JPS61112604A - Method of molding refractory sheet - Google Patents

Method of molding refractory sheet

Info

Publication number
JPS61112604A
JPS61112604A JP23404984A JP23404984A JPS61112604A JP S61112604 A JPS61112604 A JP S61112604A JP 23404984 A JP23404984 A JP 23404984A JP 23404984 A JP23404984 A JP 23404984A JP S61112604 A JPS61112604 A JP S61112604A
Authority
JP
Japan
Prior art keywords
molding
pressure
press
thickness
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23404984A
Other languages
Japanese (ja)
Inventor
京田 洋
松尾 晃
岡崎 勤
白髭 俊介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP23404984A priority Critical patent/JPS61112604A/en
Publication of JPS61112604A publication Critical patent/JPS61112604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔秋業上の利用分野〕 この発明は耐火物の薄板例えば厚さが1〜40訪という
薄板のプレス成形方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of commercial application] This invention relates to a method for press forming thin plates of refractories, such as thin plates having a thickness of 1 to 40 mm.

〔従来の技術とその問題点〕[Conventional technology and its problems]

従来、厚さの薄い耐火物成形体を祷るには、鋳込み法、
振動鋳込み法、振動ブレス溢、−軸ブレス茫による成形
方法がとられているが、鋳込みによる場合は、チクソト
ロピー性即ち振at与えることによって流動性を発現さ
せる必弗上粒度面で超微粉伶加債の増力口という利ぞ1
全受けるので段品品質上問題があり、さらに成形からi
f!!!品化までのハンドリング時の強度不足による生
産性の低下が甚しいので10B厚程度が最小製造町酢寸
広であった◇ !た振動プレス法は、成形圧の絶体僅が低いことによる
成形体の充填度不足に基因する品質不良、ならびに成形
体の強度不足による取辺いの困難性に伴う生産性の低下
という欠点を肩し℃いる。
Traditionally, casting methods,
Vibratory casting, vibrating press overflow, and -shaft press injection molding methods are used, but in the case of casting, ultrafine powder is added to the particle size surface, which is necessary to develop thixotropic properties, that is, fluidity by imparting vibration. The advantage of increasing the amount of bonds is 1.
Since all parts are received, there is a problem with the quality of the step products, and furthermore, there is a
f! ! ! Due to the severe drop in productivity due to lack of strength during handling until commercialization, the minimum thickness for production was around 10B◇! The vibratory press method has the disadvantages of poor quality due to insufficient filling of the molded body due to extremely low molding pressure, and decreased productivity due to difficulty in handling due to lack of strength of the molded body. My shoulders are cold.

また、従来の油圧による一軸プレス成刑法は、生産性が
良好で従来手法による製造方伝が採用できる点で望まし
いが、成形体の均一性が厚さ40rnA以下の漠物の場
合は不良であり、かつ200×200WNAu上の大型
平面積のもの?′i実際上製造が殆んど不可能であった
In addition, the conventional uniaxial press forming method using hydraulic pressure is desirable because it has good productivity and allows the adoption of conventional manufacturing methods, but it is not good when the uniformity of the formed object is less than 40 rnA in thickness. , and a large flat area on 200×200WNAu? 'iIt was practically impossible to manufacture.

その理由は次のようである。即ちプレス圧を加えた時の
練土の充填状況は秒11えば平均で2 L Ony。
The reason is as follows. In other words, when press pressure is applied, the filling condition of the clay is 2 L on average in 11 seconds.

を加えても、実際上は応力が集中する粒の先端にon おいて50 /−以上の力が消費さj、て粒が圧壊し、
局部的に非常に充填率の高い場/−1fが生ずるととも
に、逆にその周辺部には小さな圧力しかかからない場所
が発生するので、製品とした場合その場所での強度が弱
く欠陥部となυ亀裂発生の原因となるのである。
Even if a force of 50/- or more is actually consumed at the tip of the grain where stress is concentrated, the grain collapses,
A field with a very high filling rate /-1f occurs locally, and conversely there are places around it where only a small amount of pressure is applied, so if it is made into a product, the strength at that place will be weak and it will become a defective part. This causes cracks to form.

麓枡耐大物はどの場所でも均一な強度を有することが必
要であり、これを満たすためには練土全体に均一な成形
圧をかけることが必要条件である。
It is necessary for the Rokumasu large-sized material to have uniform strength at all locations, and in order to satisfy this requirement, it is necessary to apply uniform forming pressure to the entire pounded soil.

また成形厚が厚い場合(練土中の最大粒径の約15倍以
上)では、多数回加圧によって最密充填となる方向で粒
の移動が観察さf″L′Fj1粒同志の破壊も少ないが
、成形厚みが薄い場合には、粗粒の移動が叛めて少なく
粗粒部での圧力消費が大きいのである。このことは粗粒
周辺での圧力分布が不均一であることを示し、プレス面
板が平らである場合避けらj、ない現象である。従って
薄板を一軸プレスで平均に成形することは従来殆んど不
可能であった。
In addition, when the compaction thickness is thick (approximately 15 times or more of the maximum grain size in the mixed soil), grain movement is observed in the direction of closest packing due to multiple pressurizations. Although it is small, when the molding thickness is thin, the movement of coarse grains is small and the pressure consumption in the coarse grain area is large.This indicates that the pressure distribution around the coarse grains is uneven. This is an unavoidable phenomenon when the press face plate is flat.Therefore, it has conventionally been almost impossible to form a thin plate into an even shape using a uniaxial press.

まt従来、均−組織成形体を得る方法としてはラバープ
レス法(アイソスタテックプレス法または静水圧プレス
法)か良く知られており、微密質セラミックス、小型あ
るいけ特殊形状品の成形等に広く利用されている。この
方εの原理は間知のようにパスカルの法則を粉体成形に
応用したものであり、粉体をゴムのような変形抵抗の少
ない弾性体容器に充填し制圧゛稈器中で胃液圧を加え゛
て、粉体をゴムを介して全表面が液圧に等しい圧力で成
形し均一な組織の成形体を得るものである。
Conventionally, the rubber press method (isostatic press method or isostatic press method) is a well-known method for obtaining uniformly textured compacts, and is used for molding micro-dense ceramics, small-sized or special-shaped products, etc. It is widely used in This principle of ε is an application of Pascal's law to powder molding, and the powder is filled into an elastic container with low deformation resistance, such as rubber, and gastric fluid pressure is applied in a pressurizer. In addition, the powder is molded through rubber with a pressure equal to the hydraulic pressure on the entire surface to obtain a molded product with a uniform structure.

しかしながらこの°方法は一般的K h9.形能率が低
く、さらに成形体および焼成体の加工を必要とし生産性
が非常に低いという問題点があり、大型薄板平面形状の
製造においては同様な理由でラバープレス法は不適当で
ある。
However, this °method is a general K h9. There are problems in that the forming efficiency is low and the productivity is very low as it requires processing of the molded and fired bodies, and for the same reason, the rubber press method is inappropriate for manufacturing large thin planar shapes.

〔−発明が解決しようとする問題点〕[-Problem that the invention seeks to solve]

この発明は、耐火物の薄飯ffi、杉における従来技術
の問題点、即ち成形圧力分布の不均一に起因する製品の
場所別強度差、品質不足、主座性不良、厚さ101以下
のものの成形品が得られない、大型平面積のものの製造
困難等の問題点を解決して、−軸ブレス成形で品質良好
で均−組戦かつ大型の耐火性薄板を、生産性を低下させ
ることなく製造するための成形方法を提供するものであ
る。
This invention solves the problems of conventional refractory materials such as thin rice ffi and cedar, namely, differences in strength depending on the location of the product due to uneven molding pressure distribution, poor quality, poor seatability, and products with a thickness of 101 or less. By solving problems such as the inability to obtain molded products and the difficulty in manufacturing large flat areas, we can produce high-quality, uniform, and large-sized fire-resistant thin plates using shaft press molding without reducing productivity. A molding method for manufacturing is provided.

〔問題点を解決するための手段〕[Means for solving problems]

コノ発明は、前述したラバープレス法によれば粉粒体を
均一組織に成形できるというその優れた特徴を一軸プレ
ス成形に応用したものであって、常εにより粒度調整さ
れた耐火物原料にバインダーを添力口して混線あるいは
さらに造粒した練土を成形するに際し、プレス成形枠内
に充填する前記線上の上面と下面の双方に、該礫土のほ
ぼ全表面を覆うごとくゴム等板状の弾性体を挿入して一
軸プレス成形するものである。なお成形体の厚みが30
鳴以下という薄板の場合は線上の上面か下面のいづれか
片面のみに前述の弾性体を挿入して同行:ニブレス成形
するものである。
The present invention is an application of the excellent feature of the rubber press method, in which powder and granules can be formed into a uniform structure, to uniaxial press molding. When forming mixed wire or further granulated mixed soil using a loading port, a plate-shaped layer of rubber or the like is placed on both the upper and lower surfaces of the wire filled into the press molding frame so as to cover almost the entire surface of the gravel. An elastic body is inserted and uniaxial press molding is performed. Note that the thickness of the molded body is 30
In the case of a thin plate with a thickness of less than 100 mm, the above-mentioned elastic body is inserted on only one side of the line, either the upper or lower surface, and nibless molding is performed.

〔作用〕[Effect]

第1図はこの発明方法の概念図を示すプレス成形枠内の
縦断面図であって、1けプレス枠の側枠、2け下面板、
6は挿入した弾性体、4け成形枠内に充填はfした練土
、5け下面板である。
FIG. 1 is a longitudinal sectional view of the inside of the press forming frame showing a conceptual diagram of the method of the present invention, and shows the side frame of the single press frame, the bottom plate of the double press frame,
Reference numeral 6 denotes the inserted elastic body, the 4-piece molding frame filled with clay, and the 5-piece lower plate.

即ち下面板5の上部に練±4を所定量投入してならしそ
の上面に弾性体3を挿入し、次いで上面板2と下面板5
によって高圧で一軸加圧すると、練土中の粗粒の移動が
起こらない状態でも弾性体3が全方向に均一に変形する
ので、練土全体が均一な圧力で加圧成形され均一組織の
成形体が得られるのである。
That is, a predetermined amount of the dough 4 is poured into the upper part of the lower plate 5, and the elastic body 3 is inserted into the upper surface of the mixture, and then the upper plate 2 and the lower plate 5 are
When uniaxially pressurized at high pressure, the elastic body 3 deforms uniformly in all directions even when the coarse particles in the mixed soil do not move, so the entire mixed soil is press-formed with uniform pressure and a uniform structure is formed. You will gain a body.

弾性体6と仰1枠1との間隙は摺り合せをしてゼロに近
くするのが好ましく、また弾性体の材質は軟質ゴム、硬
質ゴム等が使用できるが、弾性限界の大きいものが効果
的でかつ耐用性の面からも軟質ゴムが最適である。
It is preferable that the gap between the elastic body 6 and the vertical frame 1 be close to zero by rubbing together, and the material of the elastic body can be soft rubber, hard rubber, etc., but one with a large elastic limit is effective. Soft rubber is most suitable from the viewpoint of durability and durability.

弾性体の厚みは、1W@未満の薄い場合は多数回使用に
よって弾性体周辺部の破損が大きくなり、また加圧時に
厚さ方向の変形惜が不足し不均一加圧の現象が生じて弾
性体使用による均一圧力成形の効果が減少するので好ま
しぐない。また厚さが20mを越えると弾性体の挿入効
果は興じであるが作秦性が悪くな9かつ不経済である。
If the thickness of the elastic body is thin (less than 1 W@), damage to the periphery of the elastic body will increase due to repeated use, and the phenomenon of uneven pressure may occur due to insufficient deformation in the thickness direction when applying pressure. This is not preferable because the effect of uniform pressure molding by using a body is reduced. Moreover, if the thickness exceeds 20 m, although the effect of inserting the elastic body is good, the productivity is poor and it is uneconomical.

従って挿入する弾性体の厚みは、軟質ゴム板の場合1〜
20RIlが適当である。
Therefore, the thickness of the elastic body to be inserted should be 1 to 1 in the case of a soft rubber plate.
20RIl is suitable.

なお、刀口圧時の弾性体への粗粒のかみ込みを少なくし
さらに成形体をこわさずに歩留りよく取シ出すために、
紙、ビニール紙、布等を弾性体と練土との間に挾み込ん
でおくと成形と取出し作業をより迅速イヒすることがで
きる。
In addition, in order to reduce the entrapment of coarse particles into the elastic body during knife pressure, and to take out the molded body at a high yield without breaking it,
By inserting paper, vinyl paper, cloth, etc. between the elastic body and the clay, the molding and removal operations can be completed more quickly.

この発明け、薄い板の成形においてより有効な作用を呈
するものであって、成形厚みが40xを越すと粗粒の動
きが徐々にではあるが認められ、従来の弾性体を挿入し
ない一軸グレス成形方法との差が少なくなる傾向がある
This invention exhibits a more effective effect in forming thin plates, and when the forming thickness exceeds 40x, the movement of coarse grains is observed, albeit gradually. There is a tendency for the difference between methods to decrease.

一方、成形厚みと成形体の均一性との関係は成形平面積
が大きく影響するものであって、この発明においては2
00 x 200m以上の平面積の場合に均一成形が特
に有効に作用する。
On the other hand, the relationship between the molded thickness and the uniformity of the molded body is greatly influenced by the molded flat area, and in this invention, two
Uniform molding is particularly effective when the flat area is 00 x 200 m or more.

なお、この発明に使用する練土は、シ11カ、ムライト
、アルミナ、クロム、マグネシア、ジルコン、ジルコニ
ア、炭化珪素、窒(L’珪素等一般耐火1今料の粒、粉
の一種あるいは281以上を混合し粒度調整したものに
一般使用の有機もしぐは無機バインダー、水分等を添加
混練しまたは造粒して成形用練土として得ることができ
る。
The clay used in this invention is a type of grain or powder of general refractory materials such as silicon, mullite, alumina, chromium, magnesia, zircon, zirconia, silicon carbide, nitrogen (L'silicon, etc.) or 281 or more. A commonly used organic or inorganic binder, moisture, etc. are added to the mixture and the particle size is adjusted, and the mixture is kneaded or granulated to obtain a clay for molding.

〔実施例〕〔Example〕

以下実h…例について具体的に説明する。 An actual example will be explained in detail below.

実施例1゜ 最大粒2.0り累積粒度0.044B以下、20%、0
.297am以下65%、0.1−以下65%、1.4
1tnJU下85%からなる粒/!′調整?行なったム
ライト原料(ムライト値98.5%)に@1峻ンーダ系
バインダーを外植ト1.0%、水を外キト2.5%添加
し、万能棲拌機で60分混練し練土を得た。成形面積3
0[]X30(lr−1成形厚みそれぞt′L5 tt
nm、’  10 wpn、ゆ 40鵡、成形圧力1500/6Iで、厚み2朋、および
5Bの軟質ゴム板を練土の上面と下面の両方と、上面の
み、下面のみに挿入して成形した。
Example 1゜Maximum grain 2.0, cumulative grain size 0.044B or less, 20%, 0
.. 297am or less 65%, 0.1- or less 65%, 1.4
Grains consisting of 85% of 1tnJU/! 'Adjustment? To the mullite raw material (mullite value 98.5%), 1.0% @1 binder binder and 2.5% water were added, and the mixture was kneaded for 60 minutes with a universal mixer to form a kneaded soil. I got it. Molding area 3
0[]X30 (lr-1 molding thickness each t'L5 tt
A soft rubber plate having a thickness of 2 mm and 5B was inserted into both the upper surface and the lower surface, only the upper surface, and only the lower surface, and molding was carried out at a molding pressure of 1500/6 nm, 10 wpn, 40 mm, and a molding pressure of 1500/6 I.

なお、成形体の場所別組織確認のため、トンネルキルン
で1480℃にて焼成したものを60X60朋角に縦横
5等分し、25分割したものの中から各成形体とも同一
場所の5サンプルを採取して曲げ強さを測定した。結果
を第1表に示す。
In addition, in order to confirm the structure of the compact by location, the compact was fired at 1480°C in a tunnel kiln and divided into 5 equal parts vertically and horizontally in a 60 x 60 square, and from the 25 sections, 5 samples were taken from the same location for each compact. The bending strength was measured. The results are shown in Table 1.

第1表に示すように、従来方法のゴム板なしの場合、場
所別の曲げ強ざのバラツキが大きく、非常に弱い部分が
存在している。そして、成形厚みが薄い桿その差が大き
くなっている。これに対し、この発明方法で成形したも
のの場合、成形厚み、ゴム板厚み並びにゴム板挿入条件
に殆んど関係なく、場所別の曲げ強さのバラツキが非常
に小さく、曲げ強さの平均値も従来方法に較べて僅かで
あるか大ぎくなっている。
As shown in Table 1, in the case of the conventional method without a rubber plate, the bending strength varies greatly from place to place, and there are very weak parts. And the difference is larger for rods with thinner molding thickness. On the other hand, in the case of products molded by the method of this invention, the variation in bending strength from place to place is very small, regardless of the molding thickness, rubber plate thickness, and rubber plate insertion conditions, and the average value of bending strength is Also, compared to the conventional method, it is slightly larger or larger.

実施例2 最大粒20醍、累積粒度0.074−以下30チ、0.
297附以下55%、1.Oa+以下80チ、1.41
8以上20%からなる粒度調整を行なった炭化珪素原料
に、フェノール樹脂系バインダー外掛4チ金属シリコン
粉末外掛5チ、金属アルミニウム粉末外掛2%を添加し
、ニーダ−混線機で60分混練し棟上を得た。成形面積
300x300a+s+にて成形ゆ J6fみ5鴫、10m+、成形圧力1500 /、で、
厚さ5市の軟質ゴム板を練土の上面と下面の両方、及び
上面のみ、あるいは下面のみに挿入し成形を行なった。
Example 2 Maximum grain size is 20 cm, cumulative grain size is 0.074-30 cm or less, 0.
297 and below 55%, 1. Oa+ or less 80chi, 1.41
To a silicon carbide raw material whose particle size has been adjusted to be 8 or more and 20%, phenolic resin binder (outer layer), metal silicon powder (outer layer), metal silicon powder (outer layer), 5 g. Got the top. With a molding area of 300x300a+s+, a molding surface of J6F, 10m+, and a molding pressure of 1500/,
Molding was carried out by inserting soft rubber plates with a thickness of 5 cm on both the top and bottom surfaces, only on the top surface, or only on the bottom surface.

なお成形体の場所別組織確にごのため、トンネルキルン
で1480℃にてプIノーズ詰還元焼成した本のを60
×60−角に縦、横5等分し、25分割したものの中か
ら各成形体とも同一場所の5サンプルを採取して曲は強
さを測定した。結果を第2表に示す。
In order to confirm the structure of the molded product by location, 60% of the book was packed in a tunnel kiln at 1480°C and fired by reduction firing.
The molded body was divided into 5 equal parts vertically and horizontally at a ×60 angle, and from among the 25 pieces, 5 samples were taken from the same location for each molded body, and the bending strength was measured. The results are shown in Table 2.

第2表に示すように、実施例1の場合と同様に従来方法
のゴム板なしの場合、場所別の曲げ強さのバラツキが大
きく、成形厚みが薄い程その差が大きくなっている。こ
れに対し、この発明方法で成形したものの場合、成形厚
みおよびゴム仮挿入条件に殆んど関係なく場所別の曲は
強さのバラツキが小さく、曲げ弊さの平均値も従来方浴
に較べて僅かであるが大きくなっている。
As shown in Table 2, in the case of the conventional method without a rubber plate, as in the case of Example 1, the bending strength varies greatly depending on the location, and the difference becomes larger as the molding thickness becomes thinner. On the other hand, in the case of products formed by the method of the present invention, there is little variation in bending strength at different locations, almost regardless of the molding thickness and temporary rubber insertion conditions, and the average value of bending strength is also lower than that of the conventional method. Although it is slightly, it is increasing.

〔発明の効果〕〔Effect of the invention〕

この発明は以上曲明したとおり、均一組織の大型N今の
成形が可能となり、従来方法に比べ、製品のどの部分も
均一で品質良好な大τ!薄板を、生産性良く製造できる
As described above, this invention makes it possible to form a large size N with a uniform structure, and compared to conventional methods, all parts of the product are uniform and of good quality. Thin plates can be manufactured with high productivity.

特に実施例に示したように、従来方法では一枚の板の場
所によって曲は弥濾が非常に弱い部分が存在するため、
この部分が全体の品質を左右することになり使用に堪え
ない製品となるが、これに対しこの発明方法によれば場
所別の曲げ強さのバラツキが非常に小ざく、また而げ強
ざの最/J%値も従来方庄の平均幀とほぼ同等である。
In particular, as shown in the example, in the conventional method, depending on the location of a piece of music, there are parts where the Yaro is very weak.
This part affects the overall quality and makes the product unusable. However, with the method of this invention, the variation in bending strength depending on the location is very small, and the bending strength is very small. The maximum/J% value is also almost the same as the average value of the conventional method.

また従来方法では殆んど成形不可能であった10り厚以
下の製品を得ることができた。
Furthermore, we were able to obtain a product with a thickness of 10 mm or less, which was almost impossible to mold using conventional methods.

更だこの発明方法の作用効果會研窮するプとめ、実施例
2において成形厚み51、成形圧力1500ゆ ろbの練土面上の圧力分布を最大圧力1600′C9/
−の感圧紙を用いて測定した。第2図は練土面上におけ
る圧力分布を示す模式図で、(a)図はこの発明の場合
、(h)図は従来方法の場合を示す。図において黒色部
け130 C1’/−以上の圧力で、薄黒色部は500
〜1600に′l/ の圧力で加圧された名fFを示し
、白色部は500kg/6I以下の低圧しか受けていな
い部分を示す。この結果この発明方法に裏って成形した
場合、(a)図に示すように全面が1300 ’9/−
以上の圧力で刀口圧されているが、従来方法のゴム板を
使用しない場合は(b1図に示すように粗粒部は130
0 kg/−以上の圧力を受けている反面微粉部は低圧
力しか受けていない。また、場所別でも圧力差が大きい
ことが判るOh+Iちこの発明方法によれば、練土の全
面が均一に刀口圧されるれめ成形后の板は均一組織で品
質良好な薄板が稈易に得られることが上述の試験によっ
ても確認できた。
Furthermore, the effects of the method of this invention are to be fully investigated. In Example 2, the pressure distribution on the mixing soil surface with a molding thickness of 51 and a molding pressure of 1500 yurob was changed to a maximum pressure of 1600'C9/
-Measured using pressure-sensitive paper. FIG. 2 is a schematic diagram showing the pressure distribution on the soil surface, where (a) shows the case of the present invention, and (h) shows the case of the conventional method. In the figure, the pressure of the black part is 130 C1'/- or more, and the light black part is 500 C1'/- or more.
The nominal fF pressurized at a pressure of ~1600 kg/6 I is shown, and the white part indicates a part that is under only a low pressure of 500 kg/6 I or less. As a result, when molding is performed using the method of this invention, the entire surface becomes 1300'9/- as shown in Figure (a).
Although the knife-edge pressure is applied with the above pressure, if the rubber plate of the conventional method is not used (as shown in Figure b1, the coarse grain part is 130
On the other hand, the fine powder part is under only a low pressure while it is under a pressure of 0 kg/- or more. In addition, according to Oh + I Chico's invented method, which shows that there is a large pressure difference depending on the location, the entire surface of the drilled soil is evenly pressurized, and after forming, the plate has a uniform structure and is a thin plate of good quality. This was also confirmed by the above-mentioned test.

【図面の簡単な説明】[Brief explanation of the drawing]

か11図はこの発明の概念図を示すプレス成形枠円の縦
断面図、第2図はプレス圧を加えた場合における線上上
の圧力分布を示す模式図で、(a)図はこの発明方法に
よる場合、(b)図は従来の成形方庄による場合を示す
。第1図において、 1・・・側枠、2・・・上面板、6・・・弾性体、4・
・・練±5・・・下面板。
Figure 11 is a vertical cross-sectional view of a circle of a press forming frame showing a conceptual diagram of the present invention, Figure 2 is a schematic diagram showing the pressure distribution on a line when press pressure is applied, and Figure (a) shows the method of the present invention. Figure (b) shows the case using the conventional molding method. In Fig. 1, 1...Side frame, 2...Top plate, 6...Elastic body, 4...
...Practice ±5...Bottom board.

Claims (1)

【特許請求の範囲】[Claims] 粒度調整した耐火物原料にバインダーを添加した練土を
プレス成形する場合において、プレス成形枠内に充填し
た前記練土の上面と下面の双方もしくは上面か下面の何
れかに板状の弾性体を挿入して一軸プレス成形する耐火
性薄板の成形方法。
In the case of press-forming a clay made by adding a binder to a refractory raw material whose particle size has been adjusted, a plate-shaped elastic body is placed on both the upper and lower surfaces of the clay filled in the press-forming frame, or on either the upper or lower surface. A method for forming fire-resistant thin plates by inserting and uniaxial press forming.
JP23404984A 1984-11-08 1984-11-08 Method of molding refractory sheet Pending JPS61112604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23404984A JPS61112604A (en) 1984-11-08 1984-11-08 Method of molding refractory sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23404984A JPS61112604A (en) 1984-11-08 1984-11-08 Method of molding refractory sheet

Publications (1)

Publication Number Publication Date
JPS61112604A true JPS61112604A (en) 1986-05-30

Family

ID=16964767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23404984A Pending JPS61112604A (en) 1984-11-08 1984-11-08 Method of molding refractory sheet

Country Status (1)

Country Link
JP (1) JPS61112604A (en)

Similar Documents

Publication Publication Date Title
US9920420B2 (en) Sintered body, sputtering target and molding die, and process for producing sintered body employing the same
CN108911738B (en) Porous barium titanate piezoelectric ceramic and preparation method thereof
US2897572A (en) Refractory bodies and method of making the same
US5096865A (en) High density fused silica process and product
JPS61112604A (en) Method of molding refractory sheet
JP2003003257A (en) High-density sputtering target for transparent conductive film, its manufacturing method, and mold for manufacturing sputtering target
US2184601A (en) Manufacture of ceramic ware
JP3409345B2 (en) Method for producing ceramic target
JP2765783B2 (en) Method for forming an uneven pattern on the surface of a cement-based plate
JPH0790358B2 (en) Molding method for continuous casting nozzle
KR19990072433A (en) Filtration forming mold and method for producing ceramics sintered body using the same
US744431A (en) Process of making bricks or blocks.
CN115611655A (en) Preparation process of near-density low-volume-fraction silicon carbide ceramic blank by taking low-grade diamond powder as pore-forming agent
JPH07115942B2 (en) Method for manufacturing thin plate ceramics sintered body
CN1184165C (en) Method for making rotary pipe
EP0670189A2 (en) Slurry compositions for cast molding purposes, a method of molding cast moldings wherein these slurry compositions are used, and sinters wherein these moldings have been fired.
JPH06659B2 (en) Method for manufacturing sputtering target for transparent conductive film
JPH07232312A (en) Production of sanitary pottery
JPH01268816A (en) Jig for heat treatment and production thereof
JPH01301563A (en) Production of sintered sic
JP2004306594A (en) Method for manufacturing sanitary ware
JPS63239142A (en) Manufacture of elongated ceramic board
JPS61163162A (en) Mud for castable formation
JPS62202707A (en) Manufacture of ceramics molded shape
JPS5983728A (en) Preparation of non-baked massive ore