JPS61111923A - Particle containing iron carbide production and use thereof - Google Patents

Particle containing iron carbide production and use thereof

Info

Publication number
JPS61111923A
JPS61111923A JP59231589A JP23158984A JPS61111923A JP S61111923 A JPS61111923 A JP S61111923A JP 59231589 A JP59231589 A JP 59231589A JP 23158984 A JP23158984 A JP 23158984A JP S61111923 A JPS61111923 A JP S61111923A
Authority
JP
Japan
Prior art keywords
iron
carbon
less
particles
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59231589A
Other languages
Japanese (ja)
Inventor
Kazuo Okamura
和夫 岡村
Ikuo Kitamura
北村 郁夫
Hideki Aomi
秀樹 青海
Satoru Koyama
哲 小山
Katsushi Tokunaga
徳永 勝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP59231589A priority Critical patent/JPS61111923A/en
Publication of JPS61111923A publication Critical patent/JPS61111923A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a particle containing specific iron carbide and useful as a magnetic material, by contacting iron oxyhydroxide or iron oxide with a carbon-containing reducing and carbonizing agent after or without contacting the iron compound with a carbon-free reducing agent. CONSTITUTION:A particle having an average aspect ratio of >=1.0 and <3.0 and an average particle diameter of 0.1-5mum and giving an excellent magnetic material can be produced by contacting an iron oxyhydroxide (e.g. alpha-, beta- or gamma-FeOOH) or iron oxide (e.g. alpha- or gamma-Fe2O3) having an average aspect ratio of 1.0 and <3.0 and an average particle diameter of 0.1-5mum with a carbon- containing reducing and carbonizing agent (e.g. CO, CH3OH, 1-5C aliphatic hydrocarbon, etc.) or its mixture with a carbon-free reducing agent (preferably at 250-400 deg.C) after or without contacting the iron compound with a carbon-free reducing agent (e.g. H2) (preferably at 200-700 deg.C).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭化鉄を含有する粒子、その製法及び用途に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to particles containing iron carbide, their production method and uses.

(従来の技術) 現在、磁気記録材料として、針状γ−酸化鉄が多量に使
用されている。しかしながら、平均軸比が1.0以上3
.0未満のγ−酸化鉄は、保磁力等の磁気特性が低く、
磁気記録用材料としでは現在使用されていない。しかし
、そのような酸化鉄あるいは原料となる酸化鉄またはオ
キシ水酸化鉄は、製造が容易であり、これらから生成さ
れる形骸粒子は、塗料化に際して充填密度が高くなると
いうことが期待される。
(Prior Art) Acicular γ-iron oxide is currently used in large quantities as a magnetic recording material. However, if the average axial ratio is 1.0 or more
.. γ-iron oxide with a value less than 0 has low magnetic properties such as coercive force,
It is not currently used as a magnetic recording material. However, such iron oxides or iron oxides or iron oxyhydroxides used as raw materials are easy to produce, and it is expected that the bulk particles produced from them will have a high packing density when made into a paint.

また、球状の炭化鉄は、磁気記録用材料としで知られて
いる(米国特許明細8第3.572.993号)。
Spherical iron carbide is also known as a magnetic recording material (US Pat. No. 8, No. 3,572,993).

しかしながら、その製法はカルボニル鉄の蒸気凝集体を
Co又はこれとH2の混合ガスと反応させるという危険
且つ煩瑣なもので製造が極めて困難で、平均粒径も00
OO5〜0.1μ働と極めて小さく、2疑果しやすいた
め分散させることが困難であるなど取扱いにくく、現在
、生産されていない。
However, the manufacturing method is extremely difficult, as it involves reacting steam aggregates of carbonyl iron with Co or a mixed gas of Co and H2, and the average particle size is
It is extremely small (OO5~0.1μ) and is difficult to handle because it is difficult to disperse and is not currently produced.

(発明が解決しようとする問題点) 本発明の目的は平均粒径が比較的大きくて取扱いやすく
、製造が容易な原料鉄化合物を使用して保磁力が比較的
大きい粒子及びその粒子からなる磁性材料を提供するこ
とにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to create particles with a relatively large coercive force and a magnetic material made of the particles by using a raw material iron compound that has a relatively large average particle size, is easy to handle, and is easy to manufacture. The purpose is to provide materials.

(問題点を解決するための手段) 本発明は平均軸比1.0以上3.0未満の、平均粒径が
0.1μmを越え5μmIl以下の炭化鉄を含有する粒
子に係る。
(Means for Solving the Problems) The present invention relates to particles containing iron carbide with an average axial ratio of 1.0 or more and less than 3.0 and an average particle diameter of more than 0.1 μm and less than 5 μmIl.

本発明の粒子は(a)平均軸比1.0以上3.0未満の
、平均粒径が0.1μ−を越え5μIII以下のオキシ
水酸化鉄または酸化鉄に炭素を含有しない還元剤を接触
させた後または接触させずに、(b)炭素を含有する還
元炭化剤もしくはこれと炭素を含有しない還元剤との混
合物を接触させることにより製造することができる。
The particles of the present invention are produced by contacting (a) iron oxyhydroxide or iron oxide with an average axial ratio of 1.0 or more and less than 3.0 and an average particle size of more than 0.1 μ- and less than 5 μ-III, and a reducing agent that does not contain carbon; It can be produced by contacting (b) a carbon-containing reducing carbonizing agent or a mixture thereof with a carbon-free reducing agent after or without contacting.

本発明においてオキシ水酸化鉄は、α−FeOOH(デ
ーサイト)、β−FeOOH(7カがネサイト)又はγ
−FeOOH(レビドクロサイト)が好ましく、酸化鉄
は、α−Fez03(ヘマタイト)、γ−F e:03
(Wグヘマイト)又はF ego 、(vグネタイト)
が好ましい。
In the present invention, iron oxyhydroxide is α-FeOOH (dacite), β-FeOOH (7kanesite) or γ
-FeOOH (levidocrocite) is preferable, and iron oxides include α-Fez03 (hematite), γ-Fe:03
(W ghemite) or F ego, (v gnetite)
is preferred.

上記のa −F e2o 2又は7−Fe2O,として
は、例えばa−FeOOH,β−FeOOH又はγ−F
e00Hをそれぞれ約200〜350℃に加熱及び脱水
して得られたもの、あるいはこれらを更に約350〜9
00℃に加熱して結晶のm密化を図った針状a  Fe
2Ox、γ−Fe20z等あらゆるものが用いられる。
As the above a-F e2o 2 or 7-Fe2O, for example, a-FeOOH, β-FeOOH or γ-F
Those obtained by heating e00H to about 200 to 350°C and dehydrating them, or further heating and dehydrating e00H to about 350 to 90°C.
Acicular a Fe heated to 00°C to make the crystal denser
All kinds of materials such as 2Ox and γ-Fe20z can be used.

β−FeOOHは、アルカリ水溶液で処理したものが好
ましい(特願昭59−10400号参照)。
β-FeOOH is preferably treated with an alkaline aqueous solution (see Japanese Patent Application No. 10400/1983).

前記のFe1onは、Fe1on以外の酸化鉄又はオキ
シ水酸化鉄を炭素を含有する還元炭化剤もしくは炭素を
含有しない還元剤又はこれらの混合物と接触させること
によって製造することができる。
The aforementioned Fe1on can be produced by contacting an iron oxide or iron oxyhydroxide other than Fe1on with a carbon-containing reducing carbonizing agent, a carbon-free reducing agent, or a mixture thereof.

もつとも、前記のFe30−は、この製法によって91
造されたものに限定されるものではない。特別な場合と
して、炭素を含有する還元炭化剤又はこれと炭素を含有
しない還元剤との混合物をオキシ水酸化鉄又はFe50
<以外の酸化鉄と接触させてFe)Onを製造する場合
、後述の本発明の製法における接触条件と比較しで、時
間に関する以外同一の接触条件1こすることができる。
However, the above-mentioned Fe30- can be converted to 91 by this manufacturing method.
It is not limited to things that have been created. As a special case, a carbon-containing reducing carbonizing agent or a mixture thereof with a carbon-free reducing agent may be added to iron oxyhydroxide or Fe50.
In the case of producing Fe)On by contacting with iron oxides other than the above, the same contact conditions except for time can be used as compared with the contact conditions in the production method of the present invention described below.

その場合、F e30−の製造に引き続き同一条件で接
触を継続して目的とする本発明の粒子を製造することか
て゛きる。
In that case, it is possible to continue the contact under the same conditions following the production of Fe30- to produce the desired particles of the present invention.

本発明においてオキシ水酸化鉄又は酸化鉄は平均軸比が
1.0以上3.0未満のものであり、平均粒径(長袖)
は0.1μ鴎を越え5μm以下である。後にも述べるよ
うに、製造される粒子は、′平均軸比及び平均粒径が、
これらの原料のそれらと比較して若干小さくなるが殆ど
変らず、本発明の粒子一般について通常このようなもの
が好適であるからである。
In the present invention, iron oxyhydroxide or iron oxide has an average axial ratio of 1.0 or more and less than 3.0, and an average particle size (long sleeve).
is more than 0.1 μm and less than 5 μm. As will be described later, the produced particles have an average axial ratio and an average particle diameter of
This is because, although it is slightly smaller than those of these raw materials, there is almost no difference, and such particles are generally suitable for the particles of the present invention in general.

また、本発明で使用するオキシ水酸化鉄又は酸化鉄は、
主成分がオキシ水酸化鉄又は酸化鉄であル限り、少量の
銅、マグネシウム、マンプン、二ブチル、コバルトの酸
化物、炭酸塩;硅素の酸化物;カリウム塩、ナトリウム
塩等を添加して成るものであってもよい。
In addition, the iron oxyhydroxide or iron oxide used in the present invention is
As long as the main component is iron oxyhydroxide or iron oxide, small amounts of copper, magnesium, mandium, dibutyl, cobalt oxides, carbonates; silicon oxides; potassium salts, sodium salts, etc. are added. It may be something.

上記針状オキシ水酸化鉄は、特願昭58−217530
号にあるように、その表面のpHが5以上の場合は、上
り高保磁力を有する針状粒子が得られ、好ましい。pH
が5未満の場合は、アルカリ(例えば水酸化ナトリウム
、水酸化カリウム、水酸化アンモニウム)水溶液と接触
させてpHを5以上とするのがよい。またアルカリ処理
した針状酸化鉄を用いることもできる。アルカリ処理は
、例えば被処理物を水酸化ナトリウム、水酸化カリウム
、水酸化アンモニウムのようなアルカリの水溶液(例え
ば、pH8以上、好ましくは10以上の水溶液)と接触
させて、必要ならば30分〜1時間撹拌して、口割、乾
燥することにより行なうことができる。
The above-mentioned needle-like iron oxyhydroxide is obtained from Japanese Patent Application No. 58-217530.
As described in the above, when the pH of the surface is 5 or more, acicular particles having a high coercive force can be obtained, which is preferable. pH
is less than 5, it is preferable to bring it into contact with an aqueous alkali solution (eg, sodium hydroxide, potassium hydroxide, ammonium hydroxide) to bring the pH to 5 or more. It is also possible to use acicular iron oxide treated with alkali. The alkaline treatment is carried out, for example, by bringing the object to be treated into contact with an alkaline aqueous solution (for example, an aqueous solution with a pH of 8 or more, preferably 10 or more) such as sodium hydroxide, potassium hydroxide, or ammonium hydroxide for 30 minutes or more if necessary. This can be carried out by stirring for 1 hour, cracking and drying.

なお、Coを被着した針状オキシ水酸化鉄又は酸化鉄を
用いることもできる。Coを被着するには、Co塩の水
溶液(例えば、0.1〜10重呈%の稀薄溝wL)に針
状オキシ水酸化鉄又は酸化鉄を投入して室温ないし加温
下に撹拌しアルカリ水溶液でアルカリ性とし、必要なら
ば30分〜1時間撹拌して口割乾燥するのが好ましい。
Note that acicular iron oxyhydroxide or iron oxide coated with Co can also be used. To deposit Co, acicular iron oxyhydroxide or iron oxide is added to an aqueous solution of Co salt (e.g., diluted groove wL with a concentration of 0.1 to 10%) and stirred at room temperature or under heating. It is preferable to make the mixture alkaline with an alkaline aqueous solution and, if necessary, stir for 30 minutes to 1 hour and dry the mixture.

なお、原料は特願昭58−250163号に記載される
ように、珪素化合物、ホウ素化合物、アルミニウム化合
物、脂肪族カルボン酸もしくはその塩、リン化合物又は
チタン化合物などの焼結防止剤で被覆して用いることも
できる。
The raw material is coated with an anti-sintering agent such as a silicon compound, a boron compound, an aluminum compound, an aliphatic carboxylic acid or its salt, a phosphorus compound or a titanium compound, as described in Japanese Patent Application No. 58-250163. It can also be used.

本発明において炭素を含有しない還元剤の代表例として
はN2、NH2NH2等を挙げることができる。
In the present invention, representative examples of the reducing agent that does not contain carbon include N2, NH2NH2, and the like.

また炭素を含有する還元炭化剤としては下記化合物の少
なくとも1種以上を使用できる。
Further, as the carbon-containing reducing carbonizing agent, at least one of the following compounds can be used.

■CO ■脂肪族、鎖状もしくは環状の、飽和もしくは不飽和炭
化水素、例えばメタン、プロパン、ブタン、シクロヘキ
サン、メチルシクロヘキサン、アセチレン、エチレン、
プロピレン、ブタノエン、イソプレン、ダンンがスなど
■CO ■Aliphatic, linear or cyclic, saturated or unsaturated hydrocarbons, such as methane, propane, butane, cyclohexane, methylcyclohexane, acetylene, ethylene,
Propylene, butanoene, isoprene, dunn gas, etc.

■芳香族炭化水素、例えばベンゼン、トルエン、キシレ
ン、沸、q、 15 o℃以下のこれらのフルキル、ア
ルケニル誘導体。
(2) Aromatic hydrocarbons, such as benzene, toluene, xylene, and their furkyl and alkenyl derivatives at temperatures below 15 oC.

(A)脂肪族アルコール、例えばメタノール、エタノー
ル、プロパノール、シクロヘキサノール。
(A) Aliphatic alcohols such as methanol, ethanol, propanol, cyclohexanol.

■エステル、例えばギ酸メチル、酢酸エチル等の沸、4
150℃以下のエステル。
■ Boiling of esters such as methyl formate, ethyl acetate, etc., 4
Ester below 150℃.

■エーテル、例えば低級アルキルエーテル、ビニルエー
テル等の沸点150℃以下のエーテル。
(2) Ethers, such as lower alkyl ethers and vinyl ethers, having a boiling point of 150°C or less.

■アルデヒド、例えばホルムアルデヒド、アセトアルデ
ヒド等の沸点+ 50 ’C以下のアルデヒド。
■Aldehydes, such as formaldehyde, acetaldehyde, etc., whose boiling point is below +50'C.

■)ケトン、例えばアセトン、メチルエチルケトン、メ
チルイソブチルケトン等の沸点150’C以下のケトン
(2) Ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone, etc., having a boiling point of 150'C or less.

特に好ましい炭素を含有する還元炭化剤はCO%CH,
OH,HCOOCH,、炭素数1〜5の飽和または不飽
和の脂肪族炭化水素である。
Particularly preferred carbon-containing reducing carbonizing agents are CO%CH,
OH, HCOOCH, is a saturated or unsaturated aliphatic hydrocarbon having 1 to 5 carbon atoms.

本発明の(、)の工程において炭素を含有しない還元剤
は希釈しであるいは希釈せずに使用することができ、希
釈剤としては、例えばN2、CO2、フルボン、ヘリウ
ム等を挙げることができる。また希釈率は任意に選択で
き、例えば約1.1〜10倍(容量比)に希釈するのが
好ましい。接触温度、接触時間、流速等の接触条件は、
例えば針状オキシ水酸化鉄又は針状酸化鉄の製造履歴、
平均軸比、平均粒径、比表面積等に応じ変動するため、
適宜選択するのがよい。好ましい接触温度は、約200
〜700℃、より好ましくは約300〜400℃、好ま
しい接触時間は約0.5〜6時間である。好ましい流速
は、原料の鉄化合物1g当り約1〜10100OS、T
In the step (,) of the present invention, the carbon-free reducing agent can be used diluted or undiluted, and examples of the diluent include N2, CO2, fulvon, helium, and the like. Further, the dilution rate can be arbitrarily selected, and it is preferable to dilute, for example, about 1.1 to 10 times (volume ratio). Contact conditions such as contact temperature, contact time, flow rate, etc.
For example, the manufacturing history of acicular iron oxyhydroxide or acicular iron oxide,
It varies depending on the average axial ratio, average particle size, specific surface area, etc.
It is best to choose as appropriate. The preferred contact temperature is about 200
~700°C, more preferably about 300-400°C, and the preferred contact time is about 0.5-6 hours. The preferred flow rate is about 1 to 10100 OS, T per gram of raw iron compound.
.

87分である。なお、接触圧力は、希釈剤をも含めて、
1〜2気圧が常用されるが、特に制限はない。
It is 87 minutes. In addition, the contact pressure includes the diluent,
A pressure of 1 to 2 atmospheres is commonly used, but there is no particular restriction.

本発明の(b)の工程においても炭素を含有する還元炭
化剤もしくはこれと炭素を含有しない還元剤との混合物
を希釈しであるいは希釈せずに使用できる。混合物を用
いる場合、その混合比は適宜に選択することができるが
、通常は炭素を含有する還元炭化剤と炭素を含有しない
還元剤の容量比がIlo、05〜115とするのが好ま
しい。接触条件も同様に適宜選択することができるが、
好ましい接触温度は約250〜400℃、より好ましく
は約300〜400℃、好ましい接触時間は、(a)工
程を行った場合は約0.5〜6時間、(a)工程のない
場合は約1〜12時間である。好ましい流速は、原料の
鉄化合物1g当り約1〜10100OS、T、P/分で
ある。なお、接触圧力は、希釈剤をも含めて、1〜2気
圧が常用されるが、特に制限はない。
Also in the step (b) of the present invention, a carbon-containing reducing carbonizing agent or a mixture of this and a carbon-free reducing agent can be used diluted or undiluted. When a mixture is used, the mixing ratio can be selected as appropriate, but it is usually preferable that the volume ratio of the carbon-containing reducing carbonizing agent to the carbon-free reducing agent be Ilo, 05 to 115. Contact conditions can be similarly selected as appropriate;
The preferred contact temperature is about 250 to 400°C, more preferably about 300 to 400°C, and the preferred contact time is about 0.5 to 6 hours when step (a) is performed, and about 6 hours when step (a) is not performed. It is 1 to 12 hours. A preferred flow rate is about 1-10100 OS, T, P/min per gram of raw iron compound. The contact pressure, including the diluent, is usually 1 to 2 atmospheres, but is not particularly limited.

本発明において得られる粒子は、電子顕@鏡で観察する
と、平均的に一様な粒子であり、原料のオキシ水酸化鉄
又は酸化鉄の粒子と同形状で、これらの形骸粒子であり
、これが−次粒子となって存在している。また、得られ
る粒子は、元素分析により炭素を含有し、更にX#11
回折パターンにより、炭化鉄を含有することが明らかで
ある。X#i回折パターンは、面間隔が2.28.2.
20.2.08.2.05及び1.92Aを示す。かか
るパターンは、Fe5C2に相当し、本発明の炭化鉄は
通常は主としてF e 、C2からなるが、FezC,
Fe2oC5(Fe2.2C)、Fe、C等が共存する
ことがある。従って本発明の粒子に含有される炭化鉄は
、FeにC(2≦×く3)と表示するのが適切である。
When observed with an electron microscope, the particles obtained in the present invention are uniform particles on average and have the same shape as the raw material iron oxyhydroxide or iron oxide particles. - Exists as particles. In addition, the obtained particles contained carbon according to elemental analysis, and furthermore, X#11
The diffraction pattern reveals that it contains iron carbide. The X#i diffraction pattern has a lattice spacing of 2.28.2.
20.2.08.2.05 and 1.92A. Such a pattern corresponds to Fe5C2, and the iron carbide of the present invention usually consists mainly of Fe, C2, but FezC,
Fe2oC5 (Fe2.2C), Fe, C, etc. may coexist. Therefore, the iron carbide contained in the particles of the present invention is appropriately expressed as Fe and C (2≦x3).

また、炭化が不完全な場合、本発明で得られる粒子は酸
化鉄、主としてFe、O,をも含有する。
In addition, when carbonization is incomplete, the particles obtained according to the invention also contain iron oxides, mainly Fe and O.

一般に、酸化鉄については、Fed、Fe50.及びγ
−F ex Osが構造的に関連があり、これら3者と
も酸素原子は、立方最密詰込み構造を有しており、現実
に存在するFe、O,は、これらの幅で変動することか
ら上記の酸化鉄は、Fe0y(1<y≦1.5)で示す
のが適切である。
Generally, for iron oxide, Fed, Fe50. and γ
-F ex Os are structurally related, and the oxygen atoms in all three have a cubic close-packed structure, and the actually existing Fe and O vary in these widths. The above iron oxide is suitably denoted by Fe0y (1<y≦1.5).

また、得られる粒子は、炭化鉄又は場合により酸化鉄を
含有するが、C,H及びNの元素分析値を参照すると、
通常、X線回折パターンで確認される炭化鉄の化学式で
計算される炭素量よりも炭素を過剰に含有する。かかる
過剰の炭素は、鉄と結合して存在するか遊離の炭素とし
て存在するのか不明である。この意味において、得られ
る粒子には、元素炭素が存在することがある。従って、
得られる粒子は、−次粒子としての形状が平均軸比1.
0以上3.0未満の、実質的に炭化鉄から成る粒子又は
炭化鉄と、酸化鉄及び/又は元素炭素からなる粒子であ
る。
In addition, the obtained particles contain iron carbide or iron oxide in some cases, but referring to the elemental analysis values of C, H and N,
Usually, it contains more carbon than the amount of carbon calculated from the chemical formula of iron carbide, which is confirmed by the X-ray diffraction pattern. It is unclear whether such excess carbon exists in combination with iron or as free carbon. In this sense, elemental carbon may be present in the particles obtained. Therefore,
The obtained particles have an average axial ratio of 1.
0 or more and less than 3.0, particles consisting essentially of iron carbide or particles consisting of iron carbide, iron oxide and/or elemental carbon.

しかして、得られる粒子における炭化鉄及び酸化鉄の含
有量は、X、11回折分析で検出されるそれぞれの主成
分であるFe、C2及びFe、O,を炭化鉄及び酸化鉄
の化学式と定め、更に元素分析及び灼熱増量により求め
ることができる。炭化鉄の含有量は20重量%以上が好
ましく、50重量%以上が更に好ましい。また酸化鉄は
70重1%以下が好ましく、40重量%以下が更に好ま
しい。
Therefore, the content of iron carbide and iron oxide in the obtained particles can be determined by determining the chemical formulas of iron carbide and iron oxide using the respective main components Fe, C2 and Fe, O, detected by X, 11 diffraction analysis. , which can be further determined by elemental analysis and scorching bulking. The content of iron carbide is preferably 20% by weight or more, more preferably 50% by weight or more. Further, iron oxide is preferably 70% by weight or less, and more preferably 40% by weight or less.

また、得られる粒子の平均軸比及び平均粒径は、原料の
オキシ水酸化鉄又は酸化鉄のそれらと比較して若干小さ
くなるが殆ど差はない。従って、この製法で得られる粒
子の平均軸比は、通常1.0以上、3.0未満であり、
平均粒径(長軸)は0.1μ頂を越え5μ輸以下である
Further, the average axial ratio and average particle diameter of the particles obtained are slightly smaller than those of iron oxyhydroxide or iron oxide as raw materials, but there is almost no difference. Therefore, the average axial ratio of the particles obtained by this manufacturing method is usually 1.0 or more and less than 3.0,
The average particle size (long axis) is more than 0.1μ apex and less than 5μm.

本発明の炭化鉄を含有する粒子は、直通の特徴等から明
らかなとおり、磁気記録用磁性材料として用いることが
できるが、これに限られるものではなく、低級脂肪族炭
化水素のCOとH2とからの合成のための触媒等として
用いることら′Il′bる。
The iron carbide-containing particles of the present invention can be used as a magnetic material for magnetic recording, as is clear from the direct characteristics, but are not limited to this. Since it is used as a catalyst etc. for the synthesis of 'Il'b.

(発明の効果) 本発明の方法によれば製造が容易な原料鉄化合物を使用
して保磁力が比較的大きい粒子を製造することができる
(Effects of the Invention) According to the method of the present invention, particles having a relatively large coercive force can be produced using a raw material iron compound that is easy to produce.

(実 施 例) 以下に実施例を挙げて詳しく説明する。(Example) A detailed explanation will be given below with reference to examples.

実施例において、各種特性等はそれぞれ次の方法によっ
て求めた。
In the examples, various characteristics etc. were determined by the following methods.

(1)磁気特性 特別に記載がない限り次の方法によって求める。(1) Magnetic properties Unless otherwise specified, it is determined by the following method.

ホール素子を用いた〃ウスメーターにより試料充填率0
.2で、測定磁場5kOeで、保磁力(Ha。
A sample filling rate of 0 was measured using a space meter using a Hall element.
.. 2, the coercive force (Ha.

Oe)、飽和磁化g (、s、 e、m、u)及び残留
磁化敏(σY・、e、+++、u)を測定する。
Oe), saturation magnetization g (, s, e, m, u) and residual magnetization sensitivity (σY·, e, +++, u) are measured.

(2)C,H及びNの元素分析 元素分析は(株)柳本製乍所製のMT2C)INCOR
DERYanacoを使用し、900″Cで酸素(ヘリ
ウムキャリヤ)を通じることにより常法に従って行う。
(2) Elemental analysis of C, H and N Elemental analysis is performed using MT2C) INCOR manufactured by Yanagimoto Seiko Co., Ltd.
This is carried out in a conventional manner using a DERYanaco at 900''C by passing oxygen (helium carrier) through.

(3)組成の求め方 酸化鉄および炭化鉄の化学式をXM回折分析により求め
て、Cの元素分析値および次に述べる加熱処理による重
量増から求めた。例えばFe50゜はその市川の1,0
35倍に相当するF(!、、O,に、またF e5 C
2はその重量の1.317倍に相当するFe20Jに変
化するものとして計算を行なう。加熱処理(こよる重量
増は、試料を白金るつぼに入れてマツフル炉により60
0°Cで1時間加熱処理し、X線回折によりα〜Fe2
O,の存在を確認して、常法に従って加熱処理による重
量増を求める。
(3) How to determine the composition The chemical formulas of iron oxide and iron carbide were determined by XM diffraction analysis, and were determined from the elemental analysis value of C and the weight increase due to the heat treatment described below. For example, Fe50° is Ichikawa's 1,0
F(!,,O,, which is equivalent to 35 times, and also F e5 C
The calculation is performed assuming that 2 changes to Fe20J, which is equivalent to 1.317 times its weight. Heat treatment (to reduce the weight increase, place the sample in a platinum crucible and heat it in a Matsufuru furnace for 60 minutes.
After heat treatment at 0°C for 1 hour, α~Fe2 was determined by X-ray diffraction.
After confirming the presence of O, the weight increase due to heat treatment is determined according to a conventional method.

更に具体的に述べるとFe5C2、Fe、O,及び元素
炭素の組成割合をそれぞれX、 y及び2重量%、炭素
分析値及び加熱処理による市鼠増をそれぞれA及び8重
量%とすると、X% Y及び2は下記の3元方程式より
求めることができる。
To be more specific, if the composition ratios of Fe5C2, Fe, O, and elemental carbon are X, y, and 2% by weight, respectively, and the carbon analysis value and increase in heat treatment due to heat treatment are A and 8% by weight, respectively, then X% Y and 2 can be determined from the following three-dimensional equation.

x + y + z = 100 1.317x+ 1.035y” 100+ Bz +
 0.079x =A 実施例1 平均粒径0.6μ幀艮紬)、平均軸比2のデーサイト校
子2gを磁製ボートに入れて、管状炉に挿入し、窒素を
流しで空気を置換した後、300’Cに昇温し、その温
度でH2を毎分100+olの流速で2時間接触させた
x + y + z = 100 1.317x+ 1.035y” 100+ Bz +
0.079x = A Example 1 2 g of dacite particles with an average particle diameter of 0.6 μm) and an average axial ratio of 2 were placed in a porcelain boat, inserted into a tube furnace, and the air was replaced with nitrogen. After that, the temperature was raised to 300'C, and at that temperature, H2 was contacted at a flow rate of 100+ol/min for 2 hours.

引き続き、その温度でCOを毎分100+nlの流速で
1時間接触させ、その後室温まで放冷し黒色の粉末を得
た。
Subsequently, at that temperature, CO was contacted at a flow rate of 100+nl/min for 1 hour, and then allowed to cool to room temperature to obtain a black powder.

生成物のX線回折パターンは、^STMのX−Ray1
〕omder I)uta F ilp 20−509
のFe5Cz  IronCarbideと一致した。
The X-ray diffraction pattern of the product is ^STM X-Ray1
〕omder I)uta Filp 20-509
It matched with Fe5Cz Iron Carbide.

結果を第1表及び第2表に示す。The results are shown in Tables 1 and 2.

実施例2〜5 第1表に記載の原料、接触条件を用いた池は実施例1と
同様にして黒色の粉末を得た。結果を第1表及び第2表
に示す。
Examples 2 to 5 Black powder was obtained in the same manner as in Example 1 using the raw materials and contact conditions listed in Table 1. The results are shown in Tables 1 and 2.

第1表 第2表 実施例6 平均粒径0,6μm(長細)、平均軸比2のデーサイト
粒子2gを磁製ボートに入れ、管状炉に挿入して、窒素
を流して空気を置換した後、300℃に昇温し、その温
度でCOを毎分100m1の流速で2.5時間接触させ
、その後室温まで放冷し黒色の粉末を得た。条件及び結
果を第3表及び第4表に示す。
Table 1 Table 2 Example 6 2 g of dacite particles with an average particle diameter of 0.6 μm (long and thin) and an average axial ratio of 2 were placed in a porcelain boat, inserted into a tube furnace, and nitrogen was flowed to replace the air. After that, the temperature was raised to 300°C, and at that temperature, CO was contacted at a flow rate of 100 ml/min for 2.5 hours, and then the mixture was allowed to cool to room temperature to obtain a black powder. The conditions and results are shown in Tables 3 and 4.

実施例7 平均粒径0.6μm(長袖)、平均軸比2のデーサイト
粒子1gを磁製ボートに入れて管状炉に挿入し、窒素を
流して置換した後、300℃に昇温し、その温度でCO
を毎分300m lの流速で3時間接触させ、その後室
温まで放冷し黒色の粉末を得た。条件及び結果を第3表
及び第4表に示す。
Example 7 1 g of dacite particles with an average particle size of 0.6 μm (long sleeve) and an average axial ratio of 2 was placed in a porcelain boat, inserted into a tubular furnace, and after nitrogen was flushed and replaced, the temperature was raised to 300 ° C. At that temperature CO
was contacted at a flow rate of 300 ml per minute for 3 hours, and then allowed to cool to room temperature to obtain a black powder. The conditions and results are shown in Tables 3 and 4.

実施例8 α−FeOOH3gを600℃で1時間脱水してαFe
2O3とし、400°Cで1時間H2還元して350℃
で1時間空気中で酸化してγ−F 2203粒子を得た
Example 8 3 g of α-FeOOH was dehydrated at 600°C for 1 hour to obtain αFe
2O3, reduced H2 at 400°C for 1 hour, and heated to 350°C.
γ-F 2203 particles were obtained by oxidation in air for 1 hour.

次に2%硫酸コバル) 100m1中に入れ撹拌しなか
らNaOH水溶液でpHを10にし、80℃で30分間
撹拌し口割乾燥してCo被着したγ−Fe2O3を得た
。この粒子2gを磁製ボートに入れて管状炉に挿入し、
窒素を流して置換した後、350℃に昇温し、その温度
でCOを毎分100+alの流速で3時間接触させ、そ
の後室温まで放冷し黒色の粉末を得た。条件及び結果を
第3表及びtJfJ4表に示す。
Next, the mixture was placed in 100 ml of 2% cobal sulfate (2% cobal sulfate), stirred, adjusted to pH 10 with an aqueous NaOH solution, stirred at 80° C. for 30 minutes, and dried to obtain Co-coated γ-Fe2O3. 2g of these particles were placed in a porcelain boat and inserted into a tube furnace.
After purging with nitrogen, the temperature was raised to 350° C., and at that temperature, CO was contacted at a flow rate of 100+al/min for 3 hours, and then allowed to cool to room temperature to obtain a black powder. The conditions and results are shown in Table 3 and Table tJfJ4.

実施例9〜12及び参考例1 第3表に示す原料鉄化合物を同表記載の接触気体と接触
させて、黒色の第4表に示す生成物を得た。
Examples 9 to 12 and Reference Example 1 The raw iron compounds shown in Table 3 were brought into contact with the contact gases shown in the same table to obtain black products shown in Table 4.

第3表 1実 原料鉄化合物 接触気体 1施種 類   紬 種  類 流速 例      (μm  比        m17分
 ’(:  br6  −Fe00HO062Co  
    100    2゜7    //    /
/    //     Co      300  
  3゜8  Co被着 0.31.Co     1
00   3゜Fe203 9  −Fe00HO,51,Co      300
    3゜第    4    表 実施例13 実施例6、実施例12および参考例1で得た粉末をそれ
ぞれ 塩化ビニル−酢酸ビニル共重合体  5.25gジオク
チル7タレート       +、oogラ   ウ 
  リ   ン   酸              
    0.2ビト    ル    エ    ン 
                15.0gメチルイ
ソブチルケトン      15.0gから成るビヒク
ルにそれぞれ15g、 20g又は25g投入し、直径
15IIlf11の鉄球6@を入れた内容積200τ1
1の磁製ボールミル中で3Or、p、+n、で6時間混
練しな。
Table 3 1 Example Raw material iron compound Contact gas 1 type Pongee Type Flow rate example (μm Ratio m17 min'(: br6 -Fe00HO062Co
100 2゜7 // /
///Co 300
3゜8 Co coating 0.31. Co 1
00 3゜Fe203 9 -Fe00HO,51,Co 300
3゜Table 4 Example 13 The powders obtained in Example 6, Example 12, and Reference Example 1 were each mixed with 5.25 g of vinyl chloride-vinyl acetate copolymer, dioctyl 7-talate +, and ooglau.
phosphoric acid
0.2 bit en
15.0 g of methyl isobutyl ketone (15 g, 20 g or 25 g, respectively) is added to a vehicle consisting of 15.0 g, and an iron ball 6 with a diameter of 15IIlf11 is placed inside the vehicle to give an internal volume of 200τ1.
Knead for 6 hours at 3 Or, p, +n in a No. 1 porcelain ball mill.

得られた塗料をドクターナイフでポリエチレンテレフタ
レートフィルム上に塗布し、混線状態を観察した。その
結果を第5表に示す。
The resulting paint was applied onto a polyethylene terephthalate film using a doctor knife, and the state of crosstalk was observed. The results are shown in Table 5.

第5表 ○:均一に混練されていた。Table 5 ○: Uniformly kneaded.

×:不均一に混線(継輪の部分が点在)されていた。×: Wires were mixed unevenly (relay parts were scattered).

Claims (7)

【特許請求の範囲】[Claims] (1)平均軸比1.0以上3.0未満、平均粒径が0.
1μmを越え5μm以下の炭化鉄を含有する粒子。
(1) Average axial ratio of 1.0 or more and less than 3.0, average particle size of 0.
Particles containing iron carbide of more than 1 μm and less than 5 μm.
(2)(a)平均軸比1.0以上3.0未満、平均粒径
が0.1μmを越え5μm以下のオキシ水酸化鉄または
酸化鉄に炭素を含有しない還元剤を接触させた後または
接触させずに、 (b)炭素を含有する還元炭化剤もしくはこれと炭素を
含有しない還元剤との混合物を接触させることを特徴と
する平均軸比1.0以上3.0未満、平均粒径が0.1
μmを越え5μm以下の炭化鉄を含有する粒子の製法。
(2) (a) After contacting iron oxyhydroxide or iron oxide with an average axial ratio of 1.0 or more and less than 3.0 and an average particle size of more than 0.1 μm and less than 5 μm with a reducing agent that does not contain carbon, or (b) contact with a reducing carbonizing agent containing carbon or a mixture of this and a reducing agent not containing carbon, with an average axial ratio of 1.0 or more and less than 3.0, and an average particle size; is 0.1
A method for producing particles containing iron carbide with a size exceeding 5 μm.
(3)オキシ水酸化鉄がα−、β−もしくはγ−FeO
OH、酸化鉄がα−もしくはγ−Fe_2O_3又はF
e_3O_4である特許請求の範囲第2項に記載の製法
(3) Iron oxyhydroxide is α-, β- or γ-FeO
OH, iron oxide is α- or γ-Fe_2O_3 or F
The manufacturing method according to claim 2, which is e_3O_4.
(4)(a)工程の接触温度が200〜700℃であり
、(b)工程の接触温度が250〜400℃である特許
請求の範囲第2項に記載の製法。
(4) The manufacturing method according to claim 2, wherein the contact temperature in step (a) is 200 to 700°C, and the contact temperature in step (b) is 250 to 400°C.
(5)炭素を含有する還元炭化剤がCO、CH_3OH
、HCOOCH_3、炭素数1〜5の飽和又は不飽和脂
肪族炭化水素である特許請求の範囲第2項に記載の製法
(5) The reducing carbonizing agent containing carbon is CO, CH_3OH
, HCOOCH_3 is a saturated or unsaturated aliphatic hydrocarbon having 1 to 5 carbon atoms.
(6)炭素を含有しない還元剤がH_2である特許請求
の範囲第2項に記載の製法。
(6) The manufacturing method according to claim 2, wherein the carbon-free reducing agent is H_2.
(7)平均軸比1.0以上3.0未満、平均粒径が0.
1μmを越え5μm以下の炭化鉄を含有する粒子から成
る磁性材料。
(7) Average axial ratio of 1.0 or more and less than 3.0, average particle size of 0.
A magnetic material consisting of particles containing iron carbide with a size of more than 1 μm and less than 5 μm.
JP59231589A 1984-11-01 1984-11-01 Particle containing iron carbide production and use thereof Pending JPS61111923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59231589A JPS61111923A (en) 1984-11-01 1984-11-01 Particle containing iron carbide production and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59231589A JPS61111923A (en) 1984-11-01 1984-11-01 Particle containing iron carbide production and use thereof

Publications (1)

Publication Number Publication Date
JPS61111923A true JPS61111923A (en) 1986-05-30

Family

ID=16925881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59231589A Pending JPS61111923A (en) 1984-11-01 1984-11-01 Particle containing iron carbide production and use thereof

Country Status (1)

Country Link
JP (1) JPS61111923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312032A2 (en) * 1987-10-13 1989-04-19 Daikin Industries, Limited Iron carbide fine particles and process for preparing the same
WO1993014896A1 (en) * 1992-01-22 1993-08-05 Daikin Industries, Ltd. Minute acicular particle containing metallic iron, iron carbide and carbon, production thereof, and magnetic coating composition and magnetic recording medium containing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312032A2 (en) * 1987-10-13 1989-04-19 Daikin Industries, Limited Iron carbide fine particles and process for preparing the same
WO1993014896A1 (en) * 1992-01-22 1993-08-05 Daikin Industries, Ltd. Minute acicular particle containing metallic iron, iron carbide and carbon, production thereof, and magnetic coating composition and magnetic recording medium containing the same

Similar Documents

Publication Publication Date Title
KR890003867B1 (en) Process for producing acicular particles containing an iron carbide
JPH0230626A (en) Iron carbide fine granule and production thereof
EP0494095B1 (en) Particles containing iron carbide
JPS61111923A (en) Particle containing iron carbide production and use thereof
KR890003869B1 (en) Process for producing acicular particles containing an iron carbide and usage
US5104561A (en) Process for preparing carbide fine particles
JPS61111921A (en) Production of acicular particle containing iron carbide
KR940009271B1 (en) Process for preparing iron carbide fine particles
EP0326165B1 (en) Iron carbide fine particles and a process for preparing the same
KR910002685B1 (en) Particles containing iron mono carbide process for preparing them and use thereof
KR890003868B1 (en) Process for producing acicular particles containing an iron carbide
JPS63256510A (en) Stabilizing method for iron carbide fine particles
JPS6369706A (en) Production of acicular particle containing iron carbide
JPH0729764B2 (en) Iron carbide fine particles, magnetic material and method for producing the fine particles
JPH0375489B2 (en)
JPS61111922A (en) Production of acicular particle containing iron carbide
JPS6090833A (en) Manufacture of gamma-iron oxide