JPS5836676B2 - High temperature corrosion inhibitor for heat transfer surfaces - Google Patents

High temperature corrosion inhibitor for heat transfer surfaces

Info

Publication number
JPS5836676B2
JPS5836676B2 JP2363178A JP2363178A JPS5836676B2 JP S5836676 B2 JPS5836676 B2 JP S5836676B2 JP 2363178 A JP2363178 A JP 2363178A JP 2363178 A JP2363178 A JP 2363178A JP S5836676 B2 JPS5836676 B2 JP S5836676B2
Authority
JP
Japan
Prior art keywords
heat transfer
temperature corrosion
temperature
transfer surfaces
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2363178A
Other languages
Japanese (ja)
Other versions
JPS54116352A (en
Inventor
良夫 原田
正治 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2363178A priority Critical patent/JPS5836676B2/en
Publication of JPS54116352A publication Critical patent/JPS54116352A/en
Publication of JPS5836676B2 publication Critical patent/JPS5836676B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はボイラー等、高温下で使用する機器類の高温腐
食障害を防止するための腐食防止剤に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a corrosion inhibitor for preventing high-temperature corrosion damage to equipment used at high temperatures, such as boilers.

重(原)油および石油プラントなどの残渣油を燃焼する
ボイラ炉内にはこれら燃料灰を主或分とする付着物が堆
積し、高温部管(高温過熱器、高温再熱器)では著しい
腐食減肉を生じることがある(高温腐食)。
In boiler furnaces that burn heavy (crude) oil and residual oil from petroleum plants, deposits mainly consisting of these fuel ash accumulate, and in high-temperature pipes (high-temperature superheaters, high-temperature reheaters), there is a significant amount of deposits. Corrosion and thinning may occur (high temperature corrosion).

一般に高温部管ではナl− IJウム硫黄、バナジウム
を主戒分とする燃料灰が付着するが、その融点は700
〜900℃を示すものが多く管表面(550〜6000
C)では固化している。
Generally, fuel ash containing sodium, sulfur, and vanadium as main components adheres to high-temperature pipes, but its melting point is 700%.
Most of the tube surface temperature is ~900℃ (550~6000℃).
In C), it has solidified.

上記の高温腐食の発生要因としては種々のものが考えら
れるが、それらの中で最も影響の太きいものはNa2S
O4−Na・■・0系化合物による低融点化合物の生成
である。
There are various possible causes of the above-mentioned high-temperature corrosion, but the one with the greatest influence is Na2S.
This is the production of a low melting point compound by the O4-Na・■・0 system compound.

このNa−v−O系化合物は第1表に示すようにその融
点がもともと低く、それらがNa2SO4と共晶組成を
つくり、一層融点を引き下げる傾向がある。
As shown in Table 1, these Na-v-O compounds have low melting points to begin with, and they tend to form a eutectic composition with Na2SO4, further lowering the melting point.

(実罐の燃料灰においても500゜C前後の低融点灰が
確認されている)。
(Ash with a low melting point of around 500°C has been confirmed in fuel ash in actual cans.)

燃料灰を主成分とする炉内付着物はこのように腐食性の
強いNa・■・O系及びNa2SO4−Na−v−O系
化合物を多量に含んでいるが、これが固体状態で伝熱管
に付着しているときは固体と固体(付着物と伝熱管)の
接触となるため腐食反応は起こさない。
The in-furnace deposits, which are mainly composed of fuel ash, contain large amounts of highly corrosive Na・■・O and Na2SO4-Na-v-O compounds, which are in a solid state and cannot be deposited on heat exchanger tubes. When they are adhered, there is solid-to-solid contact (adhesives and heat transfer tubes), so no corrosion reaction occurs.

しかし付着物が溶融状態となると液体一固体の関係とな
るため急激な腐食反応が発生する。
However, when the deposit becomes molten, it becomes a liquid-solid relationship, and a rapid corrosion reaction occurs.

これら低融点化合物による高温腐食の防止方法としてC
a,Mg化合物を添加し、これらがボイラ内で2000
℃以上の高融点を有すCaO,M.90となって溶融状
態の付着物と反応して融点を上昇させ、その結果、腐食
作用を抑制させる燃料灰の高融点化が知られている。
C as a method of preventing high temperature corrosion caused by these low melting point compounds.
a, Mg compounds are added, and these are heated to 2000 ml in the boiler.
CaO, M.C. having a high melting point of ℃ or higher. It is known to increase the melting point of fuel ash by reacting with deposits in a molten state to increase the melting point of the fuel ash, thereby suppressing corrosive effects.

M.l9,Ca化合物は燃料に添加したり直接炉内に添
加するが、従来の実罐での使用経験によると、これら添
加剤の効果が明らかになるまで半年〜1年とかなり長時
間を要している。
M. 19.Ca compounds are added to fuel or directly into the furnace, but according to experience with conventional use in actual cans, it takes a long time, from six months to a year, for the effects of these additives to become apparent. ing.

また早期にこれら添加剤の効果を高めるためその添加量
を増すと経済的な負担が上昇するばかりか、伝熱量への
付着が過大となって熱吸収が下りボイラとしての効率が
低下するなどの悪影響が認められている。
Furthermore, if the amount of these additives is increased at an early stage in order to enhance their effectiveness, not only will the economic burden increase, but also the amount of adhesion to the amount of heat transfer will become excessive, resulting in a decrease in heat absorption and a decrease in the efficiency of the boiler. Adverse effects are recognized.

このほか添加剤を多量に注入すると排ガス中のNOxが
増加するなどの現象もあり、排煙公害上からも好ましい
ことではない。
In addition, if a large amount of additive is injected, NOx in the exhaust gas will increase, which is not desirable from the viewpoint of exhaust gas pollution.

本発明者等は燃料灰による高温腐食障害の防止における
、M.9,Ca等化合物の添加時における遅効性を改良
すべく研究を重ねていたが、伝熱管表面の水洗等による
清浄後に、水を溶媒として水溶性樹脂又は合成樹脂と、
Ca,M.9,Si等の化合物を細かく分散、懸濁した
エマルジョンを、対象とする伝熱鋼管表面に塗布したと
ころ、運転開始後まもなくから長期間にわたり、高温腐
食防止作用効果を発揮することを見出して本発明に到達
したものである。
The present inventors have proposed a method for preventing high-temperature corrosion damage caused by fuel ash. 9. Research has been carried out to improve the delayed effect when adding compounds such as Ca, but after cleaning the surface of the heat exchanger tube by washing with water, etc.
Ca,M. 9. When an emulsion in which compounds such as Si are finely dispersed and suspended is applied to the surface of the target heat transfer steel pipe, it was discovered that it exerts high-temperature corrosion prevention effects for a long period of time, starting shortly after the start of operation. This invention has been achieved.

本発明で用いられるCa,Mg,Si化合物としてはC
a O t MgO , S t 02などを初めと
して、燃料雰囲気中で有毒ガスを発生しないで最終的に
前記酸化物となるような、Ca(OH)2,Mg(OH
)2,CaCO3,MgCO3などのものが使用され、
水溶性樹脂としてはアクリル酸エステル(共)重合体、
ポリ酢酸ビニール、ポリスチレン、スチレンーブタジエ
ン共重合体などが用いられる。
The Ca, Mg, and Si compounds used in the present invention include C
Ca(OH)2, Mg(OH), etc., which do not generate toxic gas in the fuel atmosphere and eventually become the oxides, including a O t MgO, S t 02, etc.
)2, CaCO3, MgCO3, etc. are used,
As water-soluble resins, acrylic ester (co)polymers,
Polyvinyl acetate, polystyrene, styrene-butadiene copolymer, etc. are used.

これらのものを水を溶媒として細かく分散・懸濁させて
エマルジョンにする、このエマルジョン化に際しては、
熱分解に際してSO2やHC7などの有毒ガスや腐食性
の残留物を残こさない界面活性剤を使用するのが好まし
い。
In making an emulsion, these substances are finely dispersed and suspended using water as a solvent.
It is preferable to use a surfactant that does not leave behind toxic gases such as SO2 or HC7 or corrosive residues upon pyrolysis.

これらの界面活性剤としては、ポリオキシエチレンアル
キルエーテル、ポリオキシエチレン脂肪酸エステルなど
の非イオン系、トリメチルアミノエチルアルキルアミド
ハロゲニドのような陽イオン系、アルキルベタインのよ
うな両性系の界面活性剤があげられる。
These surfactants include nonionic surfactants such as polyoxyethylene alkyl ether and polyoxyethylene fatty acid ester, cationic surfactants such as trimethylaminoethyl alkylamide halogenide, and amphoteric surfactants such as alkyl betaine. can be given.

陰イオン系界面活性剤は大部分が硫酸塩であるので好ま
しくない。
Anionic surfactants are not preferred because most of them are sulfates.

これらのエマルジョンの管表面への塗布は、スプレー
ハケ塗り、その他いかなる方法にても実施でき、また清
浄後の伝熱面ばかりでなく、既に燃料灰が付着している
ような状態に対しても、その上に塗布することによって
その腐食性を抑制することができる。
Application of these emulsions to the tube surface is done by spraying.
It can be applied by brushing or any other method, and it can be applied not only to heat transfer surfaces after cleaning, but also to areas where fuel ash has already adhered, to reduce its corrosive properties. Can be suppressed.

本発明方法により次のような効果が奏せられる。The method of the present invention provides the following effects.

(1)鋼管表面に塗布されたCa,Mg,Si等の化合
物は、ボイラ再起動後、飛来する燃料灰と反応して高融
点化合物を形或し、高温腐食の発生を抑制する。
(1) Compounds such as Ca, Mg, and Si applied to the surface of the steel pipe react with flying fuel ash after the boiler is restarted to form high-melting point compounds and suppress the occurrence of high-temperature corrosion.

(2)処理剤は水で自由に希釈することが可能であり、
このため火災の危険がなく、乾燥後は処理面に対して非
透水性で弾力性のある皮膜を形成する。
(2) The processing agent can be freely diluted with water,
Therefore, there is no danger of fire, and after drying, it forms a water-impermeable and elastic film on the treated surface.

(3)処理剤中には樹脂成分を含むため、Ca,Mg,
Si等の化合物を単に水に溶解または分散させただけの
ものと異なり、管表面での厚膜の形或が可能であり(単
位面積当りのCa,Mg,Si分量が多くなる)、かつ
再起動時のサーマルショックによる脱落も少ない。
(3) Since the processing agent contains resin components, Ca, Mg,
Unlike simply dissolving or dispersing compounds such as Si in water, it is possible to form a thick film on the tube surface (the amount of Ca, Mg, and Si per unit area increases), and There is also less chance of it falling off due to thermal shock during startup.

(4)施工時、処理剤は液状であるため人力の届かない
ような複雑な構造部に対しても自由に侵入し、防食効果
を発揮することができる。
(4) During construction, since the treatment agent is in liquid form, it can freely penetrate into complex structures that cannot be reached by human power, and exhibit its anticorrosion effect.

(5)処理剤中の樹脂成分は炭素、水素、酸素などの元
素からなる有機化合物で構成されるため、ボイラ再起動
後は燃焼し(CO,CO2,H20などを発生)、処理
鋼管はもちろん、炉内には伺ら悪影響を及ぼさない。
(5) Since the resin component in the treatment agent is composed of an organic compound consisting of elements such as carbon, hydrogen, and oxygen, it will burn after the boiler is restarted (emitting CO, CO2, H20, etc.), and will not only damage the treated steel pipes. , there will be no adverse effect on the inside of the furnace.

本発明方法はボイラ、加熱炉、ゴミ焼却炉、ガスタービ
ン等に応用できる。
The method of the present invention can be applied to boilers, heating furnaces, garbage incinerators, gas turbines, etc.

実施例 ボイラの伝熱面の中で高温部管に属し、腐食性の強い燃
料灰が多量に付着し易く、その上、管自身の肉厚が過熱
器等に比較し小さい吊下型高温再熱器に本発明方法を適
用した。
This is a suspended type high-temperature recycler, which belongs to the high-temperature pipes on the heat transfer surface of the boiler, and where a large amount of highly corrosive fuel ash tends to adhere. The method of the present invention was applied to a heating device.

なお、この処理に先立ちこの再熱器は水洗により燃料灰
がほぼ完全に除去されていた。
Note that, prior to this treatment, fuel ash had been almost completely removed from the reheater by washing with water.

処理剤として下記組戒のものを調製し、水洗終了後の高
温再熱器に対して農薬散布等に用いられるスプレー器を
利用してむらなく塗布した。
A treatment agent having the following composition was prepared and evenly applied to the high-temperature reheater after washing with water using a sprayer used for spraying agricultural chemicals.

本処理剤を塗布した再熱器表面には白色の皮膜がほぼ均
一に形成され、約12時間放置後この皮膜は完全に乾燥
してその後の炉内作業等による異物の接触にも脱落する
ことがなかった。
A white film is formed almost uniformly on the surface of the reheater coated with this treatment agent, and after being left for about 12 hours, this film dries completely and does not come off even if it comes into contact with foreign matter during subsequent work inside the furnace. There was no.

ボイラ再起動後、約6ケ月を経過した時点で週末停止を
利用してこの高温再熱器に付着している燃料灰を採取し
性状を調査した。
Approximately six months after the boiler was restarted, fuel ash adhering to the high-temperature reheater was collected during a weekend shutdown and its properties were investigated.

その結果を、本処理前に付着していた燃料灰性状と比較
して第2表に示した。
The results are shown in Table 2 in comparison with the properties of the fuel ash that had adhered before this treatment.

第2表から明らかなように処理後の高温再熱器付着物中
に占めるMgの割合は処理前と比べると多くなっており
、その融点も約100℃上昇していることが確認された
As is clear from Table 2, the proportion of Mg in the high-temperature reheater deposit after treatment was higher than before treatment, and it was confirmed that the melting point was also increased by about 100°C.

また同時に実施された外径・肉厚測定結果より処理後6
ケ月間の腐食量(減肉量)は0. 1 mm以下であり
、処理前の腐食量0.4〜0.5mm/年と比較すると
、本処理は高温腐食防止に十分効果を発揮したものと考
えられる。
Also, based on the results of outer diameter and wall thickness measurements conducted at the same time, the
The amount of corrosion (amount of thinning) for 1 month is 0. 1 mm or less, and when compared with the corrosion amount before treatment, which was 0.4 to 0.5 mm/year, it is considered that this treatment was sufficiently effective in preventing high-temperature corrosion.

なお、本処理後のガス温度やNOx値にも処理前と比べ
特に変化は見られず、このため本処理が炉内に与える影
響はないものと判断される。
It should be noted that no particular change was observed in the gas temperature or NOx value after this treatment compared to before treatment, and therefore it is judged that this treatment has no effect on the inside of the furnace.

また上記のMgOに代えてCaO,SiOなどを用いた
場合、次のような融点上昇が確認されているので実用に
供し得るものと考えられ、同時にこれらを添加してもそ
の効果は消失しないので複数の添加も可能である。
In addition, when CaO, SiO, etc. are used in place of the MgO mentioned above, the following increase in melting point has been confirmed, so it is thought that it can be put to practical use, and even if these are added at the same time, the effect will not disappear. Multiple additions are also possible.

Cab( 1 5%)添加 120゜C融点上
昇S102( 1 5係)添加 900C
〃MgO(5%)+CaO(5%) 105°C
〃+ S i02 ( 5%)
Addition of Cab (15%) 120°C Melting point increase S102 (15%) addition 900C
〃MgO (5%) + CaO (5%) 105°C
〃+S i02 (5%)

Claims (1)

【特許請求の範囲】[Claims] I Mg,Ca,Siからなる群から選ばれる少なく
とも1種の化合物および水溶性の合成樹脂を水中に分散
、懸濁させたエマルジョンからなる、高温下で使用する
機器類伝熱面の高温腐食防止剤。
I Prevention of high-temperature corrosion on heat transfer surfaces of equipment used at high temperatures, consisting of an emulsion in which at least one compound selected from the group consisting of Mg, Ca, and Si and a water-soluble synthetic resin are dispersed and suspended in water. agent.
JP2363178A 1978-03-03 1978-03-03 High temperature corrosion inhibitor for heat transfer surfaces Expired JPS5836676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2363178A JPS5836676B2 (en) 1978-03-03 1978-03-03 High temperature corrosion inhibitor for heat transfer surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2363178A JPS5836676B2 (en) 1978-03-03 1978-03-03 High temperature corrosion inhibitor for heat transfer surfaces

Publications (2)

Publication Number Publication Date
JPS54116352A JPS54116352A (en) 1979-09-10
JPS5836676B2 true JPS5836676B2 (en) 1983-08-10

Family

ID=12115926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2363178A Expired JPS5836676B2 (en) 1978-03-03 1978-03-03 High temperature corrosion inhibitor for heat transfer surfaces

Country Status (1)

Country Link
JP (1) JPS5836676B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6677433B2 (en) * 2018-03-23 2020-04-08 伯東株式会社 Method for preventing contamination of heat exchanger and heating furnace

Also Published As

Publication number Publication date
JPS54116352A (en) 1979-09-10

Similar Documents

Publication Publication Date Title
CA2271292C (en) Liquid metal cleaner for an aqueous system
JP7342185B2 (en) Method and additive composition for preventing fouling, slagging and corrosion of biomass co-firing or dedicated boilers using aluminum oxide
KR101572562B1 (en) process of manufacturing
US4047875A (en) Inhibition of corrosion in fuels with Mg/Si/Mn combinations
CN108546953A (en) A kind of heating furnace tube outer wall washing passivator
CN104745337A (en) Neutral chemical cleaning agent for eliminating hard scales of air pre-heater of desulfurization system and preparation method of neutral chemical cleaning agent
CN103525501A (en) Boiler decoking agent
KR100544568B1 (en) Fuel dope with enhanced improving combustion efficiency
US4659339A (en) Inhibition of corrosion in fuels with Mg/Al/Si combinations
CS276140B6 (en) Aqueous solution of a catalyst for more perfect combustion of carbon- or/and hydrocarbon-containing compounds
US2777761A (en) Composition for eliminating slag, soot, and fly ash
JPS5836676B2 (en) High temperature corrosion inhibitor for heat transfer surfaces
CN101955818B (en) Coke-removing and soot-cleaning combustion improver for boiler
KR20130035643A (en) Corrosion preventive method of heat exchange facilities or boiler
JP3202484B2 (en) Heat and water resistant anticorrosion coating
US3490926A (en) Corrosion inhibition in fuel fired equipment
US2843200A (en) Fuel oils
US4628836A (en) Process for inhibiting corrosion and minimizing deposits in an air preheater system
CN108192685B (en) Online chemical decoking agent and decoking process based on hazardous waste incineration coking
JPS58113382A (en) Corrosion preventing method for combustion furnace
WO1988009368A1 (en) Composition and process for cleaning of fire-side parts of firing devices
JPS61113780A (en) Anticorrosive for heating surface
JPS5934760B2 (en) Remover for deposits mainly composed of fuel ash
RU2655437C1 (en) Method of chemical protection of boiler equipment
LU506766B1 (en) An Additive For Power Plant Boilers And An Application Thereof