film by repeating coating.

(9>又、コーティングは、へヶ塗シ、スプレなども可
能である。
(9> Also, the coating can be applied by coating, spraying, etc.

〔実施例〕〔Example〕

本発明の効果を石油コークスを燃料として運転中のボイ
ラに適用して調査した。
The effects of the present invention were investigated by applying it to a boiler operating using petroleum coke as fuel.

i)本発明の腐食防止剤の組成として第1表に示すよう
なものを調整した。この試験では、従来の重油燃焼ボイ
ラの高温腐食防止用として使用されているOa、Mg化
合物を本発明と同  ゛j手法で調整した(比較のため
)。第1表中の■は、この種の添加剤をコーティングし
ない状態のものを示す。
i) The composition of the corrosion inhibitor of the present invention as shown in Table 1 was prepared. In this test, Oa and Mg compounds, which are conventionally used to prevent high-temperature corrosion in heavy oil-fired boilers, were prepared using the same method as in the present invention (for comparison). ■ in Table 1 indicates the product without coating with this type of additive.

第1表の成分のものをそれぞれt 5kg秤量し、水7
.1kg、アクリル酸エステル共重合体1kg、メチル
セルロール0.2kg、市販の非イオン界面活性剤(ポ
リオキシエチレンノニルフェノール) 0.2 kgを
よく混合した水溶液中に添加しさらによく攪拌して調整
を終了した。
Weigh 5 kg of each of the ingredients listed in Table 1, and add 7 kg of water.
.. 1 kg of acrylic acid ester copolymer, 0.2 kg of methyl cellulose, and 0.2 kg of a commercially available nonionic surfactant (polyoxyethylene nonylphenol) were added to a well-mixed aqueous solution, and the mixture was further stirred to make adjustments. finished.

11)石油コークスの性状及び腐食試験したボイラ管の
運転条件 石油コークスの中の腐食成分は硫黄4.5%、バ+ジク
ム830 ppm 、ナトリウム110ppmで、試験
したボイラ管の運転条件は管壁温度510℃〜530℃
、燃焼ガス温度870〜850℃である。
11) Properties of petroleum coke and operating conditions of boiler tubes tested for corrosion The corrosive components in petroleum coke are 4.5% sulfur, 830 ppm of basicum, and 110 ppm of sodium. The operating conditions of the boiler tubes tested are: tube wall temperature. 510℃~530℃
, the combustion gas temperature is 870-850°C.

111)腐食防止剤のコーティング作業ボイラ管に付着
していた燃料灰をサンドプラスによって完全忙除去して
金目面を出した後、前記の要領で調整した腐食防止剤を
農薬散布などに用いられるスプレー機を利用して均一に
塗布した。又塗布は24時間間隔て3回繰返した。
111) Coating work with corrosion inhibitor After completely removing the fuel ash that had adhered to the boiler pipes with Sandplus to give it a golden appearance, apply the corrosion inhibitor prepared in the above manner to a spray that is used for spraying agricultural chemicals, etc. It was applied evenly using a machine. The application was repeated three times at 24 hour intervals.

本発明の腐食防止剤を塗布したボイラ管表面には、水溶
性樹脂の乾燥皮膜がほぼ均一に形成され、その中に各種
成分が保持されていることを確認した。
It was confirmed that a dry film of water-soluble resin was formed almost uniformly on the surface of the boiler tube coated with the corrosion inhibitor of the present invention, and that various components were retained in the dry film.

iv )試験結果 ゛ ボイラ運転後約5カ月経過し走時点で再び而)項の
処理を行ない、さらに約4カ月経過した後、管表面に付
着している燃料灰を除去し管表面の硫化度を調査した。
iv) Test results: Approximately 5 months have passed since the boiler was operated, and at the time of operation, the process described in (a) is carried out again. After approximately 4 months have passed, the fuel ash adhering to the tube surface is removed and the sulfidity level of the tube surface is determined. investigated.

硫化度の調査には、モノクローム用印両紙を5%硫酸中
に浸漬した後、これを管表面に約10分間貼りつけた。
To investigate the degree of sulfidation, monochrome printing paper was immersed in 5% sulfuric acid and then stuck on the tube surface for about 10 minutes.

その後印画紙を水洗し、印面に褐色に着色した色合いと
その分布状況によって硫化度を比較した。
Afterwards, the photographic paper was washed with water, and the degree of sulfidation was compared based on the brown coloration on the stamp surface and its distribution.

この硫化度の判定は、管表面に硫化物が生成していると
これが硫酸と反応して硫化水素ガスが発生する。このガ
ス゛と印画紙のハロゲン化銀が反応して画面に褐色の硫
化銀が定着する印象を利用したものである。
This determination of sulfidity is based on the fact that if sulfide is generated on the tube surface, it reacts with sulfuric acid to generate hydrogen sulfide gas. This technique takes advantage of the impression that this gas reacts with the silver halide on the photographic paper, fixing brown silver sulfide on the screen.

ら明らかなように1本発明の腐食防止剤は、ボイラ炉内
等の伝熱面、特に従来のカルシウム化合物あるいはマグ
ネシウム化合物を主成分とし表バナジウムアタックに対
応する腐食防止剤を採用できなかった、アスファルトや
石油コークスを燃料とするボイラ等の伝熱面に用いるこ
とができ、腐食防止効果が大きく、有利である。
As is clear from the above, the corrosion inhibitor of the present invention cannot be applied to heat transfer surfaces such as inside boilers, especially conventional corrosion inhibitors that are mainly composed of calcium compounds or magnesium compounds and are resistant to vanadium attack. It can be used as a heat transfer surface in boilers that use asphalt or petroleum coke as fuel, and has a large corrosion-preventing effect, which is advantageous.

復代理人  内 1)  明 復代理人  萩 原 亮 −Sub-agent: 1) Akira Sub-agent Ryo Hagi Hara -

Claims (2)

【特許請求の範囲】[Claims] (1)Mn化合物及び水溶性の合成樹脂を水中に分散、
懸濁させたエマルジョンからなるボイラ伝熱面の腐食防
止剤
(1) Dispersing Mn compound and water-soluble synthetic resin in water,
Corrosion inhibitor for boiler heat transfer surfaces consisting of a suspended emulsion
(2)Al、Si、Feの群から選ばれる元素の少なく
とも1種の化合物、Mn化合物及び水溶性の合成樹脂を
水中に分散、懸濁させたエマルジョンからなるボイラ伝
熱面の腐食防止剤
(2) Corrosion inhibitor for boiler heat transfer surfaces made of an emulsion in which at least one compound of elements selected from the group of Al, Si, and Fe, a Mn compound, and a water-soluble synthetic resin are dispersed and suspended in water.
JP23325084A 1984-11-07 1984-11-07 Anticorrosive for heating surface Pending JPS61113780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23325084A JPS61113780A (en) 1984-11-07 1984-11-07 Anticorrosive for heating surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23325084A JPS61113780A (en) 1984-11-07 1984-11-07 Anticorrosive for heating surface

Publications (1)

Publication Number Publication Date
JPS61113780A true JPS61113780A (en) 1986-05-31

Family

ID=16952123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23325084A Pending JPS61113780A (en) 1984-11-07 1984-11-07 Anticorrosive for heating surface

Country Status (1)

Country Link
JP (1) JPS61113780A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833331B2 (en) 2002-01-04 2010-11-16 University Of Dayton Non-toxic corrosion-protection pigments based on cobalt
CN105929298A (en) * 2016-05-13 2016-09-07 江苏麟派电力科技有限公司 CT electricity-obtaining short-circuit grounding intelligent fault indicator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833331B2 (en) 2002-01-04 2010-11-16 University Of Dayton Non-toxic corrosion-protection pigments based on cobalt
CN105929298A (en) * 2016-05-13 2016-09-07 江苏麟派电力科技有限公司 CT electricity-obtaining short-circuit grounding intelligent fault indicator

Similar Documents

Publication Publication Date Title
US6613110B2 (en) Inhibition of reflective ash build-up in coal-fired furnaces
US4512774A (en) Residual fuel oil conditioners containing metal salts in aqueous solution
CN102439199B (en) Inhibiting corrosion and scaling of surfaces contacted by sulfur-containing materials
US3692503A (en) Activated manganese containing additive for fuels
US2844112A (en) Method of inhibiting slag formation in boilers and inhibitor materials for use therein
KR101123567B1 (en) Process for reducing plume opacity
WO2017018628A1 (en) Fossil fuel and livestock manure combustion promoter for harmful discharge gas and clinker inhibition and for complete combustion, and preparation method therefor
CS276140B6 (en) Aqueous solution of a catalyst for more perfect combustion of carbon- or/and hydrocarbon-containing compounds
JPS61113780A (en) Anticorrosive for heating surface
US5637118A (en) Vanadium corrosion inhibitor
US3974783A (en) Method for improving sewage sludge incineration
US4783197A (en) Composition and a method of capturing sulphur
US4486472A (en) Method of preventing a combustion furnace from corrosion
EP0058086B1 (en) Method for the prevention of deposits on or the removal of deposits from heating and ancillary surfaces
US5487762A (en) Method of minimizing deposits when firing tire derived fuels
CN108384599B (en) Composite coal saving agent and application thereof
KR100743826B1 (en) Fuel additive for bituminous heavy oil/water emulsion fuel and method of combustion
JPS5836676B2 (en) High temperature corrosion inhibitor for heat transfer surfaces
JP3202484B2 (en) Heat and water resistant anticorrosion coating
JPS6179787A (en) Method for preventing corrosion of boiler
US3523767A (en) Fuel oil additive and method of making the same
JPS594661A (en) Heat-resistant type anti-corrosive film
US4888030A (en) Creosote removal composition
JPS62272005A (en) Corrosion protection method of superheater tube of soda recovery boiler, etc.
JPS62261802A (en) Method of inhibiting adherence of slags to petroleum coke combustion furnace