JPS61113217A - Superconductive magnet device - Google Patents

Superconductive magnet device

Info

Publication number
JPS61113217A
JPS61113217A JP59235632A JP23563284A JPS61113217A JP S61113217 A JPS61113217 A JP S61113217A JP 59235632 A JP59235632 A JP 59235632A JP 23563284 A JP23563284 A JP 23563284A JP S61113217 A JPS61113217 A JP S61113217A
Authority
JP
Japan
Prior art keywords
superconducting
refrigerant
outlet
inlet
supply source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59235632A
Other languages
Japanese (ja)
Other versions
JPH043091B2 (en
Inventor
Ko Azuma
洸 我妻
Katsuyuki Kaiho
海保 勝之
Masaru Sugimoto
優 杉本
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fujikura Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP59235632A priority Critical patent/JPS61113217A/en
Publication of JPS61113217A publication Critical patent/JPS61113217A/en
Publication of JPH043091B2 publication Critical patent/JPH043091B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To sharply reduce the number of piping and the connected part and to directly cool the connected part of each superconductive wire using a refriger ant by a method wherein a plurality of inlet parts or outlet parts of a superconductive coil are put together and connected to a refrigerent feeding source using a pipe. CONSTITUTION:The outlet part 10E of the top superconductive coil A is connected to the returning part of a refrigerant feeding source using the first exhaust pipe 11, and an inlet part 10D is connected to the inlet part 10D of the center superconductive coil A through the intermediary of the first connection path 12 respectively. The first connection part 12 is connected to the feeding part of the refrigerant feeding source by the first introducing pipe 13, and on the other hand, the outlet part 10E of the center superconductive coil A is connected to the bottom outlet part 10E through the intermediary of the second connection path 14, and the second connection path 14 is connected to the returning part of the refrigerant feeding source by the second exhaust pipe 15. The outlet part D of the bottom superconductive coil A is connected to the feeding part of the refrigerant feeding source using the second introducing pipe 16.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は強制冷却型超電導導体を用いたiIA電導コイ
ルを積層して構成された超電導マグネット装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting magnet device configured by laminating iIA conductive coils using forced cooling type superconducting conductors.

[従来技術とその問題点コ 最近に至り、外被の内側に冷媒の流通路を形成するよう
に設けられかつ内部に冷媒が流入できるようにした横断
面略矩形状の中空状安定化母材に超電導線を収納して構
成され、前記流通路等を流れる超臨界圧ヘリウム等の冷
媒によって超電導線を強制冷却できるように構成した強
制冷却型超電導導体が種々提案されている。
[Prior art and its problems] Recently, a hollow stabilizing base material with a substantially rectangular cross section has been developed which is provided to form a refrigerant flow path inside the jacket and allow the refrigerant to flow into the interior. Various forced cooling type superconducting conductors have been proposed, which are constructed by storing a superconducting wire in a container, and are configured so that the superconducting wire can be forcibly cooled by a refrigerant such as supercritical pressure helium flowing through the flow path or the like.

ところで、この種の超電導導体をボビンに巻回して超電
導コイルを形成し、この超電導コイルを複数積層して超
電導マグネットを構成した場合には、各超電導コイルの
流通路と冷媒供給源との接続、および、各超電導コイル
の超電導線どうしの結線は、従来、後述する如き理由か
ら、第11図と第12図に示す構成にされていた。
By the way, when this type of superconducting conductor is wound around a bobbin to form a superconducting coil, and a plurality of these superconducting coils are stacked to form a superconducting magnet, the connection between the flow path of each superconducting coil and a refrigerant supply source, Conventionally, the connections between the superconducting wires of each superconducting coil have been configured as shown in FIGS. 11 and 12 for reasons described later.

すなわち、流通路と冷媒供給源との接続は、第11図に
示すように、各超電導コイル1から引き出された超電導
導体の両端部のうち、一方は導入バイブ2によって冷媒
供給源の供給部に、また゛、他方は排出バイブ3によっ
て冷媒供給源の戻り部に、各々、連絡される一方、超電
導線どうしの結線は、上下に隣接する導入パイプ2と排
出バイブ3に、第12図に示すように、超電導線4を巻
き付けたり、貼り合わせて半田付けして電気的に接続さ
れていた。ところで以上の如く接続する理由は、超電導
コイルト・・の流通路どうしを直列接続したのでは、冷
媒供給源の供給部から出された冷媒が、冷媒供給源に戻
るまでの流路が長くなって流路抵抗が増し、圧力損失が
大きくなる上に、1つの超電導コイルで加温された冷媒
がそのまま他の超電導コイルに送られることになって超
電導線の冷却上好ましくないためであるとともに、超電
導線を流れる電流は、各コイル間で連続していなければ
ならないからである。
That is, the connection between the flow path and the refrigerant supply source is as shown in FIG. , and the other is connected to the return part of the refrigerant supply source by the discharge vibrator 3, while the superconducting wires are connected to the vertically adjacent inlet pipe 2 and the discharge vibrator 3 as shown in FIG. The superconducting wires 4 were wrapped around the wires or pasted together and soldered to electrically connect them. By the way, the reason for the above connection is that if the flow paths of the superconducting coils were connected in series, the flow path for the refrigerant discharged from the supply section of the refrigerant supply source to return to the refrigerant supply source would be longer. This is because flow path resistance increases, pressure loss increases, and the refrigerant heated in one superconducting coil is sent directly to other superconducting coils, which is unfavorable for cooling the superconducting wire. This is because the current flowing through the wire must be continuous between each coil.

ところが、上記の叩き構造であると、各亀電導コイル1
につき、導入バイブ2と排出バイブ3とが必要になるた
め、超電導コイル1の積層数が多い場合、バイブの数が
多くなって、バイブの引き回しや接続が困難になる問題
があるとともに、バイブを伝わる侵入熱も大きくなり冷
却が不利となりまた、超電導線の接続部が導入バイブ2
と排出バイブ3の外側にあるため、接続部の冷却がバイ
ブ2.3の周壁を介した間接冷却になって、冷却が不充
分になり易い問題がある。
However, with the above-described structure, each turtle conductive coil 1
Therefore, if there are many layers of superconducting coils 1, the number of vibrators increases, making it difficult to route and connect the vibrators. The transmitted heat also increases, making cooling difficult, and the connection part of the superconducting wire is
Since the connecting portion is located outside the discharge vibrator 3, cooling of the connecting portion is indirect cooling via the peripheral wall of the vibrator 2.3, and there is a problem that cooling tends to be insufficient.

[発明の目的] 本発明は、上述した事情に鑑みてなされたちので、その
目的は、超電導コイルと冷媒供給源とを連絡するバイブ
の数を大幅に減少させることができるとともに、超電導
線どうしの接続部を冷媒によって直接冷部できるように
した超電導マグネット装置の提供にある。
[Object of the Invention] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to significantly reduce the number of vibrators that communicate between the superconducting coil and the refrigerant supply source, and to reduce the number of vibrators that communicate between the superconducting wires. An object of the present invention is to provide a superconducting magnet device in which a connection part can be directly cooled by a refrigerant.

[問題点を解決するための手段] 本発明は、積層方向両端側の各超電導コイルの超電導導
体の入口部と出口部のうち、どちらか一方を、入口部に
あっては冷媒供給源の供給部に、出口部にあっては冷媒
供給源の戻り部に連絡するとともに、その他の各入口部
と各出口部を、入口部にあっては隣接する他の超電導コ
イルの入口部に、出口部にあっては隣接する他のM3電
導コイルの出口部に各々接続路によって連絡し、入口部
どうしを連絡した接続路を上記供給部に、出口部どうし
を連絡した接続路を上記戻り部に、各々連絡する一方、
隣接する各超電導コイルの超電導線どうしを上記接続路
内で接続したものである。
[Means for Solving the Problems] The present invention provides for supplying a refrigerant supply source to one of the inlet and outlet portions of the superconducting conductor of each superconducting coil on both ends in the stacking direction. The outlet section is connected to the return section of the refrigerant supply source, and each other inlet section and each outlet section are connected to the inlet section of other adjacent superconducting coils, and the outlet section is connected to the inlet section of another adjacent superconducting coil. In this case, the outlet portions of other adjacent M3 conductive coils are connected to each other by connecting paths, the connecting path connecting the inlet portions to each other is connected to the above-mentioned supply portion, and the connecting path connecting the outlet portions to the above-mentioned return portion, While contacting each,
The superconducting wires of adjacent superconducting coils are connected within the connection path.

[作用] 超電導導体の入口部どうしと出口部どうしを各々接続路
が接続しているので、配管数が減り、この接続路を流れ
る冷媒が超電導コイルの超電導線どうしの接続部を直接
冷却する。
[Operation] Since the inlets and outlets of the superconducting conductors are connected by connecting paths, the number of piping is reduced, and the refrigerant flowing through these connecting paths directly cools the connecting portions of the superconducting wires of the superconducting coils.

[実施例] 第1図ないし第7図は本発明の一実施例を示すもので、
後述する超電導導体10をボビンに巻回して超電導コイ
ルAが形成されるとともに、この超電導コイルAを複数
(本実施例の場合3つ)積層して超電導マグネットが構
成されている。上記超電導導体10は、Nb−Ti合金
、Nb −Ti−Ta合金等の合金系超電導材料あるい
はNbz3n 、V3 Ga 、Nb 3Ge等の化合
物71電1材料からなる複数本の超電導線10aを燃線
化して形成した超電導線集合体10Aと、銅、銅合金、
高純度アルミニウム、アルミニウム合金等の良導電性材
料からなり、上記超電導線集合体10Aを収納した横断
面略矩形状の中空な安定化母材10Bと、銅、ステンレ
ス銅、チタン、チタン合金等からなり、上記安定化母材
10Bとの間に冷媒の流通路Pを形成して安定化母材1
0Bを収納した横断面矩形状の外被10cとを主体とし
て構成された強制冷却型のものである。なお、上記超電
導導体10において、安定化母材10Bは横断面コテ状
のチャンネル材1011+、10t12を嵌合して形成
されていて、各チャンネル材10b+、10b2の外面
には、両チャンネル材10b+、10b2の嵌合時に安
定化母材10Bの外方に突出するように突条10dが形
成され、両チャンネル材10b+、10b2の両側板に
は超電導導体10のボビンへの巻回により湾曲する両チ
ャンネル材10b1.10b2の変形を容易にするため
のスリット10eが複数形成されるとともに、上記チャ
ンネル材10b+、10bzの天井板と底板の適宜位置
であって、チャンネル材10b+、10b2の幅方向に
対向する一対のスリット10e、10eの間の部分には
、突条10dを切り欠くとともにチャンネル材10b1
.10b2の天井板あるいは底板を貫通して透孔10r
が複数形成されている。そして、上記安定化母材10B
は、突条10dを外被10Cの内面に当接させて外被1
OC内に収納され、安定化母材10Bと外被10Cとの
間に冷媒の流通路Pが形成されるとともに、この流通路
Pと安定化母材10Bとは透孔10rを介して連通され
ている。
[Example] Figures 1 to 7 show an example of the present invention.
A superconducting coil A is formed by winding a superconducting conductor 10, which will be described later, around a bobbin, and a superconducting magnet is constructed by stacking a plurality of superconducting coils A (three in this embodiment). The superconducting conductor 10 is made by converting a plurality of superconducting wires 10a made of alloy-based superconducting materials such as Nb-Ti alloy and Nb-Ti-Ta alloy, or compound 71-electronic materials such as Nbz3n, V3Ga, Nb3Ge, etc. The superconducting wire assembly 10A formed using copper, copper alloy,
A stabilizing base material 10B is made of a highly conductive material such as high-purity aluminum or aluminum alloy, and has a substantially rectangular cross section and is made of a hollow stabilizing base material 10B that houses the superconducting wire assembly 10A, and is made of copper, stainless steel copper, titanium, titanium alloy, etc. A refrigerant flow path P is formed between the stabilizing base material 10B and the stabilizing base material 1.
It is a forced cooling type mainly composed of an outer cover 10c having a rectangular cross section and containing an 0B. In the superconducting conductor 10, the stabilizing base material 10B is formed by fitting the channel materials 1011+ and 10t12, each having a trowel-shaped cross section, and the outer surface of each channel material 10b+, 10b2 has both channel materials 10b+, A protrusion 10d is formed so as to protrude outward from the stabilizing base material 10B when the two channel members 10b2 are fitted together, and both channel members 10b+ and 10b2 have both channels curved by winding the superconducting conductor 10 around the bobbin on both side plates of the channel members 10b+ and 10b2. A plurality of slits 10e are formed to facilitate deformation of the materials 10b1 and 10b2, and are located at appropriate positions on the ceiling plate and bottom plate of the channel materials 10b+ and 10bz, facing each other in the width direction of the channel materials 10b+ and 10b2. In the part between the pair of slits 10e, 10e, a protrusion 10d is cut out and a channel material 10b1 is cut out.
.. Through hole 10r through the ceiling plate or bottom plate of 10b2
are formed. And the stabilizing base material 10B
In this case, the outer sheath 1 is made by bringing the protrusion 10d into contact with the inner surface of the outer sheath 10C.
A refrigerant flow path P is formed between the stabilizing base material 10B and the outer sheath 10C, and this flow path P and the stabilizing base material 10B communicate with each other via the through hole 10r. ing.

一方、上記各ボビンに巻回された超電導導体10にあっ
ては、その両端が各々ボビンから引き出され、その一方
の端部には入口部10Dが、また、他方の端部には出口
部10Eが各々形成されている。なお、積層された超電
導コイルへのうち、第1図に示すように、一番上の超電
導コイルAにあっては、入口部10Dが下部に、また、
出口部10Eが上部に形成され、中央の超電導コイルA
にあっては、入口部100が上部に、また、出口部10
Eが下部に形成され、一番下の超電導コイルAにあって
は、入口部10Dが下部に、出口部10Eが上部に形成
されている。そして、上記一番上の超電導コイルAの出
口部10Eは第1排出管11によって冷媒供給源の戻り
部に、また、入口部100は、上記中央の超′FiSコ
イルAの入口部10Dに第1接続路12を介して各々連
絡され、第1接続路12は第1導入管13によって冷媒
供給源の供給部に連絡される一方、上記中央の超電導コ
イルAの出口部10Eは第2接続路14を介して上記一
番下の超電導コイルAの出口部10Eに、第2接続路1
4は第2排出管15によって冷媒供給源の戻り部に連絡
されるとともに、上記一番下の超電導コイルAの出口部
10Dは冷媒供給源の供給部に第2導入管16によって
連絡されている。
On the other hand, both ends of the superconducting conductor 10 wound around each bobbin are pulled out from the bobbin, and one end has an inlet part 10D, and the other end has an outlet part 10E. are formed respectively. Note that among the stacked superconducting coils, as shown in FIG.
An exit portion 10E is formed at the top, and a central superconducting coil A
, the inlet section 100 is located at the top, and the outlet section 10 is located at the top.
E is formed in the lower part, and in the lowest superconducting coil A, an inlet part 10D is formed in the lower part, and an outlet part 10E is formed in the upper part. The outlet section 10E of the uppermost superconducting coil A is connected to the return section of the refrigerant supply source through the first discharge pipe 11, and the inlet section 100 is connected to the inlet section 10D of the central superconducting coil A. The first connection path 12 is connected to the supply section of the refrigerant supply source through the first introduction pipe 13, while the outlet section 10E of the central superconducting coil A is connected to the second connection path 12. 14 to the outlet section 10E of the lowermost superconducting coil A.
4 is connected to the return part of the refrigerant supply source by a second discharge pipe 15, and the outlet part 10D of the lowermost superconducting coil A is connected to the supply part of the refrigerant supply source by a second introduction pipe 16. .

そして、上記一番上の超電導コイルAの超電導線集合体
10Aの一端と上記中央の超電導コイルAの超電導線集
合体10Aの一端とが、第1接続路12内で接続され、
上記中央の超電導コイルAの超電導線集合体10Aの細
端と上記一番下の超電導コイルAの超電導線集合体10
Aの一端とが第2接続路14内で接続されている。
One end of the superconducting wire assembly 10A of the top superconducting coil A and one end of the superconducting wire assembly 10A of the central superconducting coil A are connected within the first connection path 12,
The thin end of the superconducting wire assembly 10A of the superconducting coil A in the center and the superconducting wire assembly 10 of the bottom superconducting coil A
One end of A is connected within the second connection path 14.

なお、上記第1接続路12と第1導入管13との接続部
分、および、第2接続路14と第2排出管15との接続
部分は、いずれも以下に説明する構成になっている。ま
ず、対向された一対の超電導導体10.10の端部どう
しから、超電導線集合体10Aのみが所定長さ露出させ
られ、露出させられた超電導線集合体10Aが2層に分
けられて第4図の点線、または、第7図に示すように互
い違いに重ねられ、半田付けされるとともに、この半田
付は部分は、上記一対の超電導導体10.10の端部を
嵌入してこれら端部を接続した横断面矩形状のジヨイン
トカバーKによって覆われている。このジヨイントカバ
ーには、銅、銅合金、ステンレス等の金属材料製であり
、超電導導体10.10の端部に、半田付け、銀ロウ付
け、溶接等の固定手段によって固定されたもので、ジヨ
イントカバーには第1接続路12(あるいは第2接続路
14)を形成するとともに、ジヨイントカバーには第1
接続路12(あるいは第2接続路14)を気密に囲んで
いる。そして、これらのジヨイントカバーKに、前述し
た第1導入管13(あるいは第2排出管15)がジヨイ
ントカバーにの内部に連通して接続されている。
Note that the connection portion between the first connection path 12 and the first introduction pipe 13 and the connection portion between the second connection path 14 and the second discharge pipe 15 are both configured as described below. First, only the superconducting wire assembly 10A is exposed for a predetermined length from the ends of a pair of opposing superconducting conductors 10.10, and the exposed superconducting wire assembly 10A is divided into two layers. As shown in the dotted lines in the figure or as shown in FIG. It is covered by a connected joint cover K having a rectangular cross section. This joint cover is made of a metal material such as copper, copper alloy, or stainless steel, and is fixed to the end of the superconducting conductor 10.10 by a fixing means such as soldering, silver brazing, or welding. A first connection path 12 (or a second connection path 14) is formed in the joint cover, and a first connection path 12 (or second connection path 14) is formed in the joint cover.
The connection path 12 (or the second connection path 14) is hermetically surrounded. The above-described first inlet pipe 13 (or second discharge pipe 15) is connected to these joint covers K so as to communicate with the inside of the joint covers.

以上の如く構成された超電導マグネット装置にあっては
、冷媒供給源の供給部から送り出された冷媒を第1導入
管13あるいは第2導入管16とを介して各超電導コイ
ルAの入口部10Dに第1図の矢印に示す如く送り、各
超電導コイルA内の流通路Pに各々冷媒を流し、これら
の冷媒を各超電導コイルAの出口部10Eから第1排出
管11あるいは第2排出管15を介して冷媒供給源の戻
り部に第1図の矢印に示す如く戻すことによって超電導
線10a・・・を冷却するようになっている。
In the superconducting magnet device configured as described above, the refrigerant sent out from the supply section of the refrigerant supply source is introduced into the inlet section 10D of each superconducting coil A via the first introduction pipe 13 or the second introduction pipe 16. The refrigerant is fed as shown by the arrow in FIG. The superconducting wires 10a are cooled by returning the superconducting wires 10a to the return portion of the refrigerant supply source as shown by the arrows in FIG.

ここで、第1導入管13は2つの超電導コイルAに冷媒
を送り、第2排出管15は2つの超電導コイルAから出
される冷媒を流すので、第11図に示す従来の超電導マ
グネットに比較して、本実施例の装置にあっては、都合
、2本の配管を省略することができる。
Here, the first inlet pipe 13 sends the refrigerant to the two superconducting coils A, and the second discharge pipe 15 allows the refrigerant discharged from the two superconducting coils A to flow, so compared to the conventional superconducting magnet shown in FIG. Therefore, in the apparatus of this embodiment, two pipes can be conveniently omitted.

また、本実施例の装置にあっては、超電導導体10から
露出された超電導線集合体10Aが2層に分けられて重
ね合わされているので、超電導線10aどうしの接触面
積が大きく、電気的接続が充分である上に、この接続部
分がジヨイントカバーにの第1接続路12(あるいは第
2接続路14)内にあり、直に、冷媒によって冷却され
るので、接続部分の冷却効率が高い。
In addition, in the device of this embodiment, the superconducting wire assembly 10A exposed from the superconducting conductor 10 is divided into two layers and stacked one on top of the other, so the contact area between the superconducting wires 10a is large and electrical connection is achieved. In addition, this connection part is located in the first connection path 12 (or second connection path 14) to the joint cover and is directly cooled by the refrigerant, so the cooling efficiency of the connection part is high. .

さらに、ジヨイントカバーには第1接続路12(あるい
は第2接続路14)を気密に囲んでいるので、本実施例
の装置を真空槽内に設置して使用する場合に、各接続路
12.14を真空雰囲気から完全に分離できる。
Furthermore, since the joint cover airtightly surrounds the first connection path 12 (or second connection path 14), when the device of this embodiment is installed and used in a vacuum chamber, each connection path 12 .14 can be completely separated from the vacuum atmosphere.

ところで、上記実施例にあっては、超電導集合体10A
を2層に分けて第7図に示すように重ね合わせて接続し
たが、第8図に示す如く、一方のみ2Mに分けて、他方
を挾み込むように重ね合わせてもよく、ざらに、311
以上に分けて重ね合わせて接続することも可能である。
By the way, in the above embodiment, the superconducting aggregate 10A
was divided into two layers and overlaid and connected as shown in Fig. 7, but it is also possible to divide only one layer into 2M layers and overlap them so that the other layer is sandwiched between them, as shown in Fig. 8. 311
It is also possible to separate the above parts, overlap them, and connect them.

また、ジヨイントカバーに−を第9図に示す如く、2つ
のチャンネルジヨイントに+ 、K2から構成し、これ
らのチャンネルジヨイントに+、K2を第10図に示す
ように接合して使用することもできる。また流入路或い
は流出路となる第1導入管13と第2排出管は、接合面
9上下方向だけでなく側面方向でも同じ効果が得られる
In addition, the joint cover is made up of - as shown in Figure 9, two channel joints + and K2, and these channel joints are joined with + and K2 as shown in Figure 10. You can also do that. Further, the first introduction pipe 13 and the second discharge pipe, which serve as an inflow path or an outflow path, can provide the same effect not only in the vertical direction of the joint surface 9 but also in the lateral direction.

なおこのチャンネルジヨイントに+ 、K2どうしの接
合および、超電導導体10への接合には、半田付け、銀
ロウ付け、溶接等の固定手段を用いる。
Note that fixing means such as soldering, silver brazing, welding, etc. are used to connect the channel joints + and K2 to each other and to the superconducting conductor 10.

[製造例] ダブルパンケーキ型の超電導コイルを積層して構成され
た強制冷却型超電導マグネット装置に、上記した最初の
実施例の構造を適用し、この超電導マグネット装置に冷
媒供給源から冷媒を送って超電導線を冷却するとともに
、超電導線に電流を10KA流し、外部磁場6丁、中心
磁場10Tを発生させた。この時、ジヨイントカバー内
の超電導線の接続部における巽常の発生は見られず、冷
媒の供給と回収は支承なくなされ、超電導導体の冷却は
十分なされていた。
[Manufacturing Example] The structure of the first embodiment described above is applied to a forced cooling type superconducting magnet device configured by stacking double pancake-shaped superconducting coils, and refrigerant is sent to this superconducting magnet device from a refrigerant supply source. At the same time, a current of 10 KA was passed through the superconducting wire to generate an external magnetic field of 6 tones and a central magnetic field of 10 T. At this time, no abnormalities were observed at the connections of the superconducting wires inside the joint cover, the supply and recovery of refrigerant were not supported, and the superconducting conductors were sufficiently cooled.

[発明の効果] 以上説明したように、この発明によれば、積層された超
電導コイルのうち、両端側の超電導コイルの冷媒の入口
部、あるいは、出口部を冷媒供給源に連絡し、残りの入
口部を入口部どうし、残りの出口部を出口部どうし、各
々接続器を介して連絡するとともに、上記接続路を個々
に冷媒供給源に連絡する一方、上記接続路内で各超電導
コイルの超電導線どうしを接続したものであり、超電導
コイルの複数の入口部、または、出口部を各々、いくつ
かまとめて1つの管によって冷媒供給源に連絡したもの
であるため、1つの入口部、あるいは出口部について1
つの管が必要であった従来装置に比較して配管数を大幅
に減らすことができ、ざらに、通電時に部分的に生じる
ヒートスポットの熱の伝播を最小限の範囲に抑えること
ができる。
[Effects of the Invention] As explained above, according to the present invention, the refrigerant inlet or outlet of the superconducting coils at both ends of the stacked superconducting coils is connected to the refrigerant supply source, and the remaining superconducting coils are connected to the refrigerant supply source. The inlets are connected to each other, and the remaining outlets are connected to each other via connectors, and each of the connecting paths is individually connected to a refrigerant supply source. The wires are connected together, and each of the multiple inlets or outlets of the superconducting coil is connected to the refrigerant supply source through one pipe, so there is only one inlet or outlet. About the section 1
The number of pipes can be significantly reduced compared to conventional devices that require two pipes, and the propagation of heat from heat spots that partially occur when electricity is applied can be kept to a minimum.

また、接続路内で超電導コイルの超電導線どうしを接続
したため、この接続部を直接冷媒で冷却することができ
、接続部の冷却効率が高い。
Furthermore, since the superconducting wires of the superconducting coils are connected within the connection path, this connection can be directly cooled with a refrigerant, and the cooling efficiency of the connection is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第7図は本発明の一実施例を示すもので、
第1図は概略構成図、第2図は超電導導体の断面斜視図
、第3図は接続路の概略構成図、第4図は接続路周囲部
分の斜視図、第5図は第4図の側面図、第6図はジヨイ
ントカバーの斜視図、第7図は超電導線の重ね合わせ状
態を示す略図、第8図は第7図に示す重ね合わせ状態の
他の例を示す略図、第9図はジヨイントカバーの他の例
を示す分解斜視図、第10図は第9図に示したジヨイン
トカバーの使用状態を示す斜視図、第11図従来の超電
導マグネット装置の概略構成図、第12図は第11図に
示す構成図における超電導線の接続部分の概略構成図で
ある。 A・・・・・・超電導コイル、10・・・・・・超電導
導体、10B・・・・・・安定化母材、10C・・・・
・・外被、10D・・・・・・入口部、IOE・・・・
・・出口部、10a・・・・・・超電導線、P・・・・
・・流通路、12・・・・・・第1接続路、14・・・
・・・第2接続路。 第1図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第1O図
1 to 7 show an embodiment of the present invention,
Figure 1 is a schematic configuration diagram, Figure 2 is a cross-sectional perspective view of the superconducting conductor, Figure 3 is a schematic diagram of the connection path, Figure 4 is a perspective view of the surrounding area of the connection path, and Figure 5 is the same as in Figure 4. 6 is a perspective view of the joint cover, FIG. 7 is a schematic diagram showing the overlapping state of superconducting wires, FIG. 8 is a schematic diagram showing another example of the overlapping state shown in FIG. 7, and FIG. Figure 10 is an exploded perspective view showing another example of the joint cover, Figure 10 is a perspective view showing how the joint cover shown in Figure 9 is used, Figure 11 is a schematic configuration diagram of a conventional superconducting magnet device, Figure 11 is a schematic diagram of a conventional superconducting magnet device, FIG. 12 is a schematic configuration diagram of the connecting portion of the superconducting wire in the configuration diagram shown in FIG. 11. A...Superconducting coil, 10...Superconducting conductor, 10B...Stabilizing base material, 10C...
...Outer cover, 10D...Inlet section, IOE...
...Exit part, 10a...Superconducting wire, P...
...Flow path, 12...First connection path, 14...
...Second connection path. Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 1O Figure

Claims (1)

【特許請求の範囲】[Claims] 外被の内側に冷媒流通路を形成するように設けられかつ
冷媒が内部に流入できる横断面略矩形状の中空状安定化
母材に超電導線を収納して超電導導体が構成され、この
超電導導体をボビンに巻回して超電導コイルが形成され
、上記ボビンから引き出された超電導導体の一端に冷媒
の入口部が、また、他端に出口部が各々形成される一方
、上記超電導コイルが複数積層され、各超電導導体の入
口部が冷媒供給源の供給部に、また、各超電導導体の出
口部が冷媒供給源の戻り部に各々連絡されてなる超電導
マグネット装置において、積層方向両端側の各超電導コ
イルの入口部と出口部のうち、どちらか一方が、入口部
にあっては冷媒供給源の供給部に、出口部にあっては冷
媒供給源の戻り部に、連絡されるとともに、その他の各
入口部と各出口部は、入口部にあっては隣接する他の超
電導コイルの入口部に、出口部にあっては隣接する他の
超電導コイルの出口部に、各々接続路を介して連絡され
入口部どうしを連絡した接続路は冷媒供給源の供給部に
、また、出口部どうしを連絡した接続路は冷媒供給源の
戻り部に各々連絡される一方、上記隣接する各超電導コ
イルの超電導線どうしが上記接続路内で接続されてなる
ことを特徴とする超電導マグネット装置。
A superconducting conductor is constructed by housing a superconducting wire in a hollow stabilizing base material having a substantially rectangular cross section, which is provided to form a refrigerant flow path inside the jacket and into which the refrigerant can flow. A superconducting coil is formed by winding the superconducting conductor around a bobbin, and a refrigerant inlet is formed at one end of the superconducting conductor pulled out from the bobbin, and an outlet is formed at the other end, while a plurality of the superconducting coils are stacked. In a superconducting magnet device in which an inlet of each superconducting conductor is connected to a supply part of a refrigerant supply source, and an outlet part of each superconductor is connected to a return part of a refrigerant supply source, each superconducting coil at both ends in the stacking direction Either one of the inlet and outlet of the inlet is connected to the supply part of the refrigerant supply source, and the outlet part is connected to the return part of the refrigerant supply source. The inlet part and each outlet part are connected to the inlet part of another adjacent superconducting coil at the inlet part, and to the outlet part of another adjacent superconducting coil at the outlet part, respectively, through connecting paths. The connecting paths connecting the inlets are connected to the supply section of the refrigerant supply source, and the connecting paths connecting the outlet sections are connected to the return section of the refrigerant supply source, while the superconducting wires of the adjacent superconducting coils A superconducting magnet device characterized in that the two magnets are connected to each other within the above connection path.
JP59235632A 1984-11-08 1984-11-08 Superconductive magnet device Granted JPS61113217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59235632A JPS61113217A (en) 1984-11-08 1984-11-08 Superconductive magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59235632A JPS61113217A (en) 1984-11-08 1984-11-08 Superconductive magnet device

Publications (2)

Publication Number Publication Date
JPS61113217A true JPS61113217A (en) 1986-05-31
JPH043091B2 JPH043091B2 (en) 1992-01-22

Family

ID=16988890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59235632A Granted JPS61113217A (en) 1984-11-08 1984-11-08 Superconductive magnet device

Country Status (1)

Country Link
JP (1) JPS61113217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724273A2 (en) * 1995-01-27 1996-07-31 Siemens Aktiengesellschaft Magnet device with superconducting winding to be cooled by enforced cooling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724273A2 (en) * 1995-01-27 1996-07-31 Siemens Aktiengesellschaft Magnet device with superconducting winding to be cooled by enforced cooling
EP0724273A3 (en) * 1995-01-27 1996-10-16 Siemens Ag Magnet device with superconducting winding to be cooled by enforced cooling

Also Published As

Publication number Publication date
JPH043091B2 (en) 1992-01-22

Similar Documents

Publication Publication Date Title
US4956626A (en) Inductor transformer cooling apparatus
US6278353B1 (en) Planar magnetics with integrated cooling
US4897626A (en) Cooling electromagnetic devices
JPH0793810B2 (en) How to make an inner stator for an electromagnetic pump
US6838968B2 (en) Transformer with forced liquid coolant
JPH077917A (en) Stator iron core
US3639672A (en) Electrical conductor
JPH04573B2 (en)
JPS61113217A (en) Superconductive magnet device
JPS6344718B2 (en)
US4543552A (en) Transformer, more especially a voltage dropping transformer for an electric welding machine
JP3833382B2 (en) Refrigerator-cooled superconducting magnet device for single crystal pulling device
CN110911130B (en) Switch power supply structure
JPS6240053A (en) Electromagnetic pump with spiral groove for liquid metal
EP0118825A2 (en) Sheet-wound transformer
JPS6356683B2 (en)
US5850054A (en) Division of current between different strands of a superconducting winding
JPH0382176A (en) Electric power supply device of superconducting magnet
JPH0582357A (en) Water-cooled transformer
JPH0656902B2 (en) Superconducting device
JPS6022487B2 (en) magnetic field generator
JPH03283678A (en) Current lead of superconducting magnet apparatus
JPS5863110A (en) Transformer
JPH0517853Y2 (en)
JPS6167209A (en) Duct spacer for foil-wound transformer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term