JPH01301563A - Production of sintered sic - Google Patents

Production of sintered sic

Info

Publication number
JPH01301563A
JPH01301563A JP63127542A JP12754288A JPH01301563A JP H01301563 A JPH01301563 A JP H01301563A JP 63127542 A JP63127542 A JP 63127542A JP 12754288 A JP12754288 A JP 12754288A JP H01301563 A JPH01301563 A JP H01301563A
Authority
JP
Japan
Prior art keywords
parts
weight
molding
sic
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63127542A
Other languages
Japanese (ja)
Other versions
JPH0469110B2 (en
Inventor
Yoshihiko Yuzawa
湯沢 慶彦
Takahito Nishihara
西原 孝人
Toshikazu Moriguchi
敏和 森口
Tetsuo Endo
哲雄 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63127542A priority Critical patent/JPH01301563A/en
Publication of JPH01301563A publication Critical patent/JPH01301563A/en
Publication of JPH0469110B2 publication Critical patent/JPH0469110B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve flexural strength of dense sintered SiC providing molded articles having excellent strength and shape retention, by blending SiC fine powder with a specific molding binder and a sintering auxiliary, granulating, molding and sintering. CONSTITUTION:0.5-2.0pts.wt. PVA having 20,000-30,000 molecular weight is blended with 1.0-3.0pts.wt. polyethylene glycol (PEG) obtained by blending PEG having 1,000-1,500 molecular weight with PEG having 150-250 molecular weight in the ratio of 10-20:1 and 0.5-3.5pts.wt. stearic acid to give a molding binder. Then 100pts.wt. SiC fine powder having <=3mum average particle diameter and >=95% purity is blended with the binder, a sintering auxiliary, a dispersant, an anti-foaming agent and water and granulated by a spray dryer to give molding granules having 50-120mum average particle diameter. Then the granules are molded, dewaxed and sintered at 1,750-2,100 deg.C for about 3 hours.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はSiC焼結体の製造方法に関し、更に詳しくは
、生成形体の強度が強く保形性が良く、更に焼結して緻
密でボアがなく、曲げ強度の高いSiC焼結体を安定し
、容易に得る方法である。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a SiC sintered body, and more specifically, the produced body has strong strength and good shape retention, and is further sintered to be dense and have a bore. This is a method for stably and easily obtaining a SiC sintered body with high bending strength.

〔従来の技術〕[Conventional technology]

従来は、 SiCセラミックスの成形用バインダーとし
て有機質バインダー、例えばポリビニルアルコール、コ
ンスターチ、糖密、コールタールピッチ、フェノール樹
脂等が使われている。これらのバインダーを使用し、成
形用金型への粉の流れ性、充填性を良くするために顆粒
化し、これを成形し生成形体としている。その場合に、
低い成形圧力で漬れ易い顆粒の時は、生成形体の強度は
弱く、保形性も劣るため複雑な形状のものの加工は難し
い、また低い成形圧力で漬れない顆粒のものは、ラバー
プレス、金型プレス成形の際、成形圧力を極度に高くす
るなどの手段で成形していた。
Conventionally, organic binders such as polyvinyl alcohol, corn starch, molasses, coal tar pitch, and phenolic resin have been used as binders for forming SiC ceramics. These binders are granulated to improve the flowability and filling properties of the powder into a molding die, and the granules are molded into a molded product. In that case,
When the granules are easily soaked at low molding pressures, the strength of the formed bodies is weak and the shape retention is poor, making it difficult to process complex shapes.Also, for granules that do not soak under low molding pressures, rubber presses, During press molding, the molding pressure was extremely high.

それによっである程度の生強度の成形体が得られ緻密で
、曲げ強度の高いSiC焼結体となる場合もあれば成形
圧力を極度に高くしても潰れない場合もあった。
As a result, a molded body with a certain degree of green strength can be obtained, and in some cases it becomes a dense SiC sintered body with high bending strength, and in other cases, it does not collapse even when the molding pressure is extremely high.

この様に極度に成形圧力を高くして成形する場合には金
型製作費用が高く、金型の摩耗も早く寿命も短かく、成
形費用の低減を図ることが難しかった。
When molding is performed under such extremely high molding pressure, mold manufacturing costs are high, the mold wears quickly, and its lifespan is short, making it difficult to reduce molding costs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

近年、セラミックスの優れた特性に着目され、ル、釣具
、混合用ポール等の実用化が盛んに行なわれており、こ
れ等については緻密でボアがなく、曲げ強度の高いSi
C焼結体が要求されている。
In recent years, attention has been focused on the excellent properties of ceramics, and they are being put to practical use in products such as fishing rods, fishing gear, and mixing poles.
C sintered bodies are required.

例えば、釣ガイドリング等は、全表面が曲面になってい
る為、プレス成形特全面に均一な成形圧力が掛かりにく
く、特に圧力の掛かりにくい箇所はその強度も低く、金
型に付着したり、ボアが発生したり、また、生加工も困
難であった。
For example, since the entire surface of fishing guide rings is curved, it is difficult to apply uniform molding pressure to the press molded surface, and the strength is low in areas where pressure is particularly difficult to apply, so it may stick to the mold or Bores occurred, and raw processing was also difficult.

本発明者らは、SiC微粉末の顆粒を用いて、ラバープ
レス、金型プレス成形する際に低圧力で成形した成形体
を焼結して何故緻密でボアがなく。
The present inventors used granules of SiC fine powder to form compacts under low pressure during rubber press and die press molding, and then sintered them to find out why they were dense and had no bores.

曲げ強度の高いS r C焼結体が造れないのか、その
原因について検討した結果、ラバープレス、金型プレス
成形の際にSiC微粉末の顆粒の漬れが不充分で、その
成形体の生密度が低いことにあるものと判断し、漬れ易
い顆粒が造れる成形用バインダーを種々検討した。
As a result of investigating the cause of the inability to produce SrC sintered bodies with high bending strength, we found that the granules of SiC fine powder were not soaked sufficiently during rubber press and mold press forming, and the formation of the formed body was poor. We determined that this was due to the low density, and investigated various molding binders that can produce granules that are easy to soak.

その結果、緻密でボアのなく、曲げ強度の高いSiC焼
結体を得ることができたが生成形体の加工時の強度が低
下し、複雑形状の加工が困難となった。そこで更に成形
体の強度が高く、小物でも容易に加工でき、且つ特性の
優れた焼結体を得る成形用バインダーを種々検討し、本
発明に到った。
As a result, it was possible to obtain a dense SiC sintered body with no bores and high bending strength, but the strength of the formed body during processing decreased, making it difficult to process complex shapes. Therefore, we investigated various molding binders that can produce sintered bodies that have higher strength, can be easily processed into small objects, and have excellent properties, and have arrived at the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、  SiGのセラミックスの成形において、
SiC微粉末1011fit部に対し、成形用バインダ
ーとしてポリビニルアルコール(以下PVAと略す)を
0.5〜2.0重量部、ポリエチレングリコール(以下
PEGと略す)を1.0〜3.0重量部を添加し、焼結
助剤を更に加え顆粒化し、その顆粒を用いて成形、脱脂
、焼結するSiC焼結体の製造方法に関するものである
The present invention provides the following steps in the molding of SiG ceramics:
For 1011 parts of SiC fine powder, 0.5 to 2.0 parts by weight of polyvinyl alcohol (hereinafter abbreviated as PVA) and 1.0 to 3.0 parts by weight of polyethylene glycol (hereinafter abbreviated as PEG) are used as a molding binder. The present invention relates to a method for producing a SiC sintered body, in which SiC sintered bodies are added, further added with a sintering aid, granulated, and the granules are used for molding, degreasing, and sintering.

まずSiCの微粉末に成形用バング−1分散剤、消泡剤
および焼結助剤を所定量加え、更に水を所定量加えた後
、ボールミル等で充分に混合してスラリーを造る0次に
スラリーをスプレードライヤー等により処理して顆粒化
した後、その顆粒をまた金型プレス成形に使用する顆粒
は、前述のSiCの微粉末に成形用バインダーとしてP
VAを0.5〜2.0重量部、PEGを1.0〜3.0
重量部加える他に更に好ましくはステアリン、酸を0.
5〜3.5重量部添加し、分散剤、消泡剤、焼結助剤お
よび水を加えた後、充分に混合したスラリーをスプレー
ドライヤー等により処理して造る。この様にして造られ
た顆粒は、低圧加圧でも良く漬れ、成形後の生成形体の
強度も高く、保形性も良く、特に複雑形状や大型形状用
のラバープレス、金型プレス成形用として適しており、
脱脂、焼結後の組織も緻密で曲げ強度の高いSiC焼結
体を得ることボアがあると釣糸が切れるとか鰯りが問題
となるため良く顆粒が潰れ、且つ生成形体の強度も強く
する目的のものには、 SiC微粉末100@j1部に
対し、成形用バインダーとして分子%20.000〜3
0.000(7) PVAを0.5〜2.0重醍部1分
子i  1,000〜1,500と分子量150〜25
0の2種炉のPEAを10:1〜20:lの範囲で混合
したPEGを1.0〜3.0巾μ部、ステアリン酸を0
.5〜3.5毛量部添加し、分散剤、消泡剤、焼結助剤
および水をそれぞれ所定量加えた後、ボールミル等で充
分に混合してスラリー化し、それをスプレードライヤー
等にポール等の成形体を製造した。この様にして造られ
た顆粒は、流動性が良く、低圧加圧でも良く潰れ、成形
後の生強度も強く旋盤等による生加工もできる。プレス
成形用として適しており、脱脂。
First, a predetermined amount of BANG-1 dispersant for molding, an antifoaming agent, and a sintering aid are added to SiC fine powder, and then a predetermined amount of water is added, and then thoroughly mixed in a ball mill etc. to create a slurry. After processing the slurry with a spray dryer or the like to make it into granules, the granules used for press molding are made by adding P as a molding binder to the above-mentioned fine SiC powder.
0.5 to 2.0 parts by weight of VA, 1.0 to 3.0 parts of PEG
In addition to adding 0.0 parts by weight, more preferably 0.0 parts of stearin and acid are added.
After adding 5 to 3.5 parts by weight, a dispersant, an antifoaming agent, a sintering aid and water, the thoroughly mixed slurry is processed using a spray dryer or the like. The granules made in this way are well soaked even under low pressure, have high strength and good shape retention after molding, and are especially suitable for rubber press and mold press molding for complex shapes and large shapes. suitable as
To obtain a SiC sintered body with a dense structure and high bending strength after degreasing and sintering.The purpose is to crush the granules well and strengthen the strength of the formed body, since bores can cause problems such as breaking fishing lines and sardines. For 1 part of SiC fine powder 100@j, 20.000 to 3 molecule % is used as a molding binder.
0.000 (7) 0.5-2.0 PVA per molecule i 1,000-1,500 and molecular weight 150-25
1.0 to 3.0 μm width of PEG mixed with 10:1 to 20:1 of PEA from a two-class furnace of 0, and 0 parts of stearic acid.
.. After adding 5 to 3.5 parts of hair, and adding predetermined amounts of dispersant, antifoaming agent, sintering aid, and water, mix thoroughly with a ball mill, etc. to form a slurry, and pour it into a spray dryer, etc. A molded article such as the following was manufactured. The granules produced in this manner have good fluidity, are easily crushed even under low pressure, and have high green strength after molding, and can be processed green using a lathe or the like. Suitable for press molding and degreasing.

焼結後の組織も緻密でボアのないSiC焼結体を得るこ
とができる。
It is possible to obtain a SiC sintered body with a dense structure and no bores after sintering.

成形用バインダーとしてPVAが0.5重量部未満にな
ると成形体の保形性が悪くなり、欠は易く、生加工が困
難となる。またPVAが2.0重量部を越えると、成形
時の顆粒の潰れが悪くなる。同様にPEGが 1.0重
量部未満になると保形性が悪く、3、Oii部を越える
と金型等に付着し易くなったり、脱脂時に爆裂が生じた
りする。
If the amount of PVA used as a molding binder is less than 0.5 parts by weight, the shape retention of the molded product will be poor, chipping will occur easily, and green processing will become difficult. Moreover, if PVA exceeds 2.0 parts by weight, the granules will not be easily crushed during molding. Similarly, if the PEG content is less than 1.0 parts by weight, the shape retention is poor, and if it exceeds 3.0 parts by weight, it tends to adhere to molds, etc., and may explode during degreasing.

成形用バインダーとしてのステアリン酸は金型プレス成
形時の離型剤として用いるものであるが、これがないと
離型性が悪くなったり、きしみ音が発生したり、更には
金型の摩耗を早め寿命が短かくなる。またステアリン酸
が3゜5重量部を越えると、金型プレス成形された成形
体の保形性が悪くなったり、逆に金型への付着が増大し
て離型性が悪くなったり、脱脂時に爆裂が生じたりする
。好ましいステアリン酸の添加量は0.5〜3.5屯賃
部である。焼結体表面のボアをなくすためのプレス成形
用バインダーとして使用するPVAの分子量が30 、
000を越えると顆粒の潰れに影響し、ボアをなくすこ
とはできないし、分子量が20,000未満だと生成形
体の保形性に悪影響をきたすことになる。また2種類の
PEGの分子量の範囲すなわち1 、000〜l 、5
00と150〜250は顆粒の破砕性を適したものにす
るものであり、その混合比率を10:l〜20:lにす
ることにより、顆粒の破砕性と保形性とをバランスされ
ることができ、lO:1未満になると保形性が悪くなり
20:lを越えると破砕性が悪くなる。
Stearic acid, which is used as a molding binder, is used as a mold release agent during mold press molding, but without it, mold release properties will be poor, squeaks will occur, and the mold will wear more quickly. Life expectancy will be shortened. Moreover, if stearic acid exceeds 3.5 parts by weight, the shape retention of the molded product press-molded with a mold will deteriorate, or conversely, the adhesion to the mold will increase, resulting in poor mold releasability. Sometimes explosions occur. The preferred amount of stearic acid added is 0.5 to 3.5 parts by weight. The molecular weight of PVA used as a binder for press molding to eliminate bores on the surface of the sintered body is 30.
If the molecular weight exceeds 20,000, it will affect the crushing of the granules, making it impossible to eliminate the bores, and if the molecular weight is less than 20,000, it will have an adverse effect on the shape retention of the formed body. Furthermore, the molecular weight range of the two types of PEG is 1,000 to 1,5
00 and 150 to 250 are suitable for the crushability of the granules, and by setting the mixing ratio to 10:l to 20:l, the crushability and shape retention of the granules can be balanced. If the ratio is less than 10:1, the shape retention will be poor, and if it exceeds 20:1, the crushability will be poor.

本発明で使用できるS ic′II1.粉末にはα型、
β型等を含み、微粉末の粒度は平均粒径3ILm以下。
Sic'II1. which can be used in the present invention. The powder contains α type,
Including β-type, etc., and the average particle size of the fine powder is 3ILm or less.

純度は95%以上のものである。また、−船釣に使用さ
れる成形用顆粒の大きさは、平均粒径で50〜120J
LIIである。その顆粒を使用して成形、脱脂し、 1
750〜2100℃で3時間程度Ar雰囲気中で焼結し
、  SiC焼結体を得る。
Purity is 95% or higher. - The size of molding granules used for boat fishing is 50 to 120 J in average particle size.
It is LII. Using the granules, mold and degrease, 1
Sintering is performed at 750 to 2100°C for about 3 hours in an Ar atmosphere to obtain a SiC sintered body.

使用される焼結助剤は、C,B、A文、Be等の公知の
もので、その添加量も従来、知られた範囲がそのまま使
用できる。
The sintering aids used are known ones such as C, B, A, Be, etc., and the amount added can be within the conventionally known range.

〔実施例〕〔Example〕

以下、本発明を実施例をもって説明する。 Hereinafter, the present invention will be explained with reference to examples.

実施例 l 平均粒径0.45gmのSiC微粉末100重量部に対
し、分子i24,000(7) PVAを 1.0重り
部、分子量50.000のPEGを 2.0重量部、炭
化ホウ素粉末を0.8重量部、カーボンブラック粉末を
2.5重量部に水を添加し、ボールミル中で20時間混
合して35%濃度のスラリーをつくり、スプレードライ
ヤーにて平均粒径85JLsの顆粒を製造した。
Example l For 100 parts by weight of SiC fine powder with an average particle size of 0.45 gm, 1.0 parts by weight of PVA with a molecular i24,000(7), 2.0 parts by weight of PEG with a molecular weight of 50.000, and boron carbide powder. Add water to 0.8 parts by weight of carbon black powder and 2.5 parts by weight of carbon black powder, mix in a ball mill for 20 hours to make a slurry with a concentration of 35%, and use a spray dryer to produce granules with an average particle size of 85 JLs. did.

この顆粒をラバー型に充填し、1.5ton/ c r
n’の圧力で加圧成形し、約外径80m5φ、長さ 1
00m+sの密度2.05/ c m″の生成形体を得
た。
This granule is filled into a rubber mold and 1.5 ton/cr
Pressure molded at a pressure of n', approximately outer diameter 80m5φ, length 1
00 m+s with a density of 2.05/cm'' was obtained.

この生成形体を旋盤にて加工し、50腸鵬φX5m層t
の半加工品とした。この旋盤での生加工中においてチッ
ピング等の欠けも発生せず、寸法通りのものを造ること
ができた0次いで、この半加工品をN2雰囲気中で80
0℃で脱脂し、更にAr雰囲気中で2100℃で5時間
焼結した。その結果、焼結密度が3.14g/cm’、
曲げ強度50kg/mrn’の緻密な焼結体を得ること
ができた。
This formed body was processed on a lathe,
It was made into a semi-processed product. During raw machining on this lathe, no chipping or other chips occurred, and we were able to manufacture products with the correct dimensions.Next, this semi-finished product was processed for 80 minutes in an N2 atmosphere.
It was degreased at 0°C and further sintered at 2100°C for 5 hours in an Ar atmosphere. As a result, the sintered density was 3.14 g/cm',
A dense sintered body with a bending strength of 50 kg/mrn' could be obtained.

比較例 l 平均粒径0.4571mのSiC微粉末100重量部に
対し、分子i24,000(7) PVAヲ2.5重量
部、炭化ホウ素粉末を0.6重量部、カーボンプラー2
り粉末を2.5重量部に水を添加し、ボールミル中で2
0時間混合して35%濃度のスラリーをつくり、スプレ
ードライヤーにて平均粒径65鉢濡の顆粒を製造した。
Comparative Example l For 100 parts by weight of SiC fine powder with an average particle size of 0.4571 m, 2.5 parts by weight of PVA with molecular i24,000(7), 0.6 parts by weight of boron carbide powder, and carbon puller 2
Water was added to 2.5 parts by weight of the powder, and the mixture was mixed in a ball mill for 2.5 parts by weight.
A slurry with a concentration of 35% was prepared by mixing for 0 hours, and granules with an average particle size of 65 were produced using a spray dryer.

この顆粒をラバー型に充填し、 1.5ton/ cm
’の圧力で加圧成形し、約外径60mmφ、長さ 10
0履履の密度1.987cm”の生成形体を得た。
The granules were filled into a rubber mold, and the volume was 1.5 ton/cm.
Pressure molded at a pressure of ', approximately outer diameter 60mmφ, length 10
A formed body with a density of 1.987 cm'' was obtained.

この生成形体を旋盤にて加工し50mmφX 5mmt
の半加工品とした。
This formed body is machined on a lathe to a diameter of 50mmφX 5mmt.
It was made into a semi-processed product.

次いで、この半加工品をN2雰囲気中で800℃で脱脂
し、更にAr雰囲気中で2100℃で5時間焼結した。
This blank was then degreased at 800° C. in a N2 atmosphere and further sintered at 2100° C. for 5 hours in an Ar atmosphere.

その結果、焼結密度が3.12g/cm”1曲げ強度4
5に8/mrn’の焼結体を得た。
As a result, the sintered density was 3.12g/cm"1 and the bending strength was 4.
A sintered body of 5 to 8/mrn' was obtained.

実施例 2 平均粒径0.45BmのSiC微粉末100重量部に対
し、分子量24.000(7) PVAを0.8重量部
1分子i1.540と 200のPEGを;11==;
==−51=□二1に混合した PEGを1.5重量部
、ステアリン酸を2.5重着部、カーボンブラック粉末
を2.5重社部、炭化ホウ素粉末を0.6重量部に水を
添加し、ボールミル中で20時間混合して35%濃度の
スラリーをつくり、スプレードライヤーにて顆粒化した
Example 2 To 100 parts by weight of SiC fine powder with an average particle size of 0.45 Bm, 0.8 parts by weight of PVA with a molecular weight of 24.000 (7), 1 molecule of i 1.540 and 200 PEG; 11==;
==-51=□21 was mixed with 1.5 parts by weight of PEG, 2.5 parts by weight of stearic acid, 2.5 parts by weight of carbon black powder, and 0.6 parts by weight of boron carbide powder. Water was added and mixed for 20 hours in a ball mill to make a 35% slurry, which was granulated using a spray dryer.

この顆粒をプレス成形機に自動充填し、1.2ton/
 c rn’の圧力で加圧成形し、外径30■−φ、内
径20鳳■φ、厚さ 4■■のリング状の生成形体を得
た。
The granules were automatically filled into a press molding machine to produce 1.2 tons/
Pressure molding was performed at a pressure of crn' to obtain a ring-shaped product having an outer diameter of 30 mm, an inner diameter of 20 mm, and a thickness of 4 mm.

この生成形体を旋盤にて内面をR状に加工し。The inner surface of this formed body is machined into an R shape using a lathe.

次いでN2雰囲気中、800℃で脱脂し、更にAr雰囲
気中2100℃で5時間焼結した。
Next, it was degreased at 800°C in an N2 atmosphere, and further sintered at 2100°C in an Ar atmosphere for 5 hours.

その結果、生加工時によるクラックの発生はなく、バレ
ル研磨後の製品にはほとんどボアは見られなかった。
As a result, no cracks occurred during raw processing, and almost no bores were observed in the product after barrel polishing.

比較例 2 モ均粒径0.45終mのSiC微粉末100重量部に対
し、分子ri24,000(7) PVAを2.017
℃部、ステアリン%ヲ2.5重量部、カーボンブラック
粉末を2.5重量部、炭化ホウ素粉末を0.8重量部に
水を添加し、ボールミル中で20時間混合して35%濃
度のスラリーをつくり、スプレードライヤーにて顆粒化
した。
Comparative Example 2 2.017 parts of PVA with a molecular ri of 24,000 (7) was added to 100 parts by weight of SiC fine powder with an average particle size of 0.45 m.
℃ parts, 2.5 parts by weight of stearin, 2.5 parts by weight of carbon black powder, and 0.8 parts by weight of boron carbide powder, and mixed in a ball mill for 20 hours to make a slurry with a concentration of 35%. was prepared and granulated using a spray dryer.

この顆粒をプレス成形機に自動充填し、2.0ton/
cnfの圧力で加圧成形し、外径305mφ、内径20
Iφ、厚さ 41のリング状の生成形体を得た。
This granule was automatically filled into a press molding machine, and 2.0 tons/
Pressure molded with cnf pressure, outer diameter 305mφ, inner diameter 20
A ring-shaped product having an Iφ and a thickness of 41 mm was obtained.

その後、実施例2と同様に脱脂、焼結した。Thereafter, it was degreased and sintered in the same manner as in Example 2.

その結果、生加工時によるクラックの発生はなかったが
、バレル研磨後の製品にボアが見られるものが500個
中9S個あった。
As a result, no cracks were found during raw processing, but 9 out of 500 products had bores after barrel polishing.

〔効果〕〔effect〕

以上説明した様に本成形用バインダーを用いた顆粒は流
動性が良く、低圧加圧でも良く漬れ、成形後の保形性も
良く、複雑形状の製品でも容易に生加工ができ、複雑形
状や大型形状の製品用とし用部材や釣具部材、混合用ポ
ール等として適した焼結体となる。
As explained above, granules made using this molding binder have good fluidity, are well soaked even under low pressure, have good shape retention after molding, and can be easily processed into products with complex shapes. The sintered body is suitable for use in large-sized products, fishing gear parts, mixing poles, etc.

Claims (3)

【特許請求の範囲】[Claims] (1)SiC微粉末100重量部に対し、成形用バイン
ダーとしてポリビニルアルコールを0.5〜2.0重量
部、ポリエチレングリコールを0.1〜3.0重量部添
加し、焼結助剤を更に加え、顆粒化し、それを用いて成
形、焼結するSiC焼結体の製造方法。
(1) To 100 parts by weight of SiC fine powder, add 0.5 to 2.0 parts by weight of polyvinyl alcohol and 0.1 to 3.0 parts by weight of polyethylene glycol as a molding binder, and further add a sintering aid. In addition, a method for producing a SiC sintered body, which comprises granulating, molding, and sintering the granulated material.
(2)請求項1記載の成形用バインダーとして更にステ
アリン酸を3.5重量部以下添加したSiC焼結体の製
造方法。
(2) A method for producing a SiC sintered body, further comprising 3.5 parts by weight or less of stearic acid as the molding binder according to claim 1.
(3)SiC微粉末100重量部に対し、成形用バイン
ダーとして分子量20,000〜30,000のポリビ
ニルアルコールを0.5〜2.0重量部、分子量1,0
00〜1,500と分子量150〜250の2種類のポ
リエチレングリコールを10:1〜20:1の範囲で混
合したポリエチレングリコールを1.0〜3.0重量部
、ステアリン酸を0.5〜3.5重量部添加し、更に焼
結助剤を加え、顆粒化し、それを用いて成形、焼結する
SiC焼結体の製造方法。
(3) 0.5 to 2.0 parts by weight of polyvinyl alcohol with a molecular weight of 20,000 to 30,000 as a molding binder to 100 parts by weight of SiC fine powder, and 1.0 parts by weight of polyvinyl alcohol with a molecular weight of 1.0
1.0 to 3.0 parts by weight of polyethylene glycol, which is a mixture of two types of polyethylene glycol with a molecular weight of 00 to 1,500 and a molecular weight of 150 to 250, in the range of 10:1 to 20:1, and 0.5 to 3 parts of stearic acid. A method for producing a SiC sintered body by adding .5 parts by weight, further adding a sintering aid, granulating it, molding it and sintering it.
JP63127542A 1988-02-05 1988-05-25 Production of sintered sic Granted JPH01301563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63127542A JPH01301563A (en) 1988-02-05 1988-05-25 Production of sintered sic

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-26293 1988-02-05
JP2629388 1988-02-05
JP63127542A JPH01301563A (en) 1988-02-05 1988-05-25 Production of sintered sic

Publications (2)

Publication Number Publication Date
JPH01301563A true JPH01301563A (en) 1989-12-05
JPH0469110B2 JPH0469110B2 (en) 1992-11-05

Family

ID=26364057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63127542A Granted JPH01301563A (en) 1988-02-05 1988-05-25 Production of sintered sic

Country Status (1)

Country Link
JP (1) JPH01301563A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0688746A1 (en) * 1994-05-27 1995-12-27 Technische Universiteit Delft Method of manufacturing molded articles from metallic or ceramic powdered particles and binder system suitable for use therein
CN108203300A (en) * 2018-02-07 2018-06-26 陕西科谷新材料科技有限公司 A kind of preparation method of high tenacity, high resistivity silicon carbide ceramics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0688746A1 (en) * 1994-05-27 1995-12-27 Technische Universiteit Delft Method of manufacturing molded articles from metallic or ceramic powdered particles and binder system suitable for use therein
NL9400879A (en) * 1994-05-27 1996-01-02 Univ Delft Tech A method of manufacturing molded articles from metallic or ceramic powder particles as well as a binder system suitable for use therewith.
CN108203300A (en) * 2018-02-07 2018-06-26 陕西科谷新材料科技有限公司 A kind of preparation method of high tenacity, high resistivity silicon carbide ceramics

Also Published As

Publication number Publication date
JPH0469110B2 (en) 1992-11-05

Similar Documents

Publication Publication Date Title
EP0968067B1 (en) Process for shaping parts from ceramic and metal powders comprising a gel formation
US4784812A (en) Ceramics binder and production of ceramics articles
CN109534828B (en) Granulation method of silicon carbide composite ceramic material
JPS6022676B2 (en) Silicon nitride/boron nitride composite sintered body and its manufacturing method
US5087594A (en) Ceramic material for injection molding and method of injection molding using the same
CN110540424B (en) Feed for zirconia ceramic injection molding and preparation method thereof
JP2003535980A (en) Aqueous injection molding binder composition and molding process
CN107267835B (en) A kind of non-magnesium hard alloy and preparation method thereof
US4948426A (en) Sintering metal powder and a process for making a sintered metal product
CN110540409B (en) Powder of alumina ceramic part and preparation method thereof
CN106518088A (en) Manufacturing method of high-performance silicon nitride sealing ring
CN1311724A (en) Aqueous molding compositions for powders of stainless steel, intermetallic compound and/or metal matrix composites
JPH01301563A (en) Production of sintered sic
JPH0925171A (en) Granulated powder for forming, its production and silicon nitride sintered body produced by using the same
CN1201838A (en) W-Ni-Fe alloy of high density and production thereof
JPS5822304A (en) Molding auxiliary for raw powder for powder metallurgy
JPS5926653B2 (en) How to form cemented carbide
JPH035361A (en) Ceramic raw base compound for dry press-molded raw base
JPH0457882A (en) Medium for barrel finishing
JPH01294576A (en) Production of sic sintered material
JPH04124065A (en) Sintered product of carbon fiber-compounded silicon carbide and its production
CN112608147A (en) Integral zirconia ceramic cutting tool material and preparation method thereof
JP5181198B2 (en) Ceramic sintered body and method for producing the same
KR100829230B1 (en) Preparing method of carbon particle
JPS59223266A (en) Manufacture of non-oxide ceramic sintered body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 16