JPS6111135A - Endothermic reaction device - Google Patents

Endothermic reaction device

Info

Publication number
JPS6111135A
JPS6111135A JP59130011A JP13001184A JPS6111135A JP S6111135 A JPS6111135 A JP S6111135A JP 59130011 A JP59130011 A JP 59130011A JP 13001184 A JP13001184 A JP 13001184A JP S6111135 A JPS6111135 A JP S6111135A
Authority
JP
Japan
Prior art keywords
tube
reaction
reaction tube
gas
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59130011A
Other languages
Japanese (ja)
Other versions
JPH0660001B2 (en
Inventor
Goro Oguchi
小口 梧郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON NENRYO GIJUTSU KAIHATSU KK
Toshiba Corp
Original Assignee
NIPPON NENRYO GIJUTSU KAIHATSU KK
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON NENRYO GIJUTSU KAIHATSU KK, Toshiba Corp filed Critical NIPPON NENRYO GIJUTSU KAIHATSU KK
Priority to JP59130011A priority Critical patent/JPH0660001B2/en
Publication of JPS6111135A publication Critical patent/JPS6111135A/en
Publication of JPH0660001B2 publication Critical patent/JPH0660001B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent ununiform inclination of reaction tube at high temp. due to thermal deformation by forming a produced gas manifold from a space part communicating to external part utilizing a space enclosed by an external tube of a reaction tubes and upper and lower tube plates. CONSTITUTION:When produced gas passes through a regeneration chamber 7, the sensible heat is supplied to the internal tube 3 of the reaction chamber, and the produced gas is discharged from an outlet nozzle 12 provided to the manifold 9 of the produced gas. On one hand,fuel gas introduced from a fuel inlet nozzle 14 and combustion air introduced from a combustion air inlet nozzle 15 are introduced into the combustion chamber 13 formed as a space below the reactor vessel 1, and the gases are burnt in the combustion chamber 13 by the burner nozzle 16. The combustion gas at high temp. generated by the combustion in the combustion chamber 13 is led to a combustion gas passage 17 where it heats the external tube 2 of the reaction tube, then discharged from a discharging nozzle 18 of the combustion gas.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は吸熱反応装置に係り、特に複数本の二重雪男生
型の反応管を備えた吸熱反応装置の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an endothermic reaction apparatus, and particularly to an improvement in an endothermic reaction apparatus equipped with a plurality of double snowman type reaction tubes.

[発明の技術的宵祭とその問題点] 既知のように二重雪男生型の反応管は、一端が閉塞され
ている反応管外管と両端ともに開かれている反応管内管
とから構成されており、反応管外管と反応管内管とによ
って囲まれてなる円環状断面の管路は反応室を構成して
おり、かつこの反応室には必要応じて触媒が充填されて
いる。原料ガスは、反応管外管の開口部より導入されて
反応室を通過した後、反応端外管の閉塞部に至り反応管
内管の一端側へ導かれる。反応管内管の内側は再生室と
なっており、反応生成ガスは再生室を通つて反応管内管
の他端側より排出される。一方、吸熱反応のために必要
な反応熱および原料ガスを望ましい反応温度まで上昇さ
せるために必要な顕熱は、主として反応管外管を外側か
ら燃焼ガスあるいはその他の高温ガスにより加熱するこ
とによって反応室に供給されるが、一部は反応生成ガス
が上記再生室を通って排出される際、反応管内管を加熱
することによっても反応室に供給される。
[Technical evening of the invention and its problems] As is known, the double snowman type reaction tube consists of an outer reaction tube that is closed at one end and an inner reaction tube that is open at both ends. A pipe line having an annular cross section surrounded by an outer reaction tube and an inner reaction tube constitutes a reaction chamber, and this reaction chamber is filled with a catalyst as required. The raw material gas is introduced through the opening of the outer tube of the reaction tube and passes through the reaction chamber, and then reaches the closed portion of the outer tube at the reaction end and is guided to one end of the inner tube of the reaction tube. The inside of the reaction tube inner tube serves as a regeneration chamber, and the reaction product gas passes through the regeneration chamber and is discharged from the other end side of the reaction tube inner tube. On the other hand, the reaction heat required for the endothermic reaction and the sensible heat required to raise the raw material gas to the desired reaction temperature are mainly generated by heating the outer tube of the reaction tube from the outside with combustion gas or other high-temperature gas. A portion of the reaction product gas is also supplied to the reaction chamber by heating the reaction tube as it exits through the regeneration chamber.

ところで、上述した二重雪男生型の反応管はガスの出入
口が反応管の一端側のみにあるため、他端側すなわち反
応管外管の閉塞部を全く固定する必要がなく、従って反
応管の熱膨張に対する対応が容易であること、また前述
のごとく反応生成ガスの有する顕熱の一部が再生室にお
いて回収されるため、装置の熱効率が向上すると共に、
反応生成ガスの排出温度が下がることにより生成ガスの
後処理設備が安価になるという優れた特徴を有している
。このため、特に高温で吸熱反応を行なう必要のあるス
チームリフオーミング装置等に好適に使用され得るもの
である。
By the way, in the above-mentioned double snowman type reaction tube, the gas inlet and outlet are only on one end of the reaction tube, so there is no need to fix the other end, that is, the closed part of the reaction tube outer tube, and therefore the reaction tube It is easy to deal with thermal expansion, and as mentioned above, a part of the sensible heat of the reaction product gas is recovered in the regeneration chamber, so the thermal efficiency of the device is improved, and
It has an excellent feature in that the exhaust temperature of the reaction product gas is lowered, which makes the post-processing equipment for the product gas cheaper. Therefore, it can be particularly suitably used in steam reforming equipment and the like that require an endothermic reaction to occur at high temperatures.

しかしながら、このような二重雪男生型の反応管を多数
本使用し、1特にこれらの反応管を稠密に配列して装置
をコンパクトに設計しようとする場合には、従来の方法
ではいくつかの問題が生じる。
However, when using a large number of such double-Yukiman-shaped reaction tubes,1 especially when attempting to design a compact device by arranging these reaction tubes densely, there are several problems with conventional methods. A problem arises.

つまり、この二重雪男生型の反応管を稠密に配列してこ
れらに原料ガスを分配供給し、また生成ガスを集合する
ための方法として、従来はピグテールによる方法と二重
管板による方法とがある。まずピグテールによる方法は
、原料ガス集合管あるいは生成ガス集合管と夫々の反応
管とを、細い連結管(ピグテール)によって連通する方
法である。
In other words, the conventional methods for arranging these double snowman-shaped reaction tubes in a dense manner, distributing and supplying raw material gas to them, and collecting the produced gas have been two methods: one using pigtails and the other using double tube plates. There is. First, the pigtail method is a method in which a raw material gas collecting pipe or a produced gas collecting pipe and each reaction tube are communicated with each other through a thin connecting pipe (pigtail).

しかし、この方法を稠密に配列された二重雪男生型の反
応管に用いた場合には、ピグテールが反応管の一端側に
集中するため構造が非常に複雑になるという問題が生じ
る。さらに、反応管内の触媒を取り替える場合には、全
てのピグテールを切り離すことが必要となり装置の保守
上大きな問題を生ずることになる。
However, when this method is applied to densely arranged double snowman type reaction tubes, a problem arises in that the pigtails are concentrated at one end of the reaction tube, making the structure extremely complicated. Furthermore, when replacing the catalyst in the reaction tube, it is necessary to cut off all the pigtails, which poses a major maintenance problem for the apparatus.

一方二重管板による方法は、反応管外管用の管板と反応
管内管用の管板との2枚の管板を平行に隔置して設け、
これら2枚の管板によって挾まれた空間を原料ガスマニ
ホールドとし、かつ反応管内管用の管板の外側の空間を
生成ガスマニホルドとして使用する方法である。この方
法によれば、構造が簡単になり、また触媒の取替えも比
較的容易となる。しかし、反応装置を加圧して用いる場
合には、厚肉の管板が必要となるため高コストになる上
に管板の温度不均一によって反応管が傾く等の熱変形を
生じ易いという欠点を有する。このため、特に反応管の
外部の高温ガス側に伝熱性の充填材を充填して伝熱を促
進するような応用には、この方法を用いることが困難と
なっている。
On the other hand, in the double tube sheet method, two tube sheets, one for the outer tube of the reaction tube and the other for the inner tube of the reaction tube, are provided in parallel and spaced apart.
In this method, the space sandwiched between these two tube sheets is used as a raw material gas manifold, and the space outside the tube sheet for the inner tube of the reaction tube is used as a produced gas manifold. According to this method, the structure becomes simple and the catalyst can be replaced relatively easily. However, when using a pressurized reactor, a thick tube sheet is required, resulting in high costs, and the disadvantage is that thermal deformation such as tilting of the reaction tube is likely to occur due to uneven temperature of the tube sheet. have For this reason, it is difficult to use this method particularly in applications where a heat conductive filler is filled on the high temperature gas side outside the reaction tube to promote heat transfer.

[発明の目的] 本発明は上記のような問題を解消するために成されたも
ので、その目的は複数本の二重雪男生型の反応管を用い
つつコンパクトで安価な構成とし、かつ反応管中の触媒
の取替えを容易とししかも高温で使用しても反応管の熱
変形による不均一な傾きが生じることを防止することが
可能な吸熱反応装置を提供することにある。
[Object of the Invention] The present invention was made to solve the above-mentioned problems, and its purpose is to achieve a compact and inexpensive structure using a plurality of double snowman type reaction tubes, and to realize a reaction tube that is compact and inexpensive. It is an object of the present invention to provide an endothermic reaction device which allows easy replacement of a catalyst in a tube and can prevent uneven inclination of reaction tubes due to thermal deformation even when used at high temperatures.

[発明の概要] 上記目的を達成するために本発明では、前述した反応管
外管を、平行でかつ隔置された下部管板および上部管板
を貫通して取り付け、上記下部管板上部管板および反応
管外管によって囲まれて成る空間を生成ガスマニホルド
とし、反応生成ガスは反応管内管の内側に設けられた再
生室を通過させた後、上記反応管外管を貫通して上記再
生室と上記生成ガスマニホルドとを連結すべく設けられ
た内管連結管を通し、上記生成ガスマニホルドに導くよ
うにしたことを特徴とする。
[Summary of the Invention] In order to achieve the above object, the present invention includes the above-mentioned reaction tube outer tube being attached through a lower tube sheet and an upper tube sheet that are parallel and spaced apart from each other, so that the outer tube of the reaction tube is attached to the upper tube of the lower tube sheet. The space surrounded by the plate and the outer tube of the reaction tube is defined as a generated gas manifold, and the reaction generated gas passes through a regeneration chamber provided inside the inner tube of the reaction tube, and then passes through the outer tube of the reaction tube to be regenerated. It is characterized in that it is led to the generated gas manifold through an inner pipe connecting pipe provided to connect the chamber and the generated gas manifold.

[発明の実施例] 以下、図面を参照して本発明の一実施例について詳細に
説明する。図は、本発明による吸熱反応装置の構成例を
断面図にて示したものである。図において、反応器容器
1の内部には、反応管外管2と反応管内管3とから成る
二重雪男生型の複数本の反応管が稠密に配列されている
。上記反応管外管2と反応管内@3との間の円環状断面
の管路は反応室4を構成しており、ここには吸熱反応を
促進するための触媒5が充填されている。また上記反応
管外管2は、平行でかつ隔置された下部管板6aおよび
上部管板6bの2枚の管板を貫通して、これらの管板5
a、5bに気密に取付けられている。一方、上記反応管
内管3の内部に形成された再生室7の上端部には内管連
結管8の一端が接続されており、この内管連結管8の他
端は反応管外管2を貫通して、上記2枚の管板5a、5
bと反応管外管2とによって囲まれてなる生成ガスマニ
ホルド9に通じている。さらに、互いに隣り合った反応
管外管2はその上端部付近で、外管連結管10によって
全ての反応管に原料ガスが供給可能となるように互いに
連通されている。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. The figure shows a cross-sectional view of an example of the configuration of an endothermic reaction device according to the present invention. In the figure, inside a reactor vessel 1, a plurality of double snowman-shaped reaction tubes consisting of an outer reaction tube 2 and an inner reaction tube 3 are densely arranged. A pipe line having an annular cross section between the reaction tube outer tube 2 and the reaction tube interior @3 constitutes a reaction chamber 4, which is filled with a catalyst 5 for promoting an endothermic reaction. Further, the reaction tube outer tube 2 passes through two tube sheets, a lower tube sheet 6a and an upper tube sheet 6b, which are parallel and spaced apart, and passes through these tube sheets 5.
A, 5b are airtightly attached. On the other hand, one end of an inner tube connecting tube 8 is connected to the upper end of the regeneration chamber 7 formed inside the reaction tube inner tube 3, and the other end of this inner tube connecting tube 8 is connected to the reaction tube outer tube 2. The two tube sheets 5a, 5 pass through
b and a reaction tube outer tube 2. Furthermore, the reaction tube outer tubes 2 adjacent to each other are connected to each other near their upper ends through an outer tube connecting tube 10 so that raw material gas can be supplied to all the reaction tubes.

また、11は上記反応器容器1を外部より貫通して設け
られ、反応管外管2内にその上端部より原料ガスを供給
するための原料ガス入口ノズル、12は上記生成ガスマ
ニホールド9より反応器容器1を外部へ貫通して設けら
れ、外部に生成ガスを排出するための生成ガスノズルで
ある。さらに、13は上記反応器容器1内部の下方部に
空間部として形成された燃焼室で、この燃焼室13内に
は燃料入口ノズル14および空気入口ノズル15を介し
て供給される燃料ガスおよび酸化剤としての燃焼用空気
を燃焼させるバーナノズル16が設けられている。さら
にまた、17は反応管外管2の外側に形成され、上記燃
焼室13で発生した高温のガスである燃焼ガスが通過す
る燃焼ガス通路、18はこの燃焼ガス通路17より反応
器容器1を外部へ貫通して設けられ、外部に燃焼ガスを
排出するための燃焼ガス出口ノズル、19は上記反応管
外管2の上端部を閉塞するための反応管端板である。
Reference numeral 11 is a raw material gas inlet nozzle that is provided to penetrate the reactor vessel 1 from the outside and supplies raw material gas into the reaction tube outer tube 2 from its upper end; This is a generated gas nozzle that is provided to penetrate the container 1 to the outside and discharge generated gas to the outside. Furthermore, 13 is a combustion chamber formed as a space in the lower part of the interior of the reactor vessel 1, and inside this combustion chamber 13, fuel gas and oxidation gas are supplied through a fuel inlet nozzle 14 and an air inlet nozzle 15. A burner nozzle 16 is provided for burning combustion air as a combustion agent. Furthermore, a combustion gas passage 17 is formed outside the reaction tube outer tube 2 and through which combustion gas, which is a high-temperature gas generated in the combustion chamber 13, passes; A combustion gas outlet nozzle 19 is provided to penetrate to the outside and discharge the combustion gas to the outside. Reference numeral 19 is a reaction tube end plate for closing the upper end of the reaction tube outer tube 2.

なお上記で、燃焼ガス通路17には伝熱を促進するため
の充填伝熱材を充填するようにしてもよい。この充填伝
熱材としては、たとえばアルミナボール等の耐熱材料が
好適に使用し得る。また、燃料ガスとして希薄燃料ガス
を用いる場合、あるいは燃焼用空気として低濃度酸素空
気を用いる場合には、燃焼反応を促進する目的で燃焼室
13内に酸化触媒を充填するようにしてもよい。
Note that in the above, the combustion gas passage 17 may be filled with a heat transfer material to promote heat transfer. As this filling heat transfer material, for example, a heat resistant material such as alumina balls can be suitably used. Further, when using diluted fuel gas as the fuel gas or when using low concentration oxygen air as the combustion air, an oxidation catalyst may be filled in the combustion chamber 13 for the purpose of promoting the combustion reaction.

かかる吸熱反応装置において、原料ガスは原料ガス入口
ノズル11を通って、一本あるいは数本の反応管外管2
に導入される。この原料ガスは、上記外管連結管10に
よって各反応管へと配分供給される。そして、各反応管
に供給された原料ガスは反応室4を通り、この際触媒5
の作用と反応管外管2および反応管内管3からの加熱に
よって吸熱反応を起こし、生成ガスとなって反応室4の
下端部より再生室7へ流入する。この生成ガスは再生室
7を通り、さらに内管連結管8を通って生成ガスマニホ
ルド9に集められる。そして、生成ガスは再生室7を通
る際に、その顕熱を反応管内管3に供給し、その後生成
ガスマニホルド9に設けられた生成ガス出口ノズル12
から排出される。
In such an endothermic reaction device, the raw material gas passes through the raw material gas inlet nozzle 11 and passes through one or several reaction tube outer tubes 2.
will be introduced in This raw material gas is distributed and supplied to each reaction tube through the outer tube connecting tube 10. Then, the raw material gas supplied to each reaction tube passes through the reaction chamber 4, and at this time, the catalyst 5
An endothermic reaction occurs due to the action of the reaction tube 2 and the heating from the reaction tube outer tube 2 and the reaction tube inner tube 3, and the resulting gas flows into the regeneration chamber 7 from the lower end of the reaction chamber 4. This produced gas passes through the regeneration chamber 7 and further passes through the inner pipe connecting pipe 8 to be collected in the produced gas manifold 9. When the generated gas passes through the regeneration chamber 7, its sensible heat is supplied to the reaction tube inner tube 3, and then the generated gas outlet nozzle 12 provided in the generated gas manifold 9
is discharged from.

一方、反応器容器1下方部の空間となっている燃焼室1
3には、燃料入口ノズル14から導入された燃料ガスと
空気入口ノズル15から導入された燃焼用空気とが流入
し、バーナーノズル16により燃焼室13内でこれらが
燃焼する。そして、これにより燃焼室13で発生した高
温の燃焼ガスは燃焼ガス通路17に導かれ、反応管外管
2を加熱した後に燃焼ガス出口ノズル18から排出され
る。
On the other hand, the combustion chamber 1 which is the space below the reactor vessel 1
Fuel gas introduced from the fuel inlet nozzle 14 and combustion air introduced from the air inlet nozzle 15 flow into the combustion chamber 3, and these are combusted in the combustion chamber 13 by the burner nozzle 16. The high-temperature combustion gas generated in the combustion chamber 13 is guided to the combustion gas passage 17, heats the reaction tube outer tube 2, and then is discharged from the combustion gas outlet nozzle 18.

上述したように、本構成の吸熱反応装置においては、反
応管は2枚の管板6a、6bによって連結されており、
前述したピグテールによる方法に比べて構成が簡単とな
る。また、2枚の管板6a。
As mentioned above, in the endothermic reaction apparatus of this configuration, the reaction tubes are connected by two tube plates 6a and 6b,
The configuration is simpler than the pigtail method described above. Also, two tube plates 6a.

6bは反応管外管2によって互いに結合されているので
、反応室4側が加圧されているような場合にも、管板6
a 、6bに加わる剪断応力や曲げモーメントによる応
力は、二重管板による従来の方法に比べて著しく軽減さ
れることとなり、したがって管板の厚さは極く薄いもの
で十分である。また、2枚の管板6a、5bはその上下
に接するガスが互いに同一のものであるので、温度も実
質的に同一となり、このことは板厚が薄いことと相まっ
て熱膨張に起因する変形を防止することとなる。
6b are connected to each other by the reaction tube outer tube 2, so even when the reaction chamber 4 side is pressurized, the tube plate 6
The stress due to the shear stress and bending moment applied to a and 6b is significantly reduced compared to the conventional method using a double tube sheet, so it is sufficient that the thickness of the tube sheet is extremely thin. In addition, since the two tube sheets 6a and 5b are in contact with the same gas on the top and bottom, their temperatures are also substantially the same, and this, combined with the thinness of the plates, prevents deformation due to thermal expansion. This will prevent this.

したがって、この管板6a 、6bに取付けられた反応
管も管板の変形によって傾きが生ずるようなことがなく
、このことは燃焼ガス通路17部分に伝熱促進のための
充填材料を充填することを容易にするものである。さら
に本構成においては、反応管外管2の端板19部分を切
断するかあるいはフランジ構造とすることにより、容易
に反応室4内の触媒の取替えを行なうことができる。
Therefore, the reaction tubes attached to the tube sheets 6a and 6b will not be tilted due to deformation of the tube sheets, and this means that the combustion gas passage 17 can be filled with a filling material for promoting heat transfer. It facilitates Furthermore, in this configuration, the catalyst in the reaction chamber 4 can be easily replaced by cutting off the end plate 19 portion of the reaction tube outer tube 2 or by forming it into a flange structure.

尚、本発明は上記実施例に限定されるものでなく、その
要旨を変更しない範囲で種々に変形して実施することが
可能であることは言うまでもない。
It goes without saying that the present invention is not limited to the above-described embodiments, and can be implemented with various modifications without changing the gist thereof.

例えば、上記実施例においては反応管はガスの出入口部
が上になるように配置されているが、これを上下逆にす
るようにしてもよい。また、前記外管連結管10は2枚
の管板6a 、6bの間に設けるようにしてもよいもの
である。
For example, in the above embodiment, the reaction tube is arranged with the gas inlet/outlet section facing upward, but it may also be arranged upside down. Further, the outer tube connecting tube 10 may be provided between two tube sheets 6a and 6b.

また、上記実施例では反応器容器内部の燃焼室で燃焼ガ
スおよび燃焼用空気を燃焼させて得られる燃焼ガスを高
温のガスとして用いたが、これに限らずその他の工事用
ガス等の高温ガスを用いるようにしてもよいものである
In addition, in the above example, the combustion gas obtained by burning combustion gas and combustion air in the combustion chamber inside the reactor container was used as the high-temperature gas, but the present invention is not limited to this, and other high-temperature gases such as construction gas It is also possible to use

「発明の効果」 以上説明したように本発明によれば、複数本の二重雪男
生型の反応管を用いつつコンパクトで安価な構成とし、
かつ反応管中の触媒の取替えを容易とししかも高温で使
用しても反応管の熱変形による不均一な傾きが生じるこ
とを防止することが可能な吸熱反応装置が提供できる。
"Effects of the Invention" As explained above, according to the present invention, a compact and inexpensive structure is achieved while using a plurality of double Yukiman-type reaction tubes,
Furthermore, it is possible to provide an endothermic reaction apparatus in which the catalyst in the reaction tube can be easily replaced, and even when used at high temperatures, uneven tilting due to thermal deformation of the reaction tube can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す断面構成図である。 1・・・反応器容器、2・・・反応管外管、3・・・反
応管内管、4・・・反応室、5・・・触媒、6a・・・
下部管板、6b・・・上部管板、7・・・再生室、8・
・・内管連結管、9・・・生成ガスマニホルド、10・
・・外管連結管、11・・・原料ガス入口ノズル、12
・・・生成ガス出口ノズル、13・・・燃焼室、14・
・・燃料入口ノズル、15・・・空気入口ノズル、16
・・・バーナーノズル、17・・・燃焼ガス通路、18
・・・燃焼ガス出口ノズル、1つ・・・反応管端板、。
The figure is a cross-sectional configuration diagram showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Reactor container, 2... Reaction tube outer tube, 3... Reaction tube inner tube, 4... Reaction chamber, 5... Catalyst, 6a...
Lower tube sheet, 6b... Upper tube sheet, 7... Regeneration chamber, 8.
...Inner pipe connecting pipe, 9...Produced gas manifold, 10.
... Outer pipe connecting pipe, 11 ... Raw material gas inlet nozzle, 12
... Produced gas outlet nozzle, 13... Combustion chamber, 14.
...Fuel inlet nozzle, 15...Air inlet nozzle, 16
... Burner nozzle, 17 ... Combustion gas passage, 18
...One combustion gas outlet nozzle...Reaction tube end plate.

Claims (2)

【特許請求の範囲】[Claims] (1)反応器容器と、この反応器容器の内部に配置され
、かつ反応管外管と反応管内管とを有すると共にこれら
反応管外管と反応管内管とにより包囲して反応室が形成
されてなる複数本の反応管とを備え、高温のガスを前記
反応管外管の一端部よりその外側を通して前記反応室を
加熱して他端部より反応器容器外部へ排出させ、かつ原
料ガスを前記反応管外管の他端部より流入させ反応室を
通して生成ガスとしさらにその一端部より前記反応管内
管の内側を通して他端部より流出させる如く構成された
吸熱反応装置において、前記反応管外管を、互いに平行
でかつ隔置された下部および上部の各管板を貫通して取
付け、前記反応管外管と前記下部および上部の各管板と
により包囲してなる外部に通じる空間部を生成ガスマニ
ホルドとして形成し、かつ前記反応管内管の生成ガス流
出側と前記生成ガスマニホルドとを前記反応管外管を貫
通して設けられた内管連結管により連通するように構成
したことを特徴とする吸熱反応装置。
(1) A reactor container, which is disposed inside the reactor container, has an outer reaction tube and an inner reaction tube, and is surrounded by the outer reaction tube and the inner reaction tube to form a reaction chamber. A plurality of reaction tubes made of In the endothermic reaction apparatus, the endothermic reaction apparatus is configured such that the product gas flows into the reaction tube from the other end of the reaction tube through the reaction chamber, and then flows out from the other end through the inside of the reaction tube from one end of the reaction tube. are installed through the lower and upper tube sheets that are parallel to each other and spaced apart, to create a space surrounded by the reaction tube outer tube and the lower and upper tube sheets that leads to the outside. The reaction tube is formed as a gas manifold, and the produced gas outflow side of the reaction tube inner tube and the generated gas manifold are configured to communicate with each other through an inner tube connecting tube provided through the reaction tube outer tube. endothermic reactor.
(2)反応器容器と、この反応器容器の内部に配置され
、かつ反応管外管と反応管内管とを有すると共にこれら
反応管外管と反応管内管とにより包囲して反応室が形成
されてなる複数本の反応管とを備え、高温のガスを前記
反応管外管の一端部よりその外側を通して前記反応室を
加熱して他端部より反応器容器外部へ排出させ、かつ原
料ガスを前記反応管外管の他端部より流入させ反応室を
通して生成ガスとしさらにその一端部より前記反応管内
管の内側を通して他端部より流出させる如く構成された
吸熱反応装置において、前記反応管外管を、互いに平行
でかつ隔置された下部および上部の各管板を貫通して取
付け、前記反応管外管と前記下部および上部の各管板と
により包囲してなる外部に通じる空間部を生成ガスマニ
ホルドとして形成し、前記反応管内管の生成ガス流出側
と前記生成ガスマニホルドとを前記反応管外管を貫通し
て設けられた内管連結管により連通し、かつ互いに隣り
合った前記各反応管外管の原料ガス流入側を外管連結管
により連通するように構成したことを特徴とする吸熱反
応装置。
(2) A reactor container, which is disposed inside the reactor container, has an outer reaction tube and an inner reaction tube, and is surrounded by the outer reaction tube and the inner reaction tube to form a reaction chamber. A plurality of reaction tubes made of In the endothermic reaction apparatus, the endothermic reaction apparatus is configured such that the product gas flows into the reaction tube from the other end of the reaction tube through the reaction chamber, and then flows out from the other end through the inside of the reaction tube from one end of the reaction tube. are installed through the lower and upper tube sheets that are parallel to each other and spaced apart, to create a space surrounded by the reaction tube outer tube and the lower and upper tube sheets that leads to the outside. The reaction tube is formed as a gas manifold, and the produced gas outflow side of the inner reaction tube and the produced gas manifold are connected to each other by an inner tube connecting tube provided through the outer reaction tube, and each of the reactions are adjacent to each other. An endothermic reaction device characterized in that the raw material gas inflow side of the outer tube is connected to the outer tube connecting tube.
JP59130011A 1984-06-26 1984-06-26 Endothermic reaction device Expired - Lifetime JPH0660001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59130011A JPH0660001B2 (en) 1984-06-26 1984-06-26 Endothermic reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59130011A JPH0660001B2 (en) 1984-06-26 1984-06-26 Endothermic reaction device

Publications (2)

Publication Number Publication Date
JPS6111135A true JPS6111135A (en) 1986-01-18
JPH0660001B2 JPH0660001B2 (en) 1994-08-10

Family

ID=15023941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59130011A Expired - Lifetime JPH0660001B2 (en) 1984-06-26 1984-06-26 Endothermic reaction device

Country Status (1)

Country Link
JP (1) JPH0660001B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104730A (en) * 1986-10-20 1988-05-10 Murata Mach Ltd Press device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104730A (en) * 1986-10-20 1988-05-10 Murata Mach Ltd Press device
JPH0247295B2 (en) * 1986-10-20 1990-10-19 Murata Machinery Ltd

Also Published As

Publication number Publication date
JPH0660001B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
US5470360A (en) Fuel cell power plant reformer burner gas flow control system
JP3075757B2 (en) Endothermic reactor
CA1078615A (en) Convective power reformer equipment and system
JPS62210047A (en) Apparatus for reaction
JP2631892B2 (en) Heating equipment
AU661877B2 (en) Endothermic reaction apparatus
NO178491B (en) Method and apparatus for producing synthesis gas
US3119671A (en) Upright fluid heating furnace with heat recovery system
JP2508287B2 (en) Reactor
CA1091425A (en) Convective power reformer equipment and system
KR970704252A (en) Fuel cell power plant furnace
JPS6111135A (en) Endothermic reaction device
KR100429602B1 (en) Fuel Reformer for Fuel Cell
JPH08301602A (en) Fuel reformer
JP3842352B2 (en) Fuel reformer
JPH0335241B2 (en)
JPH0324401B2 (en)
US5096674A (en) Endothermic reaction apparatus
JP2730283B2 (en) Reforming tube and reformer
JP2712766B2 (en) Fuel reformer
JPH0240602B2 (en)
SU1386285A1 (en) Oven for catalytic conversion of hydrocarbons
JPS6227305A (en) Plate type reformer
JPH01107843A (en) Reformer
JP2664607B2 (en) Reformer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term