JPS61111423A - Device for measuring intensity of ultrasonic output - Google Patents

Device for measuring intensity of ultrasonic output

Info

Publication number
JPS61111423A
JPS61111423A JP23363584A JP23363584A JPS61111423A JP S61111423 A JPS61111423 A JP S61111423A JP 23363584 A JP23363584 A JP 23363584A JP 23363584 A JP23363584 A JP 23363584A JP S61111423 A JPS61111423 A JP S61111423A
Authority
JP
Japan
Prior art keywords
pressure receiving
receiving plate
ultrasonic
balance
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23363584A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Irioka
一吉 入岡
Masahiko Kaneko
兼子 昌彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23363584A priority Critical patent/JPS61111423A/en
Publication of JPS61111423A publication Critical patent/JPS61111423A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • G01H3/10Amplitude; Power

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To remove the measuring error of the intensity of an ultrasonic output by providing a water level mechanism to the upper part of a pressure receiving plate, and detecting the posture of the pressure receiving plate by the water level mechanism to adjust the pressure receiving plate so that an ultrasonic wave is made vertically incident. CONSTITUTION:The pressure receiving plate 21 can be sunk into a vessel 1 so that the pressure receiving surface 23 of the plate 21 is rectangular to the gravity direction by adjusting the length of a suspension wire 30 so that an air bubble 27 is positioned on the center of the pressure receiving plate 21 and fixing the pressure receiving plate 21. Under said status, an ultrasonic wave is radiated from an ultrasonic probe 15 on the basis of a driving signal supplied from an ultrasonic diagnostic device and made vertically incident upon the inside position of the suspension wire fixing part on the pressure receiving surface 23 of the plate 21. The intensity of the ultrasonic output is found out as the change of weight by a balance. Namely, the intensity of the ultrasonic output is amplified by a weight measuring amplifier and recorded on a recorder.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超音波診断装置の超音波探触子より放射され
る超音波出力強度を測定するだめの超音波出力強度測定
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic output intensity measuring device for measuring the ultrasonic output intensity emitted from an ultrasonic probe of an ultrasonic diagnostic apparatus.

従来例の構成とその問題点 近年、医学の各分野で超音波診断法の受は持つ役割が重
要となってきており、これに伴い超音波診断装置の普及
率も高まってきている。その理由としてX線診断機器に
比べて安全で使い易いことが挙げられる。このような事
情の下で最近、超音波の人体に対する影響に関する研究
が行なわれ、これに関連して超音波出力の強度を測定す
る装置の開発が行なわれている。現在、超音波出力強度
の測定法は原理的に、(1)力学的方法、(2)電気的
方法、(3)熱量的方法、(4)光学的方法の4つに大
別される。その中、(1)力学的方法の一つである天秤
を用いた測定法は、数十μW〜数十mWと低い超音波出
力の測定が可能であり、また比較的簡単に重量変化から
直接絶対出力を得ることができるので、超音波診断装置
領域における超音波出力強度測定として一般に用いられ
ている。
2. Description of the Related Art Structures of Conventional Examples and Their Problems In recent years, the role of ultrasonic diagnostic methods has become important in various fields of medicine, and the prevalence of ultrasonic diagnostic apparatuses has accordingly increased. The reason for this is that it is safer and easier to use than X-ray diagnostic equipment. Under these circumstances, research has recently been conducted on the effects of ultrasound on the human body, and in connection with this research, devices for measuring the intensity of ultrasound output have been developed. At present, methods for measuring ultrasonic output intensity are basically divided into four types: (1) mechanical method, (2) electrical method, (3) caloric method, and (4) optical method. Among them, (1) the measurement method using a balance, which is one of the mechanical methods, is capable of measuring low ultrasonic output of several tens of μW to several tens of mW, and is relatively easy to measure directly from weight changes. Since it is possible to obtain absolute output, it is generally used for ultrasonic output intensity measurement in the field of ultrasonic diagnostic equipment.

従来における天秤を用いた超音波出力強度測定装置は第
1図に示すように容器1内に水等の液体2が収められて
いる。一方、天秤3は棒状体4の中央部が支点已により
支持され、両側にフ、ンク67が備えられ、一側のフッ
ク6に皿8が吊下げられ、皿8に錘り9が載せられてい
る。この天秤3における錘り9と反対側のフック7より
受圧板10が吊線11により吊下げられ、この受圧板1
0は上記容器1内の液体2中に沈められている。
In a conventional ultrasonic output intensity measuring device using a balance, a liquid 2 such as water is contained in a container 1, as shown in FIG. On the other hand, in the balance 3, the central part of the rod-shaped body 4 is supported by a fulcrum, hooks 67 are provided on both sides, a plate 8 is suspended from the hook 6 on one side, and a weight 9 is placed on the plate 8. ing. A pressure receiving plate 10 is suspended by a hanging line 11 from a hook 7 on the opposite side of the weight 9 in this balance 3, and this pressure receiving plate 1
0 is submerged in the liquid 2 in the container 1.

天秤3の支点5には測定手段として順次重量測定増幅器
12及び記録計13が接続されている。
A weight measuring amplifier 12 and a recorder 13 are connected in sequence to the fulcrum 5 of the balance 3 as measuring means.

而して超音波診断装置14から加えられる駆動信号によ
り超音波探触子15から超音波が放射され、この超音波
は容器1の下部の透過部1aより受圧板(吸音板)10
に当たる。ところで超音波による放射圧には、レーリー
放射圧とランジュバン放射圧とがあり、超音波診断装置
の通常の使用 。
Then, ultrasonic waves are emitted from the ultrasonic probe 15 in response to a drive signal applied from the ultrasonic diagnostic device 14, and the ultrasonic waves are transmitted to the pressure receiving plate (sound absorbing plate) 10 from the transparent part 1a at the lower part of the container 1.
corresponds to By the way, radiation pressure caused by ultrasound includes Rayleigh radiation pressure and Langevin radiation pressure, which are commonly used in ultrasound diagnostic equipment.

条件で現われる放射圧は後者のランジュバン放射圧であ
る。この放射圧Fは、放射圧を受ける受圧板1o前面に
おける超音波のエネルギー密度Eに等しく、最終的に超
音波出力強度Wは次式で表わされる。
The radiation pressure that appears under these conditions is the latter Langevin radiation pressure. This radiation pressure F is equal to the energy density E of the ultrasonic waves at the front surface of the pressure receiving plate 1o receiving the radiation pressure, and finally the ultrasonic output intensity W is expressed by the following equation.

W=FXC=ΔmXgnXc ここでΔmは受圧板10に吊線11で接続された天秤3
が検出する重量変化で、gnは標準重力加速度、Cは容
器1内に入っている液体2の音速であり、従来この液体
2は脱気された水が用いられている。従って受圧板1o
で受けた超音波探触子15からの超音波出力強度は重量
変化として天秤3により直接絶対出力として求めること
が出来る。この重量変化は、重量測定増幅器12で増幅
し、記録計13に記録する。なお、錘り9は超音波を受
圧板10に照射する前にこの受圧板1oの重量とのバラ
ンスをとるためのものである。
W=FXC=ΔmXgnXc Here, Δm is the balance 3 connected to the pressure receiving plate 10 with a hanging wire 11
is the weight change detected by , where gn is the standard gravitational acceleration and C is the sound velocity of the liquid 2 contained in the container 1. Conventionally, this liquid 2 is degassed water. Therefore, pressure receiving plate 1o
The ultrasonic output intensity received from the ultrasonic probe 15 can be directly determined as an absolute output using the balance 3 as a change in weight. This weight change is amplified by a weight measuring amplifier 12 and recorded on a recorder 13. Note that the weight 9 is used to balance the weight of the pressure receiving plate 1o before irradiating the pressure receiving plate 10 with ultrasonic waves.

ところでこの天秤法による超音波出力強度測定装置とし
て扱う重量変化は、例えば、1mWの超音波出力強度を
測定しようとする場合、容器1内の液体2として水を用
い、水温20”C(0=1640 m / S )で測
定するとその重量変化Δmは66.8μgと非常に微量
な値を扱うことになり、測定条件及び装置に対する問題
が重要となる。而して上記従来の超音波出力強度測定装
置において受圧板10からの反射損失を小さくして測定
誤差を少くするため、吊線11によって容器1内の液体
2中に沈められた受圧板1oの面が重力方向に対して直
角に置かれ、しかも受圧板10の而と超音波探触子15
の超音波放射面とが平行であること、即ち超音波探触子
16からの超音波を受圧板1oに垂直入射させることが
重要である。しかしながら上記従来の超音波出力強度測
定装置にあっては天秤3から吊下げられた受圧板10の
姿勢を調整する手段及び受圧板10の姿勢状態を検出す
る手段を備えておらず、予め吊線11と受圧板10とを
組立てた状態で固定するようになっているので容易に調
整することができなかった。
By the way, the weight change handled by the ultrasonic output intensity measuring device using this balance method is, for example, when trying to measure an ultrasonic output intensity of 1 mW, water is used as the liquid 2 in the container 1, and the water temperature is 20"C (0 = When measuring at 1640 m/s), the weight change Δm is 66.8 μg, which is a very small value, and problems with the measurement conditions and equipment are important.Therefore, the above conventional ultrasonic output intensity measurement In order to reduce the reflection loss from the pressure plate 10 in the device and reduce measurement errors, the surface of the pressure plate 1o, which is submerged in the liquid 2 in the container 1 by the hanging wire 11, is placed at right angles to the direction of gravity. Moreover, the structure of the pressure receiving plate 10 and the ultrasonic probe 15
It is important that the ultrasonic radiation surface of the ultrasonic probe 1o is parallel to the ultrasonic wave emitting surface, that is, that the ultrasonic waves from the ultrasonic probe 16 are made perpendicularly incident on the pressure receiving plate 1o. However, the conventional ultrasonic output intensity measuring device described above does not have a means for adjusting the attitude of the pressure receiving plate 10 suspended from the balance 3 and a means for detecting the attitude state of the pressure receiving plate 10. Since the pressure receiving plate 10 and the pressure receiving plate 10 are fixed in an assembled state, they cannot be easily adjusted.

発明の目的 本発明は、受圧板の姿勢を検出してその姿勢を超音波が
垂直方向に入射するように調整することができ、従って
超音波出力強度の測定誤差を無くすことができるように
した超音波出力強度測定装置を提供することを目的とす
るものである。
Purpose of the Invention The present invention detects the attitude of a pressure receiving plate and adjusts the attitude so that ultrasonic waves are incident in the vertical direction, thereby eliminating measurement errors in ultrasonic output intensity. The object of the present invention is to provide an ultrasonic output intensity measuring device.

発明の構成 この目的を達成するために本発明は、液体が納められた
容器と、一側に錘りが吊下げられた天秤と、この天秤の
他側に外周部複数個所が吊線により吊下げられ、上記液
体中に沈められ、測定すべき超音波が照射される受圧板
と、この受圧板を各吊線に対し位置調整可能に固定する
固定手段と、上記受圧板の上部に設けられ気泡を封入し
た水準機構と、上記受圧板に超音波を照射することによ
り得られる重量変化を上記天秤より測定する測定手段と
を備え、水準機構により受圧板の姿勢を検出して超音波
が垂直方向に入射するように調整し得るように構成した
ことを%敵とするものである。
Structure of the Invention In order to achieve this object, the present invention comprises a container containing a liquid, a balance with a weight suspended from one side, and a plurality of points on the outer periphery of the balance suspended from hanging lines on the other side. a pressure receiving plate, which is submerged in the liquid and irradiated with the ultrasonic waves to be measured; a fixing means for fixing the pressure receiving plate to each suspension wire in a position adjustable manner; It is equipped with an enclosed leveling mechanism and a measuring means for measuring the weight change obtained by irradiating the pressure plate with ultrasonic waves using the balance, and the leveling mechanism detects the attitude of the pressure plate and the ultrasonic waves are aligned in the vertical direction. The enemy is that it is constructed in such a way that it can be adjusted so that it is incident.

実施例の説明 以下に本発明の一実施例を図面を参照して説明する。第
2図乃至第4図に示すように受圧板21は超音波の反射
損失が小さく(音響インピーダンスが水に近い)、且つ
吸音効果の高い材料として、シリコーン系のゴム等が用
いられ、円盤状に形成されている。受圧板21の上部中
央部には円形の水準機構22が設けられ、受圧面23に
入射した超音波が水準機構22に至る間に吸音される距
離がとられている。水準機構22の一例として受圧板2
1の上部中央部に円形の凹入部24が形成され、受圧板
21の上面には凹入部24を密閉するように透明な密閉
板25が取付けられ、凹入部24と密閉板26の内部に
水等の液体26が気泡27を残して封入されている。受
圧板21は外周部におけるほぼ等間隔位置の複数個所(
図示例では4個所)で天秤のフック7より吊下げられる
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. As shown in FIGS. 2 to 4, the pressure receiving plate 21 is made of a material such as silicone rubber, which has low ultrasonic reflection loss (acoustic impedance is close to that of water) and has a high sound absorption effect, and is shaped like a disk. is formed. A circular leveling mechanism 22 is provided at the upper center of the pressure receiving plate 21, and a distance is provided so that the ultrasonic waves incident on the pressure receiving surface 23 are absorbed while reaching the leveling mechanism 22. The pressure receiving plate 2 is an example of the leveling mechanism 22.
A circular recess 24 is formed in the upper center of the pressure receiving plate 21, and a transparent sealing plate 25 is attached to the upper surface of the pressure receiving plate 21 to seal the recess 24. A liquid 26 such as the like is sealed with air bubbles 27 left behind. The pressure receiving plate 21 is arranged at a plurality of positions (
In the illustrated example, it is hung from the hook 7 of the balance at four locations.

即ち、フック7に吊線28の上端環状部29が掛けられ
、吊線28の下端は4本の吊線3oに分岐されている。
That is, the upper end annular portion 29 of the suspension line 28 is hung on the hook 7, and the lower end of the suspension line 28 is branched into four suspension lines 3o.

一方、受圧板21の外周部の4個所には吊線3oに対し
位置調整可能に固定する固定手段が設けられる。その−
例として受圧板21の1    4周WE軸′Bと平行
′吊線挿通4″穴3°7゛′5され、この穴31の軸心
と直交方向に固定部材として固定用ねじ32が進退可能
に螺入されている。
On the other hand, fixing means are provided at four locations on the outer periphery of the pressure receiving plate 21 to adjust the position of the suspension wire 3o. That-
For example, a 4" hole 3° 7" 5 is formed in the pressure receiving plate 21 in parallel with the 14 circumference WE axis 'B' through which a hanging wire is inserted, and a fixing screw 32 as a fixing member can be moved back and forth in the direction perpendicular to the axis of this hole 31. It is screwed in.

従って吊線3oを穴31に挿通させ、固定用ねじ32を
前進させることにより吊線30を穴31の内壁に押圧し
て固定することができる。これとは逆に固定用ねじ32
を後退させることにより吊線30全解放することができ
る。その他の構成は従来例の第1図に示すものと同様で
ある。
Therefore, by inserting the hanging wire 3o into the hole 31 and advancing the fixing screw 32, the hanging wire 30 can be pressed and fixed against the inner wall of the hole 31. On the contrary, the fixing screw 32
By retreating, the hanging wire 30 can be completely released. The other configurations are similar to those shown in FIG. 1 of the conventional example.

次に上記実施例の作用について説明する。気泡27が受
圧板21の中心に位置するように吊線30の長さを調整
して受圧板21を固定することにより受圧板21の受圧
面23が重力方向に対して直角になるようにして容器1
内に沈めることができる。この状態で超音波診断装置1
4から加えられる。駆動信号により超音波探触子16か
ら超音波が放射され、この超音波は受圧板21の受圧面
23における吊線固定部の内側位置ピ垂°直方向に当た
る。そしてこの超音波出力強度は重量変化として天秤3
により求める。即ち、この重量変化は重量測定増幅器1
2により増幅し、記録計13に記録する、 なお、上記実施例では吊線3oの固定手段としてねじ3
2を用いているが、このねじ32に代え、てばねにより
吊線3oを穴31の内壁に圧着させて固定することもで
きる。また水準機構22は受圧板21とは別に形成して
受圧板21に取付けるようにしてもよい。
Next, the operation of the above embodiment will be explained. The length of the hanging wire 30 is adjusted so that the air bubble 27 is located at the center of the pressure receiving plate 21, and the pressure receiving plate 21 is fixed so that the pressure receiving surface 23 of the pressure receiving plate 21 is perpendicular to the direction of gravity. 1
It can be sunk inside. In this state, the ultrasound diagnostic device 1
Added from 4. Ultrasonic waves are emitted from the ultrasonic probe 16 in response to the drive signal, and the ultrasonic waves strike the pressure receiving surface 23 of the pressure receiving plate 21 at the inner position of the hanging wire fixing portion in the vertical direction. Then, this ultrasonic output intensity is expressed as a weight change on the balance 3.
Find it by That is, this weight change is caused by the weight measurement amplifier 1
2 and recorded on the recorder 13. In the above embodiment, the screw 3 is used as a means for fixing the hanging wire 3o.
2 is used, but instead of the screw 32, the hanging wire 3o can be fixed by being crimped onto the inner wall of the hole 31 using a lever spring. Further, the leveling mechanism 22 may be formed separately from the pressure receiving plate 21 and attached to the pressure receiving plate 21.

発明の効果 以上の説明より明らかなように本発明によれば、天秤に
おける錘りと反対側より受圧板の外周部複数個所を吊線
により位置調整可能に吊下げて容器の液体中に沈め、こ
の受圧板に測定すべき超音波を照射し、この照射による
重量変化を上記天秤より測定するようにし、この際、上
記受圧板の上部に水準機構を備え、この水準機構により
、受圧板の姿勢全検出し、超音波が垂直方向に入射する
ように調整し得るようにしている。従って超音波出力強
度の測定誤差を無くすことができる。
Effects of the Invention As is clear from the above explanation, according to the present invention, the outer circumferential portion of the pressure plate is suspended from the opposite side of the balance from the weight at a plurality of locations by means of suspension lines so that the position can be adjusted, and the pressure plate is submerged in the liquid of the container. The pressure receiving plate is irradiated with ultrasonic waves to be measured, and the weight change due to this irradiation is measured by the above-mentioned balance. At this time, a leveling mechanism is provided on the top of the pressure receiving plate, and this leveling mechanism allows the pressure receiving plate to be adjusted in all its postures. It is possible to detect and adjust the ultrasonic waves to be incident in the vertical direction. Therefore, measurement errors in the ultrasonic output intensity can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の超音波出力強度測定装置の概略説明図
、第2図乃至第4図は本発明の超音波出力強度測定装置
に用いる受圧板部の一実施例を示し、第2図は平面図、
第3図は一部切欠側面図、1・・・・・・容器、2・・
・・・・液体、3・・・・・・天秤、12・・・・・・
重量測定増幅器、13・・・・・・記録計、14・・・
・・・超音波診断装置、16・・・・・・超音波探触子
、21・・・・・・受圧板、22・・・・・・水準機構
、26・・・・・・液体、27・・・・・・気泡、28
.30・・・・・・吊線、31・・・・・・吊線挿通用
の穴、32・・・・・・固定用ねじ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図
FIG. 1 is a schematic explanatory diagram of a conventional ultrasonic output intensity measuring device, FIGS. 2 to 4 show an embodiment of the pressure receiving plate used in the ultrasonic output intensity measuring device of the present invention, and FIG. is a plan view,
Figure 3 is a partially cutaway side view, 1... Container, 2...
...liquid, 3...balance, 12...
Weight measurement amplifier, 13...Recorder, 14...
... Ultrasonic diagnostic device, 16 ... Ultrasonic probe, 21 ... Pressure receiving plate, 22 ... Leveling mechanism, 26 ... Liquid, 27...Bubble, 28
.. 30... Hanging wire, 31... Hole for inserting the hanging wire, 32... Fixing screw. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)液体が納められた容器と、一側に錘りが吊下げら
れた天秤と、この天秤の他側に外周部複数個所が吊線に
より吊下げられ、上記液体中に沈められ、測定すべき超
音波が照射される受圧板と、この受圧板を各吊線に対し
位置調整可能に固定する固定手段と、上記受圧板の上部
に設けられ、気泡を封入した水準機構と、上記受圧板に
超音波を照射することにより得られる重量変化を上記天
秤より測定する測定手段とを備えたことを特徴とする超
音波出力強度測定装置。
(1) A container containing a liquid, a balance with a weight suspended on one side, and multiple points on the outer periphery of the balance suspended from hanging wires on the other side, which are submerged in the liquid and used for measurement. a pressure receiving plate to which ultrasonic waves to be applied are irradiated; a fixing means for fixing the pressure receiving plate to each suspension line in a position adjustable manner; a leveling mechanism provided on the upper part of the pressure receiving plate and containing air bubbles; An ultrasonic output intensity measuring device comprising: measuring means for measuring weight change obtained by irradiating ultrasonic waves using the balance.
(2)固定手段は受圧板に形成された吊線挿通用の穴と
受圧板に設けられた吊線固定部材とよりなる特許請求の
範囲第1項記載の超音波出力強度測定装置。
(2) The ultrasonic output intensity measuring device according to claim 1, wherein the fixing means comprises a hole for passing a hanging wire formed in the pressure receiving plate and a hanging wire fixing member provided in the pressure receiving plate.
JP23363584A 1984-11-06 1984-11-06 Device for measuring intensity of ultrasonic output Pending JPS61111423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23363584A JPS61111423A (en) 1984-11-06 1984-11-06 Device for measuring intensity of ultrasonic output

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23363584A JPS61111423A (en) 1984-11-06 1984-11-06 Device for measuring intensity of ultrasonic output

Publications (1)

Publication Number Publication Date
JPS61111423A true JPS61111423A (en) 1986-05-29

Family

ID=16958127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23363584A Pending JPS61111423A (en) 1984-11-06 1984-11-06 Device for measuring intensity of ultrasonic output

Country Status (1)

Country Link
JP (1) JPS61111423A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511064A (en) * 1991-02-15 1993-01-19 Western Atlas Internatl Inc Three-dimensional underground sound locator
JP2013520660A (en) * 2010-02-26 2013-06-06 ナンジン ハイカ メディカル イクウィップメント カンパニー リミテッド High density focused ultrasonic measurement absorption target
CN105043532A (en) * 2015-08-03 2015-11-11 深圳崇达多层线路板有限公司 Measurement plate and measurement method for measuring circuit board horizontal line ultrasonic intensity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511064A (en) * 1991-02-15 1993-01-19 Western Atlas Internatl Inc Three-dimensional underground sound locator
JP2013520660A (en) * 2010-02-26 2013-06-06 ナンジン ハイカ メディカル イクウィップメント カンパニー リミテッド High density focused ultrasonic measurement absorption target
CN105043532A (en) * 2015-08-03 2015-11-11 深圳崇达多层线路板有限公司 Measurement plate and measurement method for measuring circuit board horizontal line ultrasonic intensity

Similar Documents

Publication Publication Date Title
Rooney Determination of acoustic power outputs in the microwatt-milliwatt range
Hodnett et al. A strategy for the development and standardisation of measurement methods for high power/cavitating ultrasonic fields: review of high power field measurement techniques
US4501151A (en) Ultrasonic therapy applicator that measures dosage
US4390026A (en) Ultrasonic therapy applicator that measures dosage
JPS61111423A (en) Device for measuring intensity of ultrasonic output
Farmery et al. A portable radiation-force balance for use with diagnostic ultrasonic equipment
Crum et al. Free radical production in amniotic fluid and blood plasma by medical ultrasound.
US5448904A (en) Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors
US2762447A (en) Cavity radiometer
EP0403562B1 (en) Training aid to simulate detection of radioactivity
JPS61105429A (en) Measuring device for intensity of ultrasonic output
Duck Ultrasonic metrology II—The history of the measurement of acoustic power and intensity using radiation force
CN104568112B (en) A kind of medical acoustic pressure sensitivity of hydrophone and directivity test device
WO2001042778A1 (en) Ultrasonic standard
US2874794A (en) Method and apparatus for measurement of total sound power output of an ultrasonic transducer
JPS61105428A (en) Measuring device for intensity of ultrasonic output
CN212693059U (en) Novel acoustic power meter
Lewin et al. Ultrasound Exposimetry: An Essential Component of Ultrasonic Device Characterization
JPH0543422Y2 (en)
US5488853A (en) Measurement arrangement for calibrating ultrasonic shock wave sensors
CN217880612U (en) Ultrasonic standing wave suspension demonstration device
US4441173A (en) Very low frequency hydrophone calibration
DE69108870D1 (en) Check valve check.
ATE74204T1 (en) METHOD AND DEVICE FOR TESTING ULTRASONIC TRANSDUCERS.
Pagano Two wheel ultrasonic rail testing system and method