JPS61112965A - Ion chromatograph apparatus - Google Patents

Ion chromatograph apparatus

Info

Publication number
JPS61112965A
JPS61112965A JP23393984A JP23393984A JPS61112965A JP S61112965 A JPS61112965 A JP S61112965A JP 23393984 A JP23393984 A JP 23393984A JP 23393984 A JP23393984 A JP 23393984A JP S61112965 A JPS61112965 A JP S61112965A
Authority
JP
Japan
Prior art keywords
output
flow path
chromatogram
detector
central processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23393984A
Other languages
Japanese (ja)
Inventor
Setsuo Muramoto
村本 節夫
Akinori Nanba
難波 明典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP23393984A priority Critical patent/JPS61112965A/en
Publication of JPS61112965A publication Critical patent/JPS61112965A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To easily and accurately set change-over timing, by driving a flow passage change-over valve in correspondence to a displayed chromatogram through a valve driving circuit by the output of a central processing unit. CONSTITUTION:The solution to be measured in a gauge tube 37 is fed to a first eluate 1a to reach a separation column 5a and the eluate is guided to a first detector 6a where, for example, the conductivity thereof is detected and a chromatogram is displayed. A keyboard 16 is operated while said chromatogram is observed to set a divisional taking time. Definite calculation is performed on the basis of the dead volume of piping or the flow amount of a pump in CPU13 to calculate a divisional taking volume and, when said volume is equal to or less tan the volume of a gauge tube 47, a first flow passage change-over valve 7 is turned ON for a predetermined time by the output of CPU13 and, about the time when the gauge tube 47 is filled with the solution of the part corresponding to an ion seed, a second flow passage change-over valve 4 is turned ON by the output of CPU13 and the solution is fed to a second eluated 1b to reach a second separation column 5b and further reaches a second detector 6b where, for example, the conductivity thereof is detected.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、被測定液中のイオン種をクロマトグラフィツ
クに分析するイオンクロマトグラフ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an ion chromatograph apparatus for chromatographically analyzing ionic species in a liquid to be measured.

〈従来の技術〉 このようなイオンクロマトグラフ装置を用い、被測定液
中の第1イオン種(例えば陽イオン)を最初に分析し、
第1イオン種分析用検出器(以下「第1検出器」という
)から溶出する液体の一部を第1流路切換弁を介して第
2流路切換弁の計11   、管に導びき、その後、第
2流路切換弁を切換えて上記計量管内の液体を分離カラ
ム等を経由させ第2イオン種分析用検出器(以下「第2
検出器」という)に導びいて上記被測定液に含まれてい
る第2イオン種(例えば陰イオン)を分析する方法が広
く知られている。この分析方法においては、第1および
第2の流路切換弁をどのようなタイミンに描かれるクロ
マトグラムから時間を決定し、この時間に上記第1検出
器から溶出する流体が第2流路切換弁の計量管に到達す
るまでの時間を加えて、上記第1および第2の流路切換
弁を切換えるタイミングを決定していた。このため、タ
イミングの決定操作が煩雑であるうえ、決定されたタイ
ミングが実際上必要とされるタイミングと合致しなくな
ることも多かった。
<Prior art> Using such an ion chromatography device, firstly, a first ion species (for example, a cation) in a liquid to be measured is analyzed,
A part of the liquid eluted from the first ion species analysis detector (hereinafter referred to as "first detector") is guided through the first flow path switching valve to the second flow path switching valve 11 and to the pipe, Thereafter, the second flow path switching valve is switched to pass the liquid in the measuring tube through a separation column, etc. to a second ion species analysis detector (hereinafter referred to as "second
A widely known method is to analyze a second ion species (for example, an anion) contained in the liquid to be measured by guiding the liquid to a detector (referred to as a detector). In this analysis method, the time is determined from the chromatogram drawn at what timing the first and second flow path switching valves are operated, and the fluid eluted from the first detector is switched to the second flow path switching valve at this time. The timing for switching the first and second flow path switching valves was determined by adding the time required for the valve to reach the metering pipe of the valve. Therefore, the operation for determining the timing is complicated, and the determined timing often does not match the actually required timing.

〈発明が解決しようとする問題点〉 本発明は、かかる状況に鑑みてなされたものであり、そ
の目的は、実際上必要とされる上記流路切換弁の切り換
えタイミングを容易かつ正確に設定できるようなイオン
クロマトグラフ装置を提供することにある。
<Problems to be Solved by the Invention> The present invention has been made in view of this situation, and its purpose is to easily and accurately set the switching timing of the flow path switching valve that is actually required. An object of the present invention is to provide such an ion chromatography device.

〈問題点を解決するだめの手段〉 本発明の特徴は、第1イオン種分析流路から溶出する液
体の所定部分を第2イオン種分析流路に導くことによっ
て被測定液中の陰陽両イオン種をクロマトグラフィツク
に分析するイオンクロマトグラフ装置において、A/D
変換器と、表示部と、バルブ駆動回路とを設け、表示部
に表示されるクロマトグラムに対応させて中央処理装置
の出力によりバルブ駆動回路を介して流路切換弁を駆動
させるようにしたことにある。
<Means for Solving the Problems> A feature of the present invention is that by guiding a predetermined portion of the liquid eluted from the first ion species analysis channel to the second ion species analysis channel, both anion and cation ions in the liquid to be measured are removed. In an ion chromatography device that chromatographically analyzes species, an A/D
A converter, a display section, and a valve drive circuit are provided, and the flow path switching valve is driven via the valve drive circuit by the output of the central processing unit in correspondence with the chromatogram displayed on the display section. It is in.

〈従来例〉 以下、本発明について図を用いて詳細に説明する。図は
本発明実施例の構成説明図であり、図中、1aけ例えば
陽イオン分析用溶離液(以下「第1溶離液」という)が
貯留されている槽、1bは例えば陰イオン分析用溶離液
(以下「第2溶離液」という)が貯留されている槽、1
cは例えばドデシルベンゼンスルホン酸溶液でなる除去
液が貯留されている槽、ld、 leけ廃液槽、2a〜
2cは送液ポンプ、3は第1〜第6の接続口31〜36
および計量管37を □有しその内部流路が実線接続状
態と破線接続状態に交互に切換えられるインジェクタ、
4は第1〜第6の接続口41〜46および計量管47を
有しその内部流路が実線接続状態と破線接続状態に交互
に切換えられる第2流路切換弁、5a、 5bは夫々例
えば陽イオン分析用および陰イオン分析用の第1および
第2の分離カラム、 6a、 6bは例えば導電率計で
なる第1および第2の検出器、7は第1〜第6の接続ロ
ア1〜76を有しその内部流路が実線接続状態と破線接
続状態に交互に切換えられる第1流路切換弁、8は第1
〜第6の接続口81〜86を有しその内部流路が実線接
続状態と破線接続状態に交互に切換えられる第3流路切
換弁、9け例えば陽イオン交換膜でなるチューブ91に
よって内部が内室92と外室93に区分けされてなる二
重管構造のサプレッサ、10は分離カラム5a、 5b
 r検出器6a、6b+ おの出力を受けこれらを増幅
する等の信号処理を行なう検出器回路、12は検出器回
路11の出力をA/D変換するA/D変換器、13はA
/D変換器12の出力を受は各種演算処理を行なう中央
処理装置(以下「CPU Jという)、14けCPU 
13の出力を受けて第1〜第3の流路切換弁7.4.8
をオンオフさせるバルブ駆動回路、15はCPTJ 1
3の出力を受けてクロマトグラムを描く例えばCRT 
(陰極線管)でなる表示部、16はCpU 13に各種
設定値を入力するキーボードである。同、サブレ、す9
は必ずしも必要でなく、第2溶離液の所謂バックグラン
ドが低い場合には除去してもよいものとする。また、表
示部15としてCRTに代えてプロッタを用いてもよい
<Conventional Example> The present invention will be described in detail below with reference to the drawings. The figure is an explanatory diagram of the configuration of an embodiment of the present invention, and in the figure, 1a is a tank in which eluent for cation analysis (hereinafter referred to as "first eluent") is stored, and 1b is a tank for storing eluent for anion analysis, for example. A tank in which a liquid (hereinafter referred to as "second eluent") is stored, 1
c is a tank in which a removal solution made of, for example, a dodecylbenzenesulfonic acid solution is stored; ld; le is a waste liquid tank;
2c is a liquid feeding pump, 3 is the first to sixth connection ports 31 to 36
and an injector having a metering tube 37 and whose internal flow path is alternately switched between a solid line connection state and a broken line connection state,
4 is a second flow path switching valve having first to sixth connection ports 41 to 46 and a metering pipe 47, and whose internal flow path is alternately switched between a solid line connection state and a broken line connection state; 5a and 5b are respectively, for example; first and second separation columns for cation analysis and anion analysis; 6a and 6b are first and second detectors, for example conductivity meters; 7 is the first to sixth connection lowers 1 to 6; 76 is a first flow path switching valve whose internal flow path is alternately switched between a solid line connection state and a broken line connection state; 8 is a first flow path switching valve;
- A third flow path switching valve having sixth connection ports 81 to 86 and whose internal flow path is alternately switched between a solid line connection state and a broken line connection state; A suppressor with a double tube structure divided into an inner chamber 92 and an outer chamber 93, 10 are separation columns 5a and 5b.
12 is an A/D converter for A/D converting the output of the detector circuit 11; 13 is an A/D converter for A/D converting the output of the detector circuit 11;
A central processing unit (hereinafter referred to as "CPU J"), which receives the output of the /D converter 12 and performs various arithmetic processing, is a 14-digit CPU.
In response to the output of 13, the first to third flow path switching valves 7.4.8
Valve drive circuit that turns on and off, 15 is CPTJ 1
For example, draw a chromatogram based on the output of step 3.
16 is a keyboard for inputting various setting values to the CPU 13; Same, Sable, Su9
is not necessarily necessary, and may be removed if the so-called background of the second eluent is low. Furthermore, a plotter may be used as the display section 15 instead of the CRT.

このような構成からなる本発明の実施例において、最初
、第1〜第3の流路切換弁7.4.8およびインジェク
タ3がオフにされておシ、これらの内部流路はいずれも
図の実線接続状態となっている。
In the embodiment of the present invention having such a configuration, the first to third flow path switching valves 7.4.8 and the injector 3 are initially turned off, and all of these internal flow paths are A solid line is connected.

また、CpU13の指令によって送液ポンプ2a〜2c
が駆動しておシ、これらポンプ2a〜2゜の各流量はキ
ーボード16の操作によって任意に変更できるようにな
っている。ポンプ2aが駆動すると、槽1a内の第1溶
離液が、ポンプ2a→インジエクタ3の第1および第2
接続口31.32→第3流路切換弁8の第1および第2
接続口81.82→第1分離カラム5a、→第1検出器
6a→第1流路切換弁7の第1および第2接続ロア1.
72→廃液槽1dの流路で流れる。才だ、ポンプ2bが
駆動すると、槽1b内の第2溶離液が、ポンプ2b→第
3流路切換弁8の第5および第6接続口85.86→第
2流路切換弁4の第1および第2接続口41.42→第
3流路切換弁8の第3および第4接続口83.84→第
2分離カラム5b→サプレッサ9の内室92→第2検出
器6b→廃液槽1dの流路で流れる。ポンプ2cが駆動
すると、槽1c内の除去液が、ポンプ2c→サプレツサ
9の外室93→廃液槽1eの流路で流れ、チーープ91
を介して内室92内の液と外室93内の液との間でそれ
ら液中の所定イオン(例えば陽イオン)の交換が行々わ
れるようになる。
In addition, the liquid sending pumps 2a to 2c are
The flow rate of each of these pumps 2a to 2.degree. can be changed arbitrarily by operating a keyboard 16. When the pump 2a is driven, the first eluent in the tank 1a is transferred from the pump 2a to the first and second injectors 3.
Connection port 31.32→first and second of third flow path switching valve 8
Connection port 81.82→first separation column 5a,→first detector 6a→first and second connection lower 1. of first flow path switching valve 7.
72→Flows through the flow path of the waste liquid tank 1d. When the pump 2b is driven, the second eluent in the tank 1b is transferred from the pump 2b to the fifth and sixth connection ports 85 and 86 of the third flow path switching valve 8 to the second flow path switching valve 4. 1 and 2nd connection port 41.42 → 3rd and 4th connection port 83.84 of 3rd flow path switching valve 8 → 2nd separation column 5b → inner chamber 92 of suppressor 9 → 2nd detector 6b → waste liquid tank It flows in a flow path of 1d. When the pump 2c is driven, the removed liquid in the tank 1c flows through the channel from the pump 2c to the outer chamber 93 of the suppressor 9 to the waste liquid tank 1e,
Predetermined ions (for example, cations) in the liquids are exchanged between the liquid in the inner chamber 92 and the liquid in the outer chamber 93 via the liquid in the inner chamber 92 and the liquid in the outer chamber 93.

この状態で、例えばシリンジ38を用い、インジェクタ
3の第5接続口35から計量管37内に被測定液を注入
する。その後、インジェクタ3をオンにし、その内部流
路を図の実線接続状態から破線接続状態に切換える。と
同時に、インジェクタ3のオン信号がCPU 13に送
出され、CPU13で時間のカウントが開始される。一
方、計量管37内の仮測定液は第1溶離液に搬送されて
分離カラム5aに至り、該被測定液中の第1イオン種(
例えば陽イオン)が分離されると共に第2イオン種(例
えば陰イオン)が第1イオン種よりも早く溶出されるよ
うになる。
In this state, the liquid to be measured is injected into the measuring tube 37 from the fifth connection port 35 of the injector 3 using, for example, the syringe 38 . Thereafter, the injector 3 is turned on and its internal flow path is switched from the solid line connection state to the broken line connection state in the figure. At the same time, an on signal from the injector 3 is sent to the CPU 13, and the CPU 13 starts counting time. On the other hand, the temporary measurement liquid in the measuring tube 37 is carried by the first eluent and reaches the separation column 5a, and the first ion species (
For example, cations) are separated and second ionic species (for example, anions) are eluted earlier than the first ionic species.

分離カラム6aからの浴出液は、第1検出器6aに導ひ
かれ例えばその導電率が検出される。この検出器6aの
出力は検出器回路11に送出されて増幅等の信号処理が
行なわれ、その後、A/D変換器12でA/D変換され
CPU 13に送出される。CpU 13の出力により
表示部15には第1検出器6aで検出された信号に基ず
くクロマトグラムが表示される。また、このクロマトグ
ラムをみなからカーソル等を移動させ、キーボード16
を操作して分取時間が設定される。CpU 13では、
配管の死容積、ポンプの流量等を基にして一定の計算が
行なわれ分取容量が算出方、上記分取容量が上記計量管
47の容量以内のときはCpU 13の出力によりパル
プ駆動回路14を介しく 7 ) 内部流路が図の実線接続状態から破線接続状態に切換え
られる。このため、上記第1イオン種に相当する部分の
溶出液(表示部15の図示したクロマ管47→第6およ
び第5接続口46.45の流路で流れる。上記第1イオ
ン種相当部分の溶液が計量管47内を満たしたころ(こ
の時間もCPU 13内で計算される)、CPU13の
出力によりバルプ駆動回路14を介して第2流路切換弁
4がオンにされ、その内部流路が図の実線接続状態から
破線接続状態に切換えられる。このため、計量管47内
の溶液が第2溶離液に搬送されて第2分離カラム5bに
至シ上記第2イオン種が分離される。このようにして分
離されたイオン種は、再び第2溶離液で搬送されて、サ
プレッサ9の内室92を経て第2検出器6bに至って例
えばその導電率が検出きれる1、この検出器6bの出力
は、第1検出器6aの出力の場合と同様、検出器回路1
1およびA/D変換器12を経由してCPU 13に送
出され、表示部15にクロマトグラムを与えると共にパ
ルプ駆動回路14を介して流路切換弁を切換えるように
なる。尚、上記分取時間の設定は上述の設定方法に限定
されることなく種々の変形が可能であり、例えば次のよ
うにして設定してもよいものとする。即ち、通常の状態
で一度クロマトグラムを取り、その後、そのクロマトグ
ラムを表示部15に表示させなから分取時間を設定する
方法であってもよく、クロマトグラムをとりながら同時
にキーボード16のスイッチ操作等によυ分取時間を設
定する方法であってもよい。また、上記計量管47の容
量を越えて上記分取時間を設定しないように、分取開始
指令を出した段階で表示部15に分取可能範囲を表示す
るようにしてもよい。更に。
The bathing liquid from the separation column 6a is guided to a first detector 6a, and its conductivity, for example, is detected. The output of the detector 6a is sent to a detector circuit 11 where signal processing such as amplification is performed, and then A/D converted by an A/D converter 12 and sent to a CPU 13. Based on the output of the CpU 13, a chromatogram based on the signal detected by the first detector 6a is displayed on the display section 15. Also, move the cursor etc. from all over this chromatogram and click the keyboard 16.
The preparative separation time is set by operating . In CPU 13,
Certain calculations are performed based on the dead volume of the piping, the flow rate of the pump, etc., and the fractional volume is calculated. When the fractional volume is within the capacity of the measuring tube 47, the output of the CpU 13 is used to calculate the fractional volume of the pulp drive circuit 14. 7) The internal flow path is switched from the solid line connection state in the figure to the broken line connection state. Therefore, the eluate of the portion corresponding to the first ion species (flows in the flow path from the chroma tube 47 shown in the display section 15 to the sixth and fifth connection ports 46.45). When the solution fills the measuring tube 47 (this time is also calculated in the CPU 13), the second flow path switching valve 4 is turned on via the valve drive circuit 14 by the output of the CPU 13, and the internal flow path is turned on. is switched from the solid line connection state in the figure to the broken line connection state.Therefore, the solution in the metering tube 47 is transported to the second eluent, and the second ion species is separated into the second separation column 5b. The ion species separated in this way are transported again by the second eluent, pass through the inner chamber 92 of the suppressor 9, and reach the second detector 6b. The output is output from the detector circuit 1 as in the case of the output from the first detector 6a.
1 and the A/D converter 12 to the CPU 13 to provide a chromatogram on the display section 15 and to switch the flow path switching valve via the pulp drive circuit 14. Note that the setting of the separation time is not limited to the above-mentioned setting method and can be modified in various ways, for example, it may be set as follows. That is, a method may be used in which a chromatogram is taken once under normal conditions, and then the preparative separation time is set without displaying the chromatogram on the display unit 15, and the switch operation on the keyboard 16 is performed simultaneously while taking the chromatogram. A method of setting the υ preparative time may also be used. Furthermore, in order to prevent the preparative collection time from exceeding the capacity of the measuring tube 47, the possible preparative range may be displayed on the display section 15 at the stage when the preparative start command is issued. Furthermore.

本発明はイオンクロマトグラフ装置に限定されることな
く、他の液体クロマトグラフについても同様に用いるこ
とができる。
The present invention is not limited to ion chromatograph devices, but can be similarly applied to other liquid chromatographs.

〈発明の効果〉 以上詳しく説明したような本発明の実施例によれば、表
示部15に表示されるクロマトグラムに対応させCPt
11−3の出力によりバルブ駆動回路14を介して流路
切換弁を自動的に駆動させるような構成であるため、実
際上必要とされる流路切換え弁の切り換えタイミングを
容易かつ正確に設定できるようになる。
<Effects of the Invention> According to the embodiment of the present invention as described in detail above, the CPt is
Since the configuration is such that the flow path switching valve is automatically driven by the output of 11-3 via the valve drive circuit 14, the switching timing of the flow path switching valve that is actually required can be easily and accurately set. It becomes like this.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明実施例の構成説明図である。 1a〜1e・・・槽、2a〜2c・・・送液ポンプ、3
・・・インジェクタ、4,7.8・・・流路切換弁、5
a、 5b・・・分離カラム、6a、6b・・・検出器
、9・・・サプレッサ、11・・・検出器回路、12・
・・A/D変換器、13・・・中央処理装置、14・・
・バルブ駆動回路、15・・・表示部、16・・・キー
ボード。
The figure is a configuration explanatory diagram of an embodiment of the present invention. 1a to 1e...tank, 2a to 2c...liquid pump, 3
...Injector, 4,7.8...Flow path switching valve, 5
a, 5b... Separation column, 6a, 6b... Detector, 9... Suppressor, 11... Detector circuit, 12.
... A/D converter, 13... Central processing unit, 14...
- Valve drive circuit, 15...display section, 16...keyboard.

Claims (3)

【特許請求の範囲】[Claims] (1)第1イオン種分析流路から溶出する液体の所定部
分を第2イオン種分析流路に導くことにより被測定液中
の陰陽両イオン種をクロマトグラフィックに分析するイ
オンクロマトグラフ装置において、検出器の出力に基ず
く信号をA/D変換して中央処理装置に送出するA/D
変換器と、該中央処理装置の指令に従って流路切換弁を
切換えるバルブ駆動回路と、前記中央処理装置の出力を
受けてクロマトグラムを表示する表示部とを備え、該表
示部に表示されるクロマトグラムに対応させて前記中央
処理装置の出力により前記バルブ駆動回路を介して前記
流路切換弁を駆動させるイオンクロマトグラフ装置。
(1) In an ion chromatograph device that chromatographically analyzes both negative and positive ion species in a liquid to be measured by guiding a predetermined portion of a liquid eluted from a first ion species analysis channel to a second ion species analysis channel, A/D converts the signal based on the output of the detector and sends it to the central processing unit
A converter, a valve drive circuit that switches a flow path switching valve according to a command from the central processing unit, and a display unit that receives an output from the central processing unit and displays a chromatogram, and a chromatogram displayed on the display unit. The ion chromatograph apparatus drives the flow path switching valve via the valve drive circuit with the output of the central processing unit in accordance with the output of the central processing unit.
(2)前記第1イオン種は陽イオンであり前記第2イオ
ン種は陰イオンでなる特許請求範囲第(1)項記載のイ
オンクロマトグラフ装置。
(2) The ion chromatography apparatus according to claim 1, wherein the first ion species is a cation and the second ion species is an anion.
(3)前記表示部は陰極線管でなる特許請求範囲第(1
)項若しくは第(2)項記載のイオンクロマトグラフ装
置。
(3) The display section is a cathode ray tube.
) or (2).
JP23393984A 1984-11-06 1984-11-06 Ion chromatograph apparatus Pending JPS61112965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23393984A JPS61112965A (en) 1984-11-06 1984-11-06 Ion chromatograph apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23393984A JPS61112965A (en) 1984-11-06 1984-11-06 Ion chromatograph apparatus

Publications (1)

Publication Number Publication Date
JPS61112965A true JPS61112965A (en) 1986-05-30

Family

ID=16962980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23393984A Pending JPS61112965A (en) 1984-11-06 1984-11-06 Ion chromatograph apparatus

Country Status (1)

Country Link
JP (1) JPS61112965A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183173A (en) * 2006-01-06 2007-07-19 Shimadzu Corp Preparative chromatograph device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123360A (en) * 1974-08-15 1976-02-24 Teijin Ltd YOKOITO TANCHISOCHI
JPS55160850A (en) * 1979-06-04 1980-12-15 Yokogawa Hokushin Electric Corp Control system of gas chromatograph

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123360A (en) * 1974-08-15 1976-02-24 Teijin Ltd YOKOITO TANCHISOCHI
JPS55160850A (en) * 1979-06-04 1980-12-15 Yokogawa Hokushin Electric Corp Control system of gas chromatograph

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183173A (en) * 2006-01-06 2007-07-19 Shimadzu Corp Preparative chromatograph device
JP4665765B2 (en) * 2006-01-06 2011-04-06 株式会社島津製作所 Preparative chromatograph

Similar Documents

Publication Publication Date Title
CN105223264B (en) A kind of simulation internal standard method, apparatus of mass spectrum quantitative analysis and application
JP5358588B2 (en) Chromatographic monitoring and control of multiple process streams
EP2201359B1 (en) Device for generating micro- and nanoflow mobile phase gradients for high-performance liquid chromatography.
JP2009080012A (en) Liquid chromatograph and sample introducing apparatus
JPS60219554A (en) Method and apparatus for measuring minor component in major component
CN206450641U (en) A kind of detector of sulfur hexafluoride decomposition product
US3686923A (en) Total sample indicator for chromatography
JPS61112965A (en) Ion chromatograph apparatus
US8658034B1 (en) Mobile phase preparation device for liquid chromatography
JPH0329747Y2 (en)
JP2000249694A (en) Liquid chromatograph-sampling device
JPH0312703B2 (en)
JPS61223555A (en) Analysis of ion species and apparatus using the same
US20190302067A1 (en) Automated two-column recycling chromatography method for unlocking challenging separation problems
Guillemin et al. The deferred standard method–a technique for quantitative analysis in laboratory and process HPLC
JP3003310B2 (en) Analysis method for trace ion species
JP2615012B2 (en) Gradient pump
JPS6156969A (en) Analysis method and apparatus for organic acid and inorganic anion
SU1392424A1 (en) Device for pneumatic metering of samples of equilibrum vapor phase to gas chromatograph
Freeguard et al. Improved Computer-Compatible Process Chromatograph
JPS6153565A (en) Method and apparatus for analyzing anion and cation species
JPH05240851A (en) Quantity-determination operating apparatus
GB2362713A (en) Sampling system for gas
SU714276A1 (en) Device for metering-out samples into gas-chromatograph
JPS6066161A (en) Method and device for simultaneous measurement of different species of ions