JPS61105429A - Measuring device for intensity of ultrasonic output - Google Patents

Measuring device for intensity of ultrasonic output

Info

Publication number
JPS61105429A
JPS61105429A JP22715184A JP22715184A JPS61105429A JP S61105429 A JPS61105429 A JP S61105429A JP 22715184 A JP22715184 A JP 22715184A JP 22715184 A JP22715184 A JP 22715184A JP S61105429 A JPS61105429 A JP S61105429A
Authority
JP
Japan
Prior art keywords
liquid
balance
container
ultrasonic
oily
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22715184A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Irioka
一吉 入岡
Masahiko Kaneko
兼子 昌彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22715184A priority Critical patent/JPS61105429A/en
Publication of JPS61105429A publication Critical patent/JPS61105429A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • G01H3/10Amplitude; Power

Abstract

PURPOSE:To improve measurement precision, and to eliminate the need for a balance readjustment of a balance and to improve the operation efficiency by providing an oily liquid layer which has less specific gravity than the liquid in a container over the surface of the liquid in the container, and preventing the liquid in the container from vaporizing. CONSTITUTION:A pressure receiving plate 10 which absorbs or reflects greatly an ultrasonic wave is suspended with a suspension wire 11 from a hook 7 at the opposite side of a weight on the balance 3 and dipped in the liquid 2. The oily liquid 16 which has less specific gravity and the less quantity of vaporization than the liquid 2 is provided over the surface of the liquid 2 in the container 1. This oily liquid 16 is layered preferably to an about 2-5mm thickness. Thus, the surface of the liquid 2 is covered with the oily liquid 16, so the vaporization of the liquid 2 is prevented and the quantity of vaporization of the oil liquid 16 is small, so liquid drops are prevented from sticking on the suspension wire 11, hook 7 of the balance, or the whole of balance 7 and weight variation is suppressed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超音波診断装置の超音波探触子より放射さ−
れる超音波出力強度を測定するための超音波出力強度測
定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the field of industrial application.
The present invention relates to an ultrasonic output intensity measuring device for measuring ultrasonic output intensity.

従来例の構成とその問題点 近年、医学の各分野で超音波診断法の受は持つ役害りが
重要となってきており、これに伴い、超音波診断装置の
普及率も高まってきている0その理由の一つとして)L
&診断機器に比べ、安全で使い易いことが挙げられる。
Structure of conventional examples and their problems In recent years, the advantages and disadvantages of ultrasound diagnostic methods have become important in various fields of medicine, and along with this, the prevalence of ultrasound diagnostic equipment has also increased. 0One of the reasons)L
& Compared to diagnostic equipment, it is safer and easier to use.

このような事情の下で、最近、超音波の人体への影響に
関する研究が行なわれ、これに関連し超音波出力の強度
を測定する装置の開発が行なわれている。
Under these circumstances, research has recently been conducted on the effects of ultrasound on the human body, and related to this research, devices for measuring the intensity of ultrasound output have been developed.

現在ミ超音波出力強度の測定は原理的に(1)力学的方
法、@)電気的方法、(3)熱量的方法、(4)光学的
方法の4つに大別される。その中、力学的方法の一つで
ある天秤を用いた測定法は、数十μW〜数+mwと低い
超音波出力のan+定が可能なことや、比較的簡単に重
量変化から絶対出力を求めることができることから、超
音波診断装置領域における用 超音波出力強度測定としぜいらノ1ている。
Currently, the measurement of ultrasonic output intensity is basically divided into four types: (1) mechanical method, @) electrical method, (3) caloric method, and (4) optical method. Among them, the measurement method using a balance, which is one of the mechanical methods, is capable of determining the an+ constant of ultrasonic output as low as several tens of μW to several + mW, and it is relatively easy to determine the absolute output from weight changes. Because of its ability to perform ultrasonic wave output intensity measurement in the field of ultrasonic diagnostic equipment, it has become very popular.

従来における天秤を用いた超音波出力強度測定装置は第
1図に示すように容器1内に水等の液体2が収容されて
いる。一方、天秤3は棒状体4の中央部が支点6によシ
支持され、両側に7ツク6゜7が備えられ、−側のフッ
ク6に皿8が吊下げられ、皿8に錘り9が載せられてい
る。この天秤3における錘り9と反対側のフック7より
受圧板10が吊線11により吊下げられ、この受圧板1
0は上記容器1内の液体2中に沈められている。天秤3
の支点5には測定手段として順次重量測定増幅器12及
び記録計13が接続されている。
In a conventional ultrasonic output intensity measuring device using a balance, a liquid 2 such as water is contained in a container 1, as shown in FIG. On the other hand, the balance 3 has a rod-shaped body 4 whose central part is supported by a fulcrum 6, and is provided with 7 hooks 6°7 on both sides.A plate 8 is suspended from the hook 6 on the minus side, and a weight 9 is listed. A pressure receiving plate 10 is suspended by a hanging line 11 from a hook 7 on the opposite side of the weight 9 in this balance 3, and this pressure receiving plate 1
0 is submerged in the liquid 2 in the container 1. balance 3
A weight measuring amplifier 12 and a recorder 13 are successively connected to the fulcrum 5 as measuring means.

而して超音波診断装置14から加えられる駆動信号によ
り超音波探触子16かも超音波が放射され、この超音波
は容器1の下部の透過部1aより受圧板1oに当てられ
る。ところで超音波による放射圧は、レーリー放射圧と
ランジュバン放射圧とがτ′す、超音波診断装置の通常
の使用条件で現われる放射圧は後者のランジュバン放射
圧である。
Then, the ultrasonic probe 16 also emits ultrasonic waves in response to a drive signal applied from the ultrasonic diagnostic device 14, and these ultrasonic waves are applied to the pressure receiving plate 1o through the transparent portion 1a at the lower part of the container 1. Incidentally, the radiation pressure caused by ultrasound is the Rayleigh radiation pressure and the Langevin radiation pressure τ', and the radiation pressure that appears under normal usage conditions of the ultrasonic diagnostic apparatus is the latter Langevin radiation pressure.

この放射圧Fは、放射圧を受ける受圧板10@q面にお
ける超音波のエネルギー密度Eに等しく、最終的に超音
波出力強度Wは次式で表わされるOW= F −C= 
6m −gn−に こで、6mは受圧板に吊線11で接続された天秤3が検
出する重量変化で、gnは標準重力加速度、Cは容器1
に入っている液体2の音速であり、従来この液体2は脱
気された水が用いられている。従って受圧板1oで受け
た超音波探触子15からの超音波出力強度は重量変化と
して天秤3で測定し求めることができる。即ち、上記車
量変化は重量測定増幅器12で増幅し、記録計13に記
録する〕なお、錘り9は超音波を受圧板1oに照射する
前にこの受圧板10のik量とのバランスをとるための
ものである。
This radiation pressure F is equal to the ultrasonic energy density E on the pressure receiving plate 10@q surface that receives the radiation pressure, and the ultrasonic output intensity W is finally expressed by the following formula: OW=F −C=
6m -gn-niko, 6m is the weight change detected by the balance 3 connected to the pressure receiving plate with the hanging wire 11, gn is the standard gravitational acceleration, and C is the container 1.
This is the sound velocity of the liquid 2 contained in the liquid 2. Conventionally, deaerated water is used as the liquid 2. Therefore, the intensity of the ultrasonic output from the ultrasonic probe 15 received by the pressure receiving plate 1o can be determined by measuring the change in weight using the balance 3. That is, the change in the amount of the vehicle is amplified by the weight measurement amplifier 12 and recorded in the recorder 13.]The weight 9 balances the ik amount of the pressure plate 10 with the ultrasonic wave before irradiating the pressure plate 1o with the ultrasonic wave. It is meant to be taken.

しかCながら天秤3として扱う重量変化は、例えば11
nw の超音波出力強度を測定しようとする場合、容器
1内の液体2として水を用い、水温20℃で測定すると
その重量変化Δmは66.8μqと非常に微量な値を扱
うことになり、測定条件に対する問題が重要となる。而
して従来この天秤を用いた超音波出力強度測定装置の容
器1内の液体2としては、上記のように水を用いている
ので、測定の際その水が蒸発し、その水滴が天秤3のフ
ック7若しくは天秤3全体に付着し、除々に重量が変化
し、測定精度に劣り、天秤3のバランスの再調整を要し
、作業能率に劣る等の問題があった。
However, although C, the weight change treated as a balance 3 is, for example, 11
When trying to measure the ultrasonic output intensity of nw, using water as the liquid 2 in the container 1 and measuring at a water temperature of 20°C, the weight change Δm is 66.8 μq, which is a very small value. The issue of measurement conditions is important. Conventionally, water is used as the liquid 2 in the container 1 of the ultrasonic output intensity measuring device using this balance, as described above, so the water evaporates during measurement, and the water droplets are transferred to the balance 3. There were problems such as the weight gradually changing, the measurement accuracy being poor, the balance of the balance 3 having to be readjusted, and the work efficiency being poor.

発明の目的 本発明の目的は、唄11定精度を向上させ、また天秤の
バランスの再調整を不要とし、作業能率を向上させるこ
とができるようにした超音波出力強度測定装置を提供し
ようとするものである。
OBJECTS OF THE INVENTION An object of the present invention is to provide an ultrasonic output intensity measuring device that improves the accuracy of measurement, eliminates the need to readjust the balance of the balance, and improves work efficiency. It is something.

発明の構成 本発明は、上記目的を達成するため、液体が収容された
容器と、天秤における錘りと反対側よりにより得らhる
重量変化を前記天秤より測定する屓jj定手段と、前記
容器内の液体表面に収容さハ、この液体より比重が小さ
い油性の液体層とを備え、この液体層により前記容器内
の液体の蒸発を防止するように構成したことを特徴とす
るものである。
Structure of the Invention In order to achieve the above-mentioned object, the present invention includes a container containing a liquid, a measuring means for measuring the weight change obtained from the opposite side of the balance from the weight, and the above-mentioned. The container is characterized by comprising an oily liquid layer contained on the surface of the liquid in the container and having a specific gravity lower than that of the liquid, and this liquid layer is configured to prevent the liquid in the container from evaporating. .

実施例の説明 以下、本発明の一実施例を図面を参照して説明する。第
2図に示すように容器1内に水等の液体2が収容さhて
いる。天秤3のフック7よシ後述する超音波を吸音し、
若しくは反射するための受圧板1oが吊線11によシ吊
下げら力、この受圧板10は液体2中に沈められている
。而して容器1内の液体2の表面に、この液体2より比
重が小さく、蒸発量の小さい油性の液体16が収容され
ている。この油性の液体16としては例えば比重(1で
粘度が小さいシリコーン油(例えばポリジメチルシロキ
サン等)を用い、2胴〜6咽程度の厚さの層にするのが
望ましい。その他の構成は従来例の第1図に示すものと
同様である。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 2, a liquid 2 such as water is contained in a container 1. The hook 7 of the balance 3 absorbs the ultrasonic waves described later,
Alternatively, a pressure receiving plate 1o for reflection is suspended from a suspension line 11, and this pressure receiving plate 10 is submerged in the liquid 2. On the surface of the liquid 2 in the container 1, an oily liquid 16 having a lower specific gravity and a smaller amount of evaporation than the liquid 2 is stored. As this oil-based liquid 16, it is preferable to use silicone oil (such as polydimethylsiloxane) with a specific gravity (1) and a low viscosity, and to form a layer with a thickness of about 2 to 6 mm.Other configurations are conventional. It is similar to that shown in FIG.

而して上記実施例装置によれば、液体20表面は油性の
液体16により被われるので、液体2からの蒸発が阻止
され、勿論油性の液体16は蒸発量が小さいので、吊線
11.天秤3のフック7、若しくは天秤3全体に液滴が
付着するのを防ぐことができる。
According to the apparatus of the above embodiment, since the surface of the liquid 20 is covered with the oily liquid 16, evaporation from the liquid 2 is prevented.Of course, since the amount of evaporation of the oily liquid 16 is small, the hanging wire 11. It is possible to prevent droplets from adhering to the hook 7 of the balance 3 or the entire balance 3.

発明の効果 以上の説明より明らかなように本発明によれば、天秤に
おける錘りと反対側より容器内の液体中に受圧板を吊下
げ、この受圧板に測定すべき超音波を照射し、ここの照
射による重量変化を前記天秤より測定するようにし、こ
の際容器内の前記液体の表面にこの液体より比重が小さ
く、蒸発量の小さい油性の液体層を設けることにより、
容器内の前記液体の蒸発による天秤への液滴付着を防ぎ
、重量変化をおさえることができる。従って測定8度の
向上を図ることができ、また天秤のバランスの再調整を
不要とし、作業能率を向上させることができる等の利点
がある。
Effects of the Invention As is clear from the above explanation, according to the present invention, a pressure receiving plate is suspended in a liquid in a container from the side opposite to the weight of a balance, and the ultrasonic wave to be measured is irradiated to this pressure receiving plate, The weight change due to irradiation here is measured using the balance, and at this time, by providing an oily liquid layer on the surface of the liquid in the container, which has a lower specific gravity and a smaller amount of evaporation than the liquid,
It is possible to prevent droplets from adhering to the balance due to evaporation of the liquid in the container, and to suppress weight changes. Therefore, it is possible to improve the measurement angle by 8 degrees, and it is not necessary to readjust the balance of the balance, which has the advantage of improving work efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の超音波出力強度測定装置の概略本 説明図、第2図は方発明の超音波出力強度測定装置の一
実施例を示す要部の一部切欠正面図である。 1 ・・・・・容器、2・・・・・・液体、3・・・・
・天秤、1o・・・・・受圧板、11・・・・・・吊線
、12・・・・・・重量測定増幅器、13・・・・・・
記録計、14・・・・・・超音波診断装置、15・・・
・・超音波探触子、16・・・・・・油性の液体。
FIG. 1 is a schematic explanatory diagram of a conventional ultrasonic output intensity measuring device, and FIG. 2 is a partially cutaway front view of essential parts showing an embodiment of the ultrasonic output intensity measuring device of the present invention. 1...container, 2...liquid, 3...
・Balance, 1o...Pressure plate, 11...Hanging wire, 12...Weight measurement amplifier, 13...
Recorder, 14... Ultrasonic diagnostic device, 15...
...Ultrasonic probe, 16... Oil-based liquid.

Claims (1)

【特許請求の範囲】[Claims] 液体が収容された容器と、天秤における錘りと反対側よ
り前記容器内の液体中に吊り下げられ、測定すべき超音
波が照射される受圧板と、前記受圧板に超音波を照射す
ることにより得られる重量変化を前記天秤より測定する
測定手段と、前記容器内の液体表面に収容され、この液
体より比重が小さい油性の液体層とを備えたことを特徴
とする超音波出力強度測定装置。
A container containing a liquid, a pressure receiving plate suspended from the opposite side of the balance in the liquid in the container and irradiated with ultrasonic waves to be measured, and irradiating the pressure receiving plate with ultrasonic waves. An ultrasonic output intensity measuring device comprising: a measuring means for measuring the weight change obtained by using the balance; and an oily liquid layer that is housed on the surface of the liquid in the container and has a specific gravity smaller than that of the liquid. .
JP22715184A 1984-10-29 1984-10-29 Measuring device for intensity of ultrasonic output Pending JPS61105429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22715184A JPS61105429A (en) 1984-10-29 1984-10-29 Measuring device for intensity of ultrasonic output

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22715184A JPS61105429A (en) 1984-10-29 1984-10-29 Measuring device for intensity of ultrasonic output

Publications (1)

Publication Number Publication Date
JPS61105429A true JPS61105429A (en) 1986-05-23

Family

ID=16856290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22715184A Pending JPS61105429A (en) 1984-10-29 1984-10-29 Measuring device for intensity of ultrasonic output

Country Status (1)

Country Link
JP (1) JPS61105429A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048702A1 (en) * 2001-12-03 2003-06-12 Insightec-Txsonics Ltd Apparatus, systems, and methods for measuring power output of an ultrasound transducer
JP2013520660A (en) * 2010-02-26 2013-06-06 ナンジン ハイカ メディカル イクウィップメント カンパニー リミテッド High density focused ultrasonic measurement absorption target
JP2020030001A (en) * 2018-08-23 2020-02-27 パナソニックIpマネジメント株式会社 Humidity control system using liquid moisture absorbing material, air conditioner including the humidity control system and liquid moisture absorbing member for humidity control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048702A1 (en) * 2001-12-03 2003-06-12 Insightec-Txsonics Ltd Apparatus, systems, and methods for measuring power output of an ultrasound transducer
US6790180B2 (en) 2001-12-03 2004-09-14 Insightec-Txsonics Ltd. Apparatus, systems, and methods for measuring power output of an ultrasound transducer
JP2013520660A (en) * 2010-02-26 2013-06-06 ナンジン ハイカ メディカル イクウィップメント カンパニー リミテッド High density focused ultrasonic measurement absorption target
JP2020030001A (en) * 2018-08-23 2020-02-27 パナソニックIpマネジメント株式会社 Humidity control system using liquid moisture absorbing material, air conditioner including the humidity control system and liquid moisture absorbing member for humidity control system

Similar Documents

Publication Publication Date Title
JP2686302B2 (en) An acoustic method for measuring the properties of moving media.
Fairbank et al. A new noninvasive technique for cardiac pressure measurement: resonant scattering of ultrasound from bubbles
US8365582B2 (en) Device for measuring viscosity/elasticity and method for measuring viscosity/elasticity
US5623095A (en) Method for chemically analyzing a solution by acoustic means
Stalnaker Mechanical properties of the head
Wilson Jr et al. Measurements of sound absorption in aqueous salt solutions by a resonator method
Hodnett et al. A strategy for the development and standardisation of measurement methods for high power/cavitating ultrasonic fields: review of high power field measurement techniques
US3133445A (en) Ultrasonic particle size measurement apparatus
JPS61105429A (en) Measuring device for intensity of ultrasonic output
EP0169848A1 (en) Method of flow measurement and flow meter
Farmery et al. A portable radiation-force balance for use with diagnostic ultrasonic equipment
Beissner Radiation force and force balances
Swamy et al. Ultrasonic power measurements in the milliwatt region by the radiation force float method
Issenmann et al. Bistability of a compliant cavity induced by acoustic radiation pressure
Mastromarino et al. An ultrasonic shear wave viscometer for low viscosity Newtonian liquids
US2762447A (en) Cavity radiometer
JPS61111423A (en) Device for measuring intensity of ultrasonic output
Ravishankar et al. Laser generated acoustic emission in water
Duck Ultrasonic metrology II—The history of the measurement of acoustic power and intensity using radiation force
RU2735315C1 (en) Liquid surface parameters gage
Kamath et al. On Rayleigh wave emissions in brittle fracture
JPH0961408A (en) Evaluation of ceramics material
Beissner Radiation force and force balances
RU140996U1 (en) DEVICE FOR DETERMINING THE PARAMETERS OF THE ULTRASONIC TRANSDUCER
SU665261A1 (en) Ultrasonic sensor for investigating biologic tissue