JPS61111460A - Method for detecting disconnected strand of parallel cables for bridge - Google Patents

Method for detecting disconnected strand of parallel cables for bridge

Info

Publication number
JPS61111460A
JPS61111460A JP59232731A JP23273184A JPS61111460A JP S61111460 A JPS61111460 A JP S61111460A JP 59232731 A JP59232731 A JP 59232731A JP 23273184 A JP23273184 A JP 23273184A JP S61111460 A JPS61111460 A JP S61111460A
Authority
JP
Japan
Prior art keywords
strand
tested
pulse
wire
disconnected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59232731A
Other languages
Japanese (ja)
Inventor
Yoichi Toda
戸田 陽一
Kenji Udagawa
宇田川 建志
Masahisa Nakayama
中山 昌久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59232731A priority Critical patent/JPS61111460A/en
Publication of JPS61111460A publication Critical patent/JPS61111460A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4463Signal correction, e.g. distance amplitude correction [DAC], distance gain size [DGS], noise filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/101Number of transducers one transducer

Abstract

PURPOSE:To detect a disconnected strand by fitting a converter to the end of a strand to be tested of parallel cables and injecting an ultrasonic pulse having transmittable frequency corresponding to the diameter of the strand to be tested into the strand to be tested within a specific frequency range to detect the reflected pulse from a disconnected position. CONSTITUTION:An ultrasonic pulse adjusted at 20KHzx-5MHz testing frequency is outputted from an ultrasonic tester 5 and transmitted to the converter 4. The converter 4 converts the electric signal into mechanical vibration to inject the ultrasonic pulse into the strand to be tested. If the strand to be tested is disconnected, the ultrasonic pulse is reflected at the disconnected point, transmitted again to the converter 4 through the strand and converted into an electric signal. The electric signal is sent to the tester 5, amplified and removed at its noise by a filter circuit and the noise- removed signal is displayed on a display device 6. The display device 6 displays both the transmitted pulse and the reflected pulse, so that the disconnected position can be found out from the time interval of both the pulses and the transmission speed. Thus, respective strands are successively tested and the existence of disconnection of all the strand of the cables and the disconnected positions can be precisely grasped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は斜張橋や長大橋等の吊橋に用いられる平行線ケ
ーブル中の破断素線を検知する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting broken strands in parallel cables used in suspension bridges such as cable-stayed bridges and long span bridges.

〔従来の技術〕[Conventional technology]

斜張橋や長大橋等の吊橋に使用されている平行線ケーブ
ルは高い破断強度、疲労強度と大きな縦弾性係数をもつ
ため、引張構造部材として非常に優れた性能を有してい
る。このような平行線ケーブルの優れた性能を長期間持
続させるために、ケーブルの外層はプラスチック等によ
り被覆されており、雨水がケーブルの内側素線に直接光
らない構造になっている。しかし、長期間の使用中には
被覆の劣化が生じ、亀裂が発生してケーブル内に雨水が
浸入して素線に応力腐食割れが発生し、これが生長して
ついに破断することが考えられる。
Parallel wire cables used in suspension bridges such as cable-stayed bridges and long span bridges have high breaking strength, fatigue strength, and a large modulus of longitudinal elasticity, so they have excellent performance as tensile structural members. In order to maintain the excellent performance of such a parallel wire cable for a long period of time, the outer layer of the cable is coated with plastic or the like, so that rainwater does not directly shine on the inner strands of the cable. However, during long-term use, the coating deteriorates, cracks occur, and rainwater infiltrates into the cable, causing stress corrosion cracking in the strands, which may grow and eventually break.

また、長い年月の間には重量車輌の繰返し通過や、台風
にともなう強風が橋桁に吹付けて過大の繰返し張力がケ
ーブルに働くため、ケーブル中の素線の一部が疲労破断
することも考えられる。
In addition, over a long period of time, excessive repeated tension is exerted on the cable due to the repeated passing of heavy vehicles and strong winds from typhoons, which can cause fatigue rupture of some of the strands in the cable. Conceivable.

一般に、平行線ケーブルの両端にはソケットが取付けら
れており、ソケット内では素線は箒状にさばかれて鋳込
材料によって固定されている。このため、ケーブルの外
層に近い素線はどソケットの入口で外側に強く曲げられ
ているため、引張応力の外に曲げによる応力が付加され
ることになり、この部分で素線破断が集中的に発生する
可能性もある。したがって、このような破断素線を非破
壊的に検知することが橋の安全性を確保するために非常
に重要である。
Generally, a socket is attached to both ends of a parallel wire cable, and within the socket, the strands are spread into a broom shape and fixed with a casting material. For this reason, the strands close to the outer layer of the cable are strongly bent outward at the entrance of the socket, so stress due to bending is added in addition to the tensile stress, and strand breakage is concentrated in this part. There is a possibility that it may occur. Therefore, it is very important to non-destructively detect such broken wires to ensure the safety of bridges.

素線の破断検知方法としては、素線が破断するときに放
出される音を検知するAE(^causticEmis
sion)法、鉱山等で採用されている方法としてワイ
ヤロープを磁化装置により部分的に直流飽和磁化し、素
線破断部からの漏洩磁束を検出コイルまたは磁気センサ
で検知する電磁探傷法、鋼板等の内部欠陥を非破壊的に
検知する一手法である超音波探傷法を通用することなど
が考えられる。
A method for detecting wire breakage is AE (^causticEmis), which detects the sound emitted when a wire breaks.
sion) method, a method used in mines, etc., in which a wire rope is partially saturated with direct current magnetization using a magnetizer, and leakage magnetic flux from the broken part of the wire is detected with a detection coil or magnetic sensor.An electromagnetic flaw detection method is used for steel plates, etc. One possibility is to use ultrasonic flaw detection, which is a method for non-destructively detecting internal defects.

しかしながらこれらの方法は次に述べるような問題点が
ある。
However, these methods have the following problems.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

例えば、AE法は常時監視法であり、もし素線が破断し
たときに偶々装置が故障していた場合には検知が不可能
である。また、車輌通過時の振動や地震等により誤動作
する可能性があり信頼性に劣る。また電磁探傷法にはワ
イヤロープを一定速度で送るか、探傷装置自体を定速で
移動させなが!      ら検査するものであるが、
この方法はワイヤロープの直径がせいぜい数10o*以
下の場合には有効であるが、平行線ケーブルの場合には
直径が100龍以上になる場合が多く、しかも外側は厚
さ1ON程度の防食層で被覆されており、検出コイルや
磁気センサを素線破断部近傍まで接近させることができ
ないため検出感度が低下する。従ってケーブルの表面近
くの素線が破断している場合には検知可能であるが、内
部素線の破断の場合には漏洩磁束がケーブルの表面にほ
とんど出てこないため、断線検知は困難である。また、
ソケット内での断線およびソケット付根から約500m
の部分で生じた断線は物理的制限のため検知不可能であ
る。
For example, the AE method is a constant monitoring method, and it is impossible to detect if the device accidentally breaks down when a wire breaks. Furthermore, it is less reliable as it may malfunction due to vibrations or earthquakes caused by passing vehicles. Also, for electromagnetic flaw detection, the wire rope must be sent at a constant speed, or the flaw detection device itself must be moved at a constant speed! However, the
This method is effective when the diameter of the wire rope is at most a few tens of degrees* or less, but in the case of parallel wire cables, the diameter is often more than 100 degrees, and the outer layer is coated with an anticorrosive layer with a thickness of about 1ON. Since the detection coil and magnetic sensor cannot be brought close to the broken part of the strand, the detection sensitivity decreases. Therefore, if a wire near the surface of the cable is broken, it can be detected, but in the case of a break in an internal wire, almost no leakage magnetic flux comes out to the surface of the cable, so it is difficult to detect the break. . Also,
Disconnection in the socket and approximately 500m from the base of the socket
A break in the wire cannot be detected due to physical limitations.

超音波探傷法の場合には、探傷範囲は鋼板の場合ですら
数mが限度とされており、数十mあるいは数百mに及ぶ
探傷範囲への適用例は皆無である。
In the case of ultrasonic flaw detection, the flaw detection range is limited to several meters even in the case of steel plates, and there are no examples of its application to flaw detection ranges of tens or hundreds of meters.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記のような問題点を解決するために種々
の手法について検討を加えた結果、細い丸棒内を超音波
パルスが伝播する態様は、鋼板中を超音波パルスが伝播
する場合と異なり、伝播し易い周波数の音波と、伝播し
にくい周波数の音波があり、伝播速度を周波数によって
変化するとの知見を得た。また伝播し易い周波数は丸棒
の直径と弾性係数に依存しており、IKHzオーダーか
らI M II zオーダーの周波数範囲では複数個存
在することがわかった。
The inventors investigated various methods to solve the above-mentioned problems, and found that the manner in which ultrasonic pulses propagate inside a thin round bar is similar to that in which ultrasonic pulses propagate through a steel plate. In contrast, we found that there are sound waves with frequencies that are easy to propagate and sound waves with frequencies that are difficult to propagate, and that the propagation speed changes depending on the frequency. It was also found that the frequencies that are easy to propagate depend on the diameter and elastic modulus of the round bar, and that there are multiple frequencies in the frequency range from IKHz order to I M II z order.

これを具体的に説明すると、円柱座標で表示した丸棒中
を伝播する縦波の波動方程式 (11,(2)を解いて、直径dmの鋼の丸棒中を伝播
する周波数fMHzの音波の伝播速度を求めると、伝播
速度が極大値を示すfとdの積は次のとおりである。
To explain this concretely, by solving the wave equation (11, (2)) of a longitudinal wave propagating in a round bar expressed in cylindrical coordinates, we can calculate the sound wave with a frequency fMHz propagating in a steel round bar with a diameter dm. When determining the propagation velocity, the product of f and d at which the propagation velocity reaches its maximum value is as follows.

伝播速度極大におけるf−d(MH2−N)値:1.4
. 4.9. 8.4. 11.9. 14.7. 1
B、2゜22.4. 26.6. 30.2.  ・・
・・・・したがって、いま直径711mの丸棒を例にと
れば、伝播速度が極大になる周波数fは次のようになる
f-d(MH2-N) value at maximum propagation velocity: 1.4
.. 4.9. 8.4. 11.9. 14.7. 1
B, 2°22.4. 26.6. 30.2.・・・
Therefore, if we take a round bar with a diameter of 711 m as an example, the frequency f at which the propagation velocity becomes maximum is as follows.

f  (MHz)  : 0.2.0.7.1.2.1
.7.2.1゜2.6.3.2.3.8.4.3.・・
・・・・この伝播速度が極大値をとる周波数の音波が伝
播し易い超音波であり、この周波数からはずれた音波は
丸棒中を伝播しない。
f (MHz): 0.2.0.7.1.2.1
.. 7.2.1゜2.6.3.2.3.8.4.3.・・・
...Sound waves with a frequency at which the propagation velocity takes a maximum value are ultrasonic waves that are easy to propagate, and sound waves that deviate from this frequency do not propagate in the round bar.

一般に、丸棒の直径が小さくなると伝播し易い周波数は
高い方に移り、反対に直径が大きくなると伝播し易い周
波数は低い方へ移る。従って、平行線ケーブルの素線直
径に対応して、伝播し易い周波数の超音波パルスを利用
すれば、数十mあるいは数百mの範囲までもケーブル中
の素線の破断の検知が可能である。
Generally, as the diameter of a round bar becomes smaller, the frequencies that are easier to propagate shift to higher frequencies, and conversely, as the diameter increases, the frequencies that are easier to propagate to lower frequencies. Therefore, by using ultrasonic pulses with a frequency that is easy to propagate according to the diameter of the strands of a parallel cable, it is possible to detect breaks in the strands in the cable over a range of tens or even hundreds of meters. be.

本発明の要旨とするところは、橋梁用平行線ケーブルの
素線端に変換子を取付け、周波数20KHz〜5MHz
の範囲内で、被検査素線の直径に対応した伝播し易い所
定周波数の超音波パルスを素線内に投入し、素線破断箇
所からの反射パルスを検出することにより橋梁用平行線
ケーブルの破断素線を検知することにある。すなわち、
被検査素線が破断していない場合には、投入された超音
波パルスは素線内を拡散減衰しながら伝播してゆくため
、反射パルスは検出されないが、被検査素線が途中で破
断している場合には、該破断箇所から反射パルスが戻っ
てくるので、これを変換子で受信し、超音波試験装置で
増巾した後、表示装置に表示することによって破断素線
を検知しようとするものである。
The gist of the present invention is to attach a converter to the strand end of a parallel bridge cable, and to convert the frequency from 20 KHz to 5 MHz.
Within the range of The purpose is to detect broken wires. That is,
If the strand to be inspected is not broken, the injected ultrasonic pulse will propagate through the strand while being diffused and attenuated, so no reflected pulse will be detected, but if the strand to be inspected breaks on the way. If the broken wire is broken, a reflected pulse will return from the broken point, and this is received by the transducer, amplified by the ultrasonic testing device, and then displayed on the display device in order to detect the broken wire. It is something to do.

このように本発明によれば、吊橋に使用されている平行
線ケーブルを取外すことなく張力のかかったままの状態
で、任意の時点において、ケーブル中の破断素線を確実
に検知することができるとともにその破断位置の判定も
可能である。従って本発明により各素線の破断状況を検
知することにより、破断素線本数が設計許容基準に達す
る以前にケーブルを交換する等の措置を講することによ
って吊橋の安全性を常に確保することができる。
As described above, according to the present invention, it is possible to reliably detect a broken strand in a parallel wire cable used in a suspension bridge at any time while the cable is under tension without having to remove it. At the same time, it is also possible to determine the fracture position. Therefore, by detecting the breakage status of each strand using the present invention, it is possible to always ensure the safety of the suspension bridge by taking measures such as replacing the cable before the number of broken strands reaches the design allowable standard. can.

以下、本発明を図戸に基いて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the figures.

!       第1図は、本発明方法を実施するため
の装置の、?様を示す模式図であって、1は平行線ケー
ブルの内側素線群であり、2は素線が風雨に曝されない
ようにするためにプラスチック等で被覆した防食層であ
る。3A、3Bはそれぞれケーブル全長のソケットであ
るが、ソケット内では素線群は結束が解かれて、箒状に
さばかれて、各素線間には縫込材料7を充填することに
よってソケットに固着されている。
! FIG. 1 shows an apparatus for carrying out the method of the present invention. 1 is a group of inner strands of a parallel wire cable, and 2 is an anti-corrosion layer coated with plastic or the like to prevent the strands from being exposed to wind and rain. 3A and 3B are sockets for the full length of the cable, and inside the socket, the bundle of strands is untied and spread out like a broom, and the space between each strand is filled with sewing material 7 to fit into the socket. It is fixed.

また4は被検査素線の一端に取付けられた変換子である
。5は超音波試験装置であり、所定の試験周波数に調整
された超音波パルスを発信し、変換子4に送信する。変
換子4ではこの電気信号が機械振動に変換されて、被検
査素線中に超音波パルスが投入される。素線が破断して
いる場合には、超音波パルスは破断点で反射し、この反
射パルスは素線を伝わって再び変換子4に到達し、電気
信号に変換されて超音波試験装置5に送られた後、増巾
され、フィルター回路によりノイズ除去された後、表示
装置6に送られて表示される。この表示装置6では最初
の送信パルスと破断位置からの反射パルスが共に表示さ
れるため、この両パルスの時間間隔と、超音波の伝播速
度から破断位置を求めることができる。
Further, 4 is a converter attached to one end of the strand to be inspected. Reference numeral 5 denotes an ultrasonic test device, which emits ultrasonic pulses adjusted to a predetermined test frequency and transmits them to the transducer 4. The transducer 4 converts this electrical signal into mechanical vibration, and injects an ultrasonic pulse into the strand to be inspected. When the wire is broken, the ultrasonic pulse is reflected at the break point, and this reflected pulse travels through the wire and reaches the transducer 4 again, where it is converted into an electrical signal and sent to the ultrasonic testing device 5. After being sent, the signal is amplified, noise is removed by a filter circuit, and then sent to the display device 6 for display. Since the display device 6 displays both the first transmitted pulse and the reflected pulse from the rupture position, the rupture position can be determined from the time interval between the two pulses and the propagation velocity of the ultrasonic wave.

このようにして、各素線を順次検査することによって、
ケーブル中のすべての素線の破断の有無および破断位置
等、ケーブルの断線状況が確実に把握できる。
In this way, by sequentially inspecting each strand,
It is possible to reliably grasp the cable breakage status, including whether or not all the wires in the cable are broken and the location of the breakage.

〔実施例〕〔Example〕

次に、実施例により本発明の効果をさらに具体的に示す
Next, the effects of the present invention will be illustrated more specifically by examples.

第1図に示す構造のケーブルにおいて、素線の直径が7
龍、素線本数500本、ケーブル全長が500mの平行
線ケーブルに対して本発明方法を適用した。これらの素
線のヤング率Eは2. I X 10’kg 7wm2
.ポアソン比μは0.29であり、波動方程式より伝播
し易い超音波周波数とその伝播速度を求めた結果を第1
表に示す。
In the cable with the structure shown in Figure 1, the diameter of the strands is 7
The method of the present invention was applied to a parallel cable with 500 strands and a total cable length of 500 m. The Young's modulus E of these wires is 2. I x 10'kg 7wm2
.. The Poisson's ratio μ is 0.29, and the results of finding the ultrasonic frequency that is easy to propagate and its propagation speed from the wave equation are the first
Shown in the table.

第   1   表 このケーブルを周波数2.6 M Hzの超音波パルス
を使用して全素線を検査した結果、1本の素線で第2図
(a)の表示が得られた。図のTは送信パルス信号であ
り、B+は破断点からの反射パルスであり、TとB1パ
ルスの時間間隔tは12m5であった。
Table 1 All strands of this cable were inspected using ultrasonic pulses with a frequency of 2.6 MHz, and as a result, the display shown in FIG. 2(a) was obtained for one strand. In the figure, T is the transmitted pulse signal, B+ is the reflected pulse from the break point, and the time interval t between the T and B1 pulses was 12 m5.

次に同一素線を周波数0.2 M Hzの超音波パルス
を使用して検査した結果、第2図(b)の表示が得られ
た。ここで、Tは送信パルス、B1は破断点からの1回
目の反射パルス、B2は2回目の反射パルスであり、B
3.B4はそれぞれ3回目、4回目の反射パルスを示す
。またTと81パルスの時間間隔および、B1とB2、
B2とB3、B3とB4との時間間隔はすべて同じであ
り12m5であった。この素線の検査端から破断点まで
の距離をLmとし、超音波パルスの伝播速度■を500
0m/sとして(3)式により破断位置を求めた結果L
=30mとなった。
Next, the same wire was inspected using ultrasonic pulses with a frequency of 0.2 MHz, and as a result, the display shown in FIG. 2(b) was obtained. Here, T is the transmitted pulse, B1 is the first reflected pulse from the break point, B2 is the second reflected pulse, and B
3. B4 indicates the third and fourth reflected pulses, respectively. Also, the time interval between T and 81 pulses, B1 and B2,
The time intervals between B2 and B3 and between B3 and B4 were all the same, 12 m5. The distance from the inspection end of this wire to the breaking point is Lm, and the propagation velocity of the ultrasonic pulse is 500.
Assuming 0m/s, the fracture position was calculated using equation (3), and the result was L
= 30m.

平行線ケーブルを解体して素線の断線状況を調査した結
果、上記素線だけが検査端から丁度30mの位置で破断
しているのが確認された。また、上記の周波数0.2 
M Hzの超音波パルスによる破断素線の検査で、4回
目までの反射エコーが得られたことから、この周波数を
使用すると素線端から120mの長さまでの破断素線を
検知できることを示すものである。
As a result of disassembling the parallel cable and investigating the breakage of the strands, it was confirmed that only the above-mentioned strands were broken at a position exactly 30 m from the inspection end. In addition, the above frequency 0.2
When inspecting a broken strand using an MHz ultrasonic pulse, up to the fourth reflected echo was obtained, indicating that using this frequency it is possible to detect a broken strand up to a length of 120 m from the end of the strand. It is.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明の方法によれば、橋梁用!   
  平行線ケーブルの実動中において、周波数20KH
z〜5MHzの範囲内の所定周波数の超音波パルスを素
線端から投入し、破断点からの反射エコーを検知するこ
とによって平行線ケーブル中の破断素線を確実に検知で
きる。即ち、ソケット内での破断はもとより、平行線ケ
ーブルの外側線であっても内(I11素線であっても、
素線端から100m以上の範囲にわたって破断素線とそ
の破断位置を検知することが可能であり、特に素線破断
の発生し易いと考えられるソケット付根における断線を
確実に検知可能であるため、橋梁の安全性を確保するた
めに極めて存劾な方法である。
As described above, according to the method of the present invention, it is possible to use bridges!
During actual operation of parallel cable, frequency 20KH
A broken strand in a parallel cable can be reliably detected by injecting an ultrasonic pulse with a predetermined frequency within the range of 5 MHz to 5 MHz from the end of the strand and detecting the reflected echo from the breaking point. In other words, not only will breakage occur within the socket, but also breakage of the outer wire of the parallel cable (even if it is an I11 wire),
It is possible to detect broken wires and their fracture positions over a range of 100 m or more from the end of the wire, and it is possible to reliably detect wire breaks at the base of sockets, where wire breaks are likely to occur. This is an extremely reliable method to ensure safety.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様の構成を示す図、第2図は
第1図に示した装置による破断素線の検知記録の一例で
ある。 1:素線群、 2:防食層、 3A、3B:ソケット、
 4:変換子、 5;超音波試験装置、6:表示装置、
 7:鋳込材料。
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is an example of a record of detection of a broken wire by the apparatus shown in FIG. 1: Wire group, 2: Anticorrosion layer, 3A, 3B: Socket,
4: Transducer, 5: Ultrasonic testing device, 6: Display device,
7: Casting material.

Claims (1)

【特許請求の範囲】[Claims] 平行線ケーブルの素線端に設置した変換子より、周波数
20KHz〜5MHzの範囲内で素線直径に応じた伝播
し易い所定周波数の超音波パルスを素線内に投入し、素
線破断箇所からの反射パルスを検出することを特徴とす
る橋梁用平行線ケーブルの破断素線検知法。
An ultrasonic pulse with a predetermined frequency that is easy to propagate depending on the wire diameter within the frequency range of 20 KHz to 5 MHz is injected into the wire from a transducer installed at the wire end of the parallel wire cable, and the ultrasonic pulse is transmitted from the wire breakage point. A method for detecting broken strands of parallel cables for bridges, which is characterized by detecting reflected pulses.
JP59232731A 1984-11-05 1984-11-05 Method for detecting disconnected strand of parallel cables for bridge Pending JPS61111460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59232731A JPS61111460A (en) 1984-11-05 1984-11-05 Method for detecting disconnected strand of parallel cables for bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59232731A JPS61111460A (en) 1984-11-05 1984-11-05 Method for detecting disconnected strand of parallel cables for bridge

Publications (1)

Publication Number Publication Date
JPS61111460A true JPS61111460A (en) 1986-05-29

Family

ID=16943896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59232731A Pending JPS61111460A (en) 1984-11-05 1984-11-05 Method for detecting disconnected strand of parallel cables for bridge

Country Status (1)

Country Link
JP (1) JPS61111460A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347654A (en) * 1986-08-13 1988-02-29 Kobe Steel Ltd Method for detecting disconnection of strands of parallel wire strand
JPS6347653A (en) * 1986-08-13 1988-02-29 Kobe Steel Ltd Method for detecting disconnection of strand of parallel wire strand
WO2000070336A1 (en) * 1999-05-14 2000-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for determining the condition of longitudinally stretched connecting elements and for testing the same using ultrasound
JP2018054332A (en) * 2016-09-26 2018-04-05 神鋼検査サービス株式会社 Abnormality detection method and abnormality detection apparatus of filament, and jig used for abnormality detection apparatus of filament

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347654A (en) * 1986-08-13 1988-02-29 Kobe Steel Ltd Method for detecting disconnection of strands of parallel wire strand
JPS6347653A (en) * 1986-08-13 1988-02-29 Kobe Steel Ltd Method for detecting disconnection of strand of parallel wire strand
JPH0584863B2 (en) * 1986-08-13 1993-12-03 Kobe Steel Ltd
JPH0584862B2 (en) * 1986-08-13 1993-12-03 Kobe Steel Ltd
WO2000070336A1 (en) * 1999-05-14 2000-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for determining the condition of longitudinally stretched connecting elements and for testing the same using ultrasound
JP2018054332A (en) * 2016-09-26 2018-04-05 神鋼検査サービス株式会社 Abnormality detection method and abnormality detection apparatus of filament, and jig used for abnormality detection apparatus of filament

Similar Documents

Publication Publication Date Title
US5821430A (en) Method and apparatus for conducting in-situ nondestructive tensile load measurements in cables and ropes
US5457994A (en) Nondestructive evaluation of non-ferromagnetic materials using magnetostrictively induced acoustic/ultrasonic waves and magnetostrictively detected acoustic emissions
US5456113A (en) Nondestructive evaluation of ferromagnetic cables and ropes using magnetostrictively induced acoustic/ultrasonic waves and magnetostrictively detected acoustic emissions
EP0988539B1 (en) Method and apparatus for monitoring of tensioned cables
WO2022052440A1 (en) Steel wire rope tension defect detection method
JPS61111460A (en) Method for detecting disconnected strand of parallel cables for bridge
JPS6148758A (en) Detecting method of broken element wire of parallel-line cable for mooring marine floating structure
KR101125670B1 (en) Apparatus for detecting defect in steel cable
WO1999053282A1 (en) Method and apparatus for conducting in-situ nondestructive tensile load measurements in cables and ropes
JP3729686B2 (en) Defect detection method for piping
WO2020004724A1 (en) The stationary type apparatus for measuring tensile force of strands using guided wave
JPH04182568A (en) Interposal state detecting method of filling grout in concrete structure and device thereof
JP2006010709A (en) Acoustic diagnosing/measuring apparatus by pulse electromagnetic force, and diagnosing/measuring method for the same
WO2011089733A1 (en) Testing method using guided wave
JPH0564299B2 (en)
JP2002031622A (en) Method and apparatus for inspecting coating defect of buried pipe
Kwun et al. Nondestructive testing of ropes using the transverse impulse vibration method
Weischedel et al. Inspection of wire ropes for offshore applications: Materials Evaluation, Vol. 49, No. 3, pp. 362–367 (Mar. 1991)
Gao et al. Defect and Tension Detection of Magnetostrictive Longitudinal Guided Wave for Steel Strip
JPS62266457A (en) Corrosion inspection for tension steel material of anchor
CA2290390A1 (en) Method and apparatus for monitoring of tensioned cables
Institute et al. Non-destructive evaluation of ropes by using transverse impulse vibrational wave method: US Patent No. 4,979,125 (18 Dec. 1990)
LaGrotta Method and apparatus for detecting surface flaws in electrical cable plastic jacketing: US Patent No. 4,979,389 (25 Dec. 1990) AT & T Bell Laboratories
Company et al. Ultrasonic testing of mineral insulated cable during manufacture: British Patent No. 2,232,250 (5 Dec. 1990)
Eltrn Cable fault location using pulse reflection method uses comparison of reflection wave values obtained for successive capacitive discharge procedures: European Patent No. 402,566 (19 Dec. 1990)