JPS61112112A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPS61112112A
JPS61112112A JP23312884A JP23312884A JPS61112112A JP S61112112 A JPS61112112 A JP S61112112A JP 23312884 A JP23312884 A JP 23312884A JP 23312884 A JP23312884 A JP 23312884A JP S61112112 A JPS61112112 A JP S61112112A
Authority
JP
Japan
Prior art keywords
light
subject
lens
image
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23312884A
Other languages
Japanese (ja)
Inventor
Takesuke Maruyama
竹介 丸山
Hironobu Sato
裕信 佐藤
Takashi Azumi
安積 隆史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23312884A priority Critical patent/JPS61112112A/en
Publication of JPS61112112A publication Critical patent/JPS61112112A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/282Autofocusing of zoom lenses

Abstract

PURPOSE:To reduce the titled device at its size by constituting the device of a diaphragm for branching the reflected light of a spot on a subject into plural light beams, prisms and photodetecting elements to detect focused state. CONSTITUTION:Infrared luminous flux 11 radiated from a light emitting part 10 forms a spot on the subject 7 through a condenser lens 12 and lens groups 3, 2, 1, the reflected light is condensed by an image-forming lens 15 through a half mirror 13 and its image is formed on photodetecting parts 18, 19 through the diaphragm 16 and the prism group 17. A motor 24 is driven by a control circuit 22, the lens group 1 is moved and the image of the subject 7 is formed on a sensor 5. The luminous flux divided by the prism 17 is formed an image on the center position of the pphotodetecting parts 18, 19 to detect the focused state. Since a light source part and a range finder are stored in a zoom lens, the device can be reduced at its size and highly accurate focusing can be attained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ビデオカメラ等に設けられる自動焦点調節装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an automatic focus adjustment device provided in a video camera or the like.

〔発明の背景〕[Background of the invention]

従来、ビデオカメラ等に用いられる自動焦点調節装置に
は、徨々の方式のものが提案され、実用化されてきた。
Conventionally, various types of automatic focus adjustment devices used in video cameras and the like have been proposed and put into practical use.

その中でも、例えば、特会昭46−28500号に記載
されているように、被写体に赤外線を照射して三角測量
の原理を用いることによって被写体までの距離を測定す
る方式の自動焦点調節装置は、構成が簡単であることか
ら、信頼性が高くしかも、低コスト化ができるという特
徴がある。
Among them, for example, as described in Tokukai No. 46-28500, there is an automatic focusing device that measures the distance to the subject by irradiating the subject with infrared rays and using the principle of triangulation. Since the configuration is simple, it has the characteristics of high reliability and low cost.

また、該方式では、被写体に赤外線を照射することから
、低照度下での撮影においても、焦点合せの性能が劣下
しないという利点もある。
Furthermore, since this method irradiates the subject with infrared rays, it has the advantage that the focusing performance does not deteriorate even when shooting under low illumination.

しかし、被写体に赤外線を投射する赤外線発光部と、該
赤外線の被写体からの反射光を受光する赤外線受光部と
を基線として、三角測量の原理が用いられていることか
ら、被写体までの距離の測定精度は、該基線の長さく以
上、基線長という)に依存している0 このため、FWの6倍のズームレンズ用に実層化された
自動焦点調節装置の従来例では、基線長が60〜90關
と長くなることと、更に、ズームレンズの外部であって
該ズームレンズの前玉部の近傍に、基線長測定用の窓を
設ける必要があることなどから、装置の小形化が困難と
なっていた。
However, since the principle of triangulation is used with the infrared light emitter that projects infrared light toward the subject and the infrared receiver that receives the reflected infrared light from the subject as a baseline, the distance to the subject can be measured. Accuracy depends on the length of the baseline (the length of the baseline is referred to as the baseline length). Therefore, in the conventional example of an automatic focusing device that has been implemented for a 6x FW zoom lens, the baseline length is 60 It is difficult to miniaturize the device because it is as long as ~90 degrees, and it is also necessary to provide a window for measuring the baseline length outside the zoom lens near the front lens of the zoom lens. It became.

一方、最近のビデオカメラ等の小形化の要請に伴って、
撮像素子の画面サイズの小形化が進み、例えば、2/3
インチの従来の撮像管から、しだいに、1/2インチや
173インチの小形撮像管が使われるようになってきた
。これに伴い、ズームレンズも小形になり、例えば、F
14の6倍ズームレンズの場合には、従来は46111
1であつな前玉径が301111程度に小形化されてい
る。
On the other hand, with the recent demand for smaller video cameras, etc.
The screen size of image sensors is becoming smaller, for example, 2/3
The traditional 1/2 inch image pickup tube has gradually been replaced by smaller 1/2 inch and 173 inch image pickup tubes. Along with this, zoom lenses have also become smaller; for example, F
In the case of 14 6x zoom lens, conventionally 46111
1, the diameter of the front lens has been reduced to about 301,111 mm.

このように、各部分の小形化が進んでいることから、自
動焦点調節装置をより小形にすることが極めて重畳にな
っている。
As described above, as each part is becoming smaller, it becomes extremely important to make the automatic focusing device smaller.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の欠点を除き、小形に構
成することができるようにした自動焦点調節装置を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an automatic focus adjustment device that eliminates the drawbacks of the prior art described above and can be constructed in a compact size.

〔発明の概要〕[Summary of the invention]

この目的を達成するなめ、本発明は、焦点調節されるべ
きズームレンズの内部に、距離、測定用の赤外線発光素
子と受光素子を設け、いわゆるTTL方式にし九ことに
より、小形化を図ったことを特徴としている。
In order to achieve this object, the present invention provides an infrared emitting element and a light receiving element for distance and measurement inside a zoom lens to be focused, and uses a so-called TTL method to achieve miniaturization. It is characterized by

そのために、被写体に向けて赤外線を投射する上記の赤
外線発光素子を具備し、この赤外線が被写体に尚たった
時に被写体上にスポットを生じさせる光源装置を設ける
とともに、核スポットの反射光を集光する合焦レンズの
後方に配置され、該集光された反射光を複数の開口部に
よって複数の光束に分岐する絞りと、該複数の光束を夫
々異なった方向へ屈折させるプリズムと、該屈折された
光束を受光する前記受光素子と、夫々の光束の受光位菅
から合焦状態を検出する制御回路とを具備した測距装置
とを設けている。
To this end, the above-mentioned infrared light emitting element that projects infrared rays toward the subject is provided, a light source device is provided that creates a spot on the subject when the infrared rays reach the subject, and the reflected light of the nuclear spot is collected. a diaphragm disposed behind the focusing lens, which splits the condensed reflected light into a plurality of light beams through a plurality of apertures; a prism which refracts the plurality of light beams in different directions; A distance measuring device is provided, which includes the light receiving element that receives the light flux, and a control circuit that detects a focusing state from the light receiving position of each light flux.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面とともに説明するO 第1図は、本発明による自動焦点調節装置の一実施例を
示す構成図であり、1は前玉レンズ群+2hバリエータ
レンズ群、511コンペンセ一タレンズ群、4はマスタ
ーレンズ群、5はセンナ、6は上記レンズ群1〜40光
軸、7は被写体、8は赤外線発光素子9の駆動回路、9
は該赤外線発光素子、1′0は発光部、11は赤外線の
光束、12は集光レンズ、13は反射率50%程度のハ
ーフミラ−914は赤外線のみを反射するミラー、15
は結像レンズ、16は絞り、17はプリズム群、 18
.19は受光部、20.21はセンス回路、22は制御
回路、23は前玉レンズ群位置設定回路。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of an automatic focusing device according to the present invention, in which 1 is a front lens group + 2h variator lens group, 511 is a compensator lens group, and 511 is a compensator. 4 is a master lens group, 5 is a senna, 6 is an optical axis of the lens groups 1 to 40, 7 is a subject, 8 is a drive circuit for the infrared light emitting element 9, 9
1'0 is the infrared light emitting element, 1'0 is a light emitting part, 11 is an infrared light beam, 12 is a condenser lens, 13 is a half mirror with a reflectance of about 50%, 914 is a mirror that reflects only infrared rays, 15
is an imaging lens, 16 is an aperture, 17 is a prism group, 18
.. 19 is a light receiving section, 20.21 is a sense circuit, 22 is a control circuit, and 23 is a front lens group position setting circuit.

24は七−タ、25はモータギヤ、26は前玉レンズ群
位置設定ギヤである。
24 is a seventh gear, 25 is a motor gear, and 26 is a front lens group position setting gear.

同図において、光軸6上に配置された各レンズ群1〜4
は、所望のズーム倍率でセンサ5上に被写体7の像を結
像させるためのズームレンズを構成している。
In the figure, each lens group 1 to 4 arranged on the optical axis 6
constitutes a zoom lens for forming an image of the subject 7 on the sensor 5 at a desired zoom magnification.

該レンズ群1〜4のうち、前玉レンズ群1は、焦点調節
により、光軸6上を移動し、バリエータレンズ群2とコ
ンベンセータレンズ群3は、変倍操作により、光軸6上
を移動するようになっている0 発光部10を有し、800〜900nm程度の長波長赤
外線を発する赤外線発光素子9は、制御回路22の制御
を受けた駆動回路8によって、断続的に発光する。
Among the lens groups 1 to 4, the front lens group 1 moves on the optical axis 6 by focusing, and the variator lens group 2 and the convencator lens group 3 move on the optical axis 6 by changing the magnification. An infrared light emitting element 9 that has a movable light emitting section 10 and emits long wavelength infrared light of about 800 to 900 nm emits light intermittently by a drive circuit 8 controlled by a control circuit 22.

発光部10から発射された赤外線光束11は、マスター
レンズ群4の焦点距離とほぼ等価な焦点距離を有する集
光レンズ12によって集光された後、ハーフミラ−13
とミラー14を介してコンベンセータ群3に入射され、
バリエータレンズ群2゛と前玉レンズ群1を通って被写
体7上に照射される。この場合、合焦時、集光レンズ1
2の作用により、赤外線光束によって被写体7上に生ず
るスポットが発光部10と同じ形状となるように、集光
レンズ12の焦点距離と設定位置が調整されている。
The infrared light beam 11 emitted from the light emitting unit 10 is condensed by a condensing lens 12 having a focal length almost equivalent to the focal length of the master lens group 4, and is then condensed by a half mirror 13.
is incident on the convencator group 3 via the mirror 14,
The light passes through the variator lens group 2' and the front lens group 1 and is irradiated onto the subject 7. In this case, when focusing, the condenser lens 1
2, the focal length and setting position of the condenser lens 12 are adjusted so that the spot generated on the subject 7 by the infrared light beam has the same shape as the light emitting section 10.

上記被写体7に照射された赤外線光の反射光は、前玉レ
ンズ群1.バリエータレンズ群2゜コンペンセータレン
ズ群5を通り、ミラー14で反射してハーフミラ−13
を通過した後、結像レンズ15により集光される。この
集光された反射光は、絞り16とプリズム群17を通過
し、受光部18、19上に結像されて電気信号に変換さ
れる。
The reflected light of the infrared light irradiated onto the subject 7 is reflected from the front lens group 1. It passes through the variator lens group 2° and the compensator lens group 5, is reflected by the mirror 14, and is reflected by the half mirror 13.
After passing through, the light is focused by the imaging lens 15. This focused reflected light passes through an aperture 16 and a group of prisms 17, is imaged on light receiving sections 18 and 19, and is converted into an electrical signal.

そして、該電気信号は、センス回路20.21で増幅さ
れ、制御回路22に供給される。
The electrical signal is then amplified by the sense circuits 20 and 21 and supplied to the control circuit 22.

制御回路22は、駆動回路8を制御して赤外線発光素子
9を断続的に発光させるとともに、センス回路20.2
1からの上記電気信号を処理・演算することによって、
被写体7までの距離を検出し、該検出結果を表わす測距
信号を発生する。
The control circuit 22 controls the drive circuit 8 to cause the infrared light emitting element 9 to emit light intermittently, and also controls the sense circuit 20.2.
By processing and calculating the above electrical signals from 1,
The distance to the subject 7 is detected and a distance measurement signal representing the detection result is generated.

前玉レンズ群位置設定回路23はとの測距信号に応じて
モータ24を駆動し、モータギヤ25と前玉レンズ群位
置設定ギヤ26によって、前玉レンズ群1を光軸6の方
向に移動させる。
The front lens group position setting circuit 23 drives the motor 24 in response to the distance measurement signal, and moves the front lens group 1 in the direction of the optical axis 6 by the motor gear 25 and the front lens group position setting gear 26. .

こうして、センナ5上に、焦点の合った被写体像を得る
ことができるようになっている。
In this way, a focused subject image can be obtained on the sensor 5.

第2図は第1図の自動焦点調節装置の測距部を示す構成
図であり、17L 、 17にはプリズム群17の夫々
のプリズム、 18L、 18Rは受光部18を形成す
る受光素子、 19L 、 19Rは受光部19を形成
する受光素子、27は被写体7上のスポット像。
FIG. 2 is a configuration diagram showing the distance measuring section of the automatic focus adjustment device shown in FIG. 1, in which 17L and 17 are respective prisms of the prism group 17, 18L and 18R are light receiving elements forming the light receiving section 18, and 19L. , 19R is a light receiving element forming the light receiving section 19, and 27 is a spot image on the subject 7.

29.30は反射光の光束、31.32は受光部18.
19上のスポット像であり、第1図に対応する部分には
同一符号をつけている。
29.30 is the luminous flux of the reflected light, 31.32 is the light receiving section 18.
19, and parts corresponding to those in FIG. 1 are given the same reference numerals.

なお、赤外線光の被写体7からの反射光は、前玉レンズ
群1.バリエータレンズ群21コンベンセータレンズ群
3および結像レンズ15ヲ通過するが、同図では便宜上
、これらをまとめて等価結像レンズ28としている。
Note that the infrared light reflected from the subject 7 is transmitted through the front lens group 1. The light passes through the variator lens group 21, the convencator lens group 3, and the imaging lens 15, but in the figure, for convenience, these are collectively referred to as an equivalent imaging lens 28.

同図において、等価結儂レンズ28を通過し収−束され
た反射光は、絞り16に形成され九1対の略長方形の開
口を通過することにより、左側の光束29と、右側の光
束30とに分岐される。
In the figure, the reflected light that has passed through the equivalent convergence lens 28 and has been converged passes through 91 pairs of substantially rectangular apertures formed in the diaphragm 16, thereby forming a light beam 29 on the left side and a light beam 30 on the right side. It is branched into.

一方の左側光束29は、プリズム17Lにより、入射方
向より下方向に屈折され、図面の下側に配置された受光
部18に照射されてスポット像31を形成する。また、
右側光束30は、プリズム17Hによって、入射方向よ
り上方向へ屈折され、図面上の上側に配置された受光部
19に照射されの像が正確に結像した合焦状態を示し、
(b)は前ピンで債がぼけた状態を示し、(C)は後ピ
ンで像18、19の中心位置に該スポット像31.32
が結像され、これらスポット像31.32が結像され、
これらスポット像31.32の中心は、夫々受光素子1
8I、、  18Rの分割線上、受光素子19Lt19
Hの分割線上にあって、夫々の受光素子181.と18
R。
One of the left side light beams 29 is refracted downward from the incident direction by the prism 17L, and is irradiated onto the light receiving section 18 disposed on the lower side of the drawing to form a spot image 31. Also,
The right beam 30 is refracted upward from the direction of incidence by the prism 17H, and is irradiated onto the light receiving unit 19 disposed at the upper side in the drawing, showing a focused state in which an image is accurately formed.
(b) shows the state where the bond is blurred with the front focus, and (C) shows the spot image 31.32 at the center position of images 18 and 19 with the back focus.
are imaged, and these spot images 31 and 32 are imaged,
The centers of these spot images 31 and 32 are located on the light receiving element 1, respectively.
On the dividing line of 8I, 18R, light receiving element 19Lt19
Each light receiving element 181 . and 18
R.

19Lと19Rの受光量は等しくなる。この場合、セン
サ5(第1図)上にも焦点の合った被写体すように、光
束29.50が受光部18.19の手前で交差すること
から、スポット像31は合焦時よりも右方にシフトし、
スポット像32は同じく左方に、光束29.50の交差
位置が、受光部18.19の後方になるため、スポット
像51.52は、夫々同図(b)とは逆の方向にシフト
する0 そこで、スポット像51.52の位置を知ることによっ
て、被写体像の焦点が合っているか否かを検知できるよ
うになっている。
The amounts of light received by 19L and 19R are equal. In this case, the light beams 29.50 intersect in front of the light receiving section 18.19 so that the object is also in focus on the sensor 5 (Fig. 1), so the spot image 31 is on the right side compared to when in focus. shift towards
Since the spot image 32 is also to the left and the intersection position of the light beam 29.50 is behind the light receiving section 18.19, the spot images 51.52 are shifted in the opposite direction to that shown in FIG. 0 Therefore, by knowing the positions of the spot images 51 and 52, it is possible to detect whether or not the subject image is in focus.

第5図は、焦点調節を行なう制御回路22(第1図)の
−具体例を示すブロック図であって、35、54.35
は差動増幅器であり、第2図と第4図に対応する部分に
は同一符号をつけている。
FIG. 5 is a block diagram showing a specific example of the control circuit 22 (FIG. 1) that performs focus adjustment, and includes 35, 54, 35
is a differential amplifier, and parts corresponding to FIGS. 2 and 4 are given the same reference numerals.

W、6図は非合焦時における第5図の各部の信号の関係
を示す説明図である。
W, FIG. 6 is an explanatory diagram showing the relationship of signals of each part in FIG. 5 when out of focus.

第5図において、下側の受光素子18L 、 18Rか
らの受光量を表わす電気信号は、差動増幅器34で演算
され、夫々の差を表わす出力信号Aは差動増幅器35の
一方の入力端子に供給される。
In FIG. 5, electrical signals representing the amount of light received from the lower light receiving elements 18L and 18R are calculated by a differential amplifier 34, and an output signal A representing the difference between them is sent to one input terminal of a differential amplifier 35. Supplied.

同様に、受光素子19L、19Rからの受光量を表わす
電気信号は、差動増幅器56で演算され、夫々の差を表
わす出力信号Bは差動増幅器55の他の入力端子に供給
される。そして、出力信号A。
Similarly, electrical signals representing the amount of light received from the light receiving elements 19L and 19R are calculated by a differential amplifier 56, and an output signal B representing the difference between them is supplied to the other input terminal of the differential amplifier 55. And output signal A.

Bの差を表わす出力信号Cが差動増幅器55から出力さ
れる。
An output signal C representing the difference between B and B is output from the differential amplifier 55.

ここで、第4図(c)で説明した後ビン状態では、夫々
の出力信号A、B、Cは、第6図(a)に示すようにな
る。すなわち、受光素子18L、 19Hの受光量が多
く、受光素子18R* 19Lの受光量が少ないために
、差動増幅器易の出力信号Ar1正のレベルの信号、差
動増I1g器出力信号Bは負レベルの信号となり、差動
増幅器35からは正レベルの信号Cが出力される。
Here, in the rear bin state described in FIG. 4(c), the respective output signals A, B, and C become as shown in FIG. 6(a). That is, since the amount of light received by the light receiving elements 18L and 19H is large, and the amount of light received by the light receiving elements 18R*19L is small, the output signal Ar1 of the differential amplifier 1 has a positive level, and the output signal B of the differential amplifier I1g has a negative level. The differential amplifier 35 outputs a positive level signal C.

一方、第4図(b)で説明した前ビン状態では、夫々の
出力信号A、B、Cは、第6図(b)に示すようになり
、第6図(a)とは逆の負レベル信号が差vth増幅器
35から出力される。
On the other hand, in the front bin state explained in FIG. 4(b), the respective output signals A, B, and C become as shown in FIG. 6(b), and the negative values are opposite to those in FIG. A level signal is output from the difference vth amplifier 35.

被写体像の焦点が合っている場合〔第十図(&)〕には
、受光素子1a、、、1aRの夫々の受光量は互い−こ
等しくなり、また、受光素子19L + 19Rの夫々
の受光量は互いに等しくなるので、差動増幅器35の出
力信号Cのレベルは零となることは言うまでもない。
When the subject image is in focus [Figure 10 (&)], the amount of light received by each of the light receiving elements 1a, , 1aR is equal to each other, and the amount of light received by each of the light receiving elements 19L + 19R Since the quantities are equal to each other, it goes without saying that the level of the output signal C of the differential amplifier 35 is zero.

このようにして、被写体像のセンナ5上での結像状態を
、出力信号Cの信号レベルから検知できる。
In this way, the imaging state of the subject image on the sensor 5 can be detected from the signal level of the output signal C.

この出力信号Cは、第1図に示す前玉レンズ群位置設定
回路25に供給され、該出力信号Cのレベルと極性に応
じてモータ24が所定の方向に所定量だけ駆動され、前
玉レンズ群1の位置が調節されて焦点合せが行なわれる
This output signal C is supplied to the front lens group position setting circuit 25 shown in FIG. The position of group 1 is adjusted to achieve focusing.

ところで、焦点調節すべきズームレンズの焦点距離を1
2〜75tmの6倍レンズとし、発光部10(第1図)
の直径を13m、集光レンズ12の焦点距離を30關、
結像レンズ15の焦点距離をSa*W、とすると、この
実施例では、受光部18.19上のスポット像51.5
2の直径は、約Q、20となる。
By the way, if the focal length of the zoom lens to be adjusted is 1
A 6x lens with a diameter of 2 to 75 tm is used, and the light emitting part 10 (Fig. 1)
The diameter of the lens is 13 m, the focal length of the condensing lens 12 is 30 m,
Assuming that the focal length of the imaging lens 15 is Sa*W, in this embodiment, the spot image 51.5 on the light receiving section 18.19 is
The diameter of 2 is approximately Q,20.

そして、ズームレンズを望遠側とし、被写体7が至近か
ら無限遠に移動した場合、受光部18゜19上のスポッ
ト像51,52の移動量は、はぼa、35關となる。
When the zoom lens is set to the telephoto side and the subject 7 moves from close to infinity, the amount of movement of the spot images 51 and 52 on the light receiving sections 18 and 19 is approximately a, 35 degrees.

このように、スボツ=) 儂31 、52の直径と、最
大の移動量とがほぼ等しくなる場合には、スポット像の
中心を正確に検出しなければ、高精度で距離の測定を行
なうことができなくなる0この点、上記実施例は、1対
の2分割受光部18゜19を用いているものであるから
、1個の2分割受光部を用いた従来技術に比べて、はる
かに高い精度で距離の測定が可能となる。
In this way, when the diameters of the spots =) 31 and 52 are approximately equal to the maximum amount of movement, it is not possible to measure the distance with high accuracy unless the center of the spot image is detected accurately. In this respect, since the above embodiment uses a pair of two-split light-receiving sections 18°19, it has much higher accuracy than the conventional technology that uses one two-split light-receiving section. distance can be measured.

次に、高い精度で上記測定ができる理由について、第7
図とともに説明する。
Next, we will discuss the reasons why the above measurements can be made with high accuracy in the seventh section.
This will be explained with figures.

同図(a)は、スポット像が被写体の模様によって、半
分欠けた場合を示し、同図(b)は、その際の差動増幅
器55.54.35(第5図)の出力信号レベルを示す
Figure (a) shows a case where half of the spot image is missing due to the pattern of the subject, and Figure (b) shows the output signal level of the differential amplifier 55, 54, 35 (Figure 5) in that case. show.

図示するように、半分欠は念スポット像36゜37であ
っても、受光素子18L、18Rの受光量の差と受光素
子19L、19.の受光量の差との差を検出するもので
あるから、夫々のスポット(Illの中心を正確に一致
させることができ、スポット像が一部欠けていても、十
分に高い精度で焦点調整を行なうことができる。
As shown in the figure, even if the spot image 36°37 is partially missing, the difference in the amount of light received by the light receiving elements 18L, 18R and the difference in the amount of light received by the light receiving elements 19L, 19. Since it detects the difference in the amount of light received by can be done.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、光源装置と測距
装置とをズームレンズの内部に収納したことにより、装
置の小形化が可能となり、また、赤外線による従来の2
眼自動焦点調節装置で問題となっていた、被写体での赤
外線の反射スポットが牛久は状態になることにより生じ
る距離測定誤差の発生を防止することができ、高精度の
焦点合せができるようになり、上記従来技術の欠点を除
去して、優れた機能の自動焦点調節装置を提供すること
ができる。
As explained above, according to the present invention, by housing the light source device and the distance measuring device inside the zoom lens, it is possible to downsize the device, and it is also possible to
It is possible to prevent the occurrence of distance measurement errors caused by infrared rays reflecting spots on the subject, which was a problem with automatic focusing devices, and enables highly accurate focusing. , it is possible to eliminate the drawbacks of the above-mentioned prior art and provide an automatic focusing device with excellent functionality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による自動焦点調節装置の一体像の合焦
状態との関係を説明する説明図、第5図は第1図の制御
回路の一具体例を示すブロック図、第6図は第S図の制
御回路の動作を示す説明図、第7図は第5図の制御回路
においてスポット像が牛久は状態になった場合の動作を
示す説明図である。 1・・・前玉レンズ群 2・・・バリエータレンズ群3
・・・コンペンセータレンズ群 8・・・赤外発光素子
駆動回路 9・・・赤外発光素子 10・・・発光部1
2・・・集光レンズ 1S・・・ハーフミラ−14・・
・ミラー 15・・・結偉レンズ 16・・・絞り17
・・・プリズム群 ”L117B・・・プリズム18、
19・・・受光部 18L、 18R、19L、 、 
 19B・・・発光素子 20.21・・・センス回路
 22・・・制御回路 25・・・前玉レンズ群位賀設
定回路 24・・・モータ 25・・・モータギヤ 2
6・・・前玉レンズ群位f#trk定ギヤ 55.54
.55・・・差動増幅話柄1図 篤3図       賞4図 糖5図
FIG. 1 is an explanatory diagram illustrating the relationship between the automatic focusing device according to the present invention and the focused state of an integral image, FIG. 5 is a block diagram showing a specific example of the control circuit of FIG. 1, and FIG. FIG. 7 is an explanatory diagram showing the operation of the control circuit of FIG. S, and FIG. 7 is an explanatory diagram showing the operation of the control circuit of FIG. 5 when the spot image is in the Ushiku state. 1... Front lens group 2... Variator lens group 3
...Compensator lens group 8...Infrared light emitting element drive circuit 9...Infrared light emitting element 10...Light emitting section 1
2... Condensing lens 1S... Half mirror 14...
・Mirror 15...Kuiwei lens 16...Aperture 17
... Prism group "L117B... Prism 18,
19... Light receiving section 18L, 18R, 19L, ,
19B...Light emitting element 20.21...Sense circuit 22...Control circuit 25...Front lens group position setting circuit 24...Motor 25...Motor gear 2
6...Front lens group position f#trk constant gear 55.54
.. 55...Differential amplification story 1 figure Atsushi 3 figure Prize 4 figure Sugar 5 figure

Claims (1)

【特許請求の範囲】[Claims] 被写体に向けて赤外線を投射する赤外線発光素子を具備
し該赤外線が被写体に当たつた時に被写体上にスポット
を生じさせる光源装置をズームレンズ内部に設けるとと
もに、該スポットの反射光を集光する合焦レンズの後方
に配置され該合焦レンズで集光された反射光を複数の開
口部によつて複数の光束に分岐する絞りと、該複数の光
束を異なつた方向へ屈折させるプリズムと、該屈折され
た光束を受光する受光素子と、夫々の光束の受光位置か
ら合焦状態を検出する制御回路とを具備する測距装置を
ズームレンズ内部に設けたことを特徴とする自動焦点調
節装置。
A light source device is provided inside the zoom lens, and is equipped with an infrared light emitting element that projects infrared rays toward the subject and creates a spot on the subject when the infrared rays hit the subject, and a light source device that collects the reflected light of the spot. an aperture disposed behind the focusing lens and splitting the reflected light focused by the focusing lens into a plurality of light beams through a plurality of apertures; a prism that refracts the plurality of light beams in different directions; An automatic focusing device characterized in that a distance measuring device including a light receiving element that receives refracted light beams and a control circuit that detects a focusing state from the light receiving position of each light beam is provided inside a zoom lens.
JP23312884A 1984-11-07 1984-11-07 Automatic focusing device Pending JPS61112112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23312884A JPS61112112A (en) 1984-11-07 1984-11-07 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23312884A JPS61112112A (en) 1984-11-07 1984-11-07 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPS61112112A true JPS61112112A (en) 1986-05-30

Family

ID=16950183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23312884A Pending JPS61112112A (en) 1984-11-07 1984-11-07 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPS61112112A (en)

Similar Documents

Publication Publication Date Title
US4534637A (en) Camera with active optical range finder
US6480266B2 (en) Autofocus distance-measuring optical system
US4408853A (en) Focus detecting device
US4488799A (en) Metering system using a focus detecting optical system
JPS5926708A (en) Focusing method of zoom lens
JPS61112112A (en) Automatic focusing device
US4723142A (en) Focus detecting device
GB2095505A (en) Automatic focusing
US4643556A (en) Automatic focusing adjustment device
JP3174128B2 (en) camera
JPH04165318A (en) Focusing position detecting device
CN100552522C (en) Photometry apparatus and camera
JP2001188030A (en) Lens meter
JPS59221081A (en) Video camera
JPH11264928A (en) Focusing device
JPS60125812A (en) Focusing detector
JP3542171B2 (en) Microscope equipment
JP2006184321A (en) Focus detecting device and optical equipment equipped with focus detecting device
JP2593726Y2 (en) Displacement detector
JPH0558483B2 (en)
JPS5910911A (en) Detector of focal position
JPS6219828A (en) Focus position detector
JPS61140907A (en) Focus detector
JPH01217425A (en) Camera with active type range finding device
JPH04278907A (en) Range finder